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Abstract  

Pochonia chlamydosporia is a worldwide-distributed soil fungus with a great capacity to infect 

and destroy the eggs and kill females of plant-parasitic nematodes. Additionally, it has the ability 

to colonize endophytically roots of economically-important crop plants, thereby promoting their 

growth and eliciting plant defenses. This multitrophic behavior makes P. chlamydosporia a 

potentially useful tool for sustainable agriculture approaches. We sequenced and assembled ~41 

Mb of P. chlamydosporia genomic DNA and predicted 12,122 gene models, of which many were 

homologous to genes of fungal pathogens of invertebrates and fungal plant pathogens. Predicted 

genes (65%) were functionally annotated according to Gene Ontology, and 16% of them found to 

share homology with genes in the Pathogen Host Interactions (PHI) database. The genome of 

this fungus is highly enriched in genes encoding hydrolytic enzymes, such as proteases, 

glycoside hydrolases and carbohydrate esterases. We used RNA-Seq technology in order to 

identify the genes expressed during endophytic behavior of P. chlamydosporia when colonizing 

barley roots. Functional annotation of these genes showed that hydrolytic enzymes and 

transporters are expressed during endophytism. This structural and functional analysis of the P. 

chlamydosporia genome provides a starting point for understanding the molecular mechanisms 

involved in the multitrophic lifestyle of this fungus. The genomic information provided here 

should also prove useful for enhancing the capabilities of this fungus as a biocontrol agent of 

plant-parasitic nematodes and as a plant growth-promoting organism. 

Keywords:  

Pochonia chlamydosporia, genome sequencing, nematophagous fungus, endophyte, hydrolytic 

enzymes, gene ontology.  

 

 

 



  

 

 

Highlights 

We present the first draft genome of a fungal nematode-egg parasitic fungus.  

A close phylogenomic relationship exists between P. chlamydosporia, entomopathogenic and 

endophytic fungi.  

The P. chlamydosporia genome is enriched in genes encoding hydrolytic enzymes. 

Gene families in the P. chlamydosporia genome support its tritrophic lifestyle. 

Abbreviations 

PHI: Pathogen-host interaction; CAZy: Carbohydrate-active enzyme; MEROPS: Peptidase 

database; GH: Glycoside hydrolase; CE: Carbohydrate esterase; PKS: Polyketide synthase; 

NRPS: Non-ribosomal peptide synthetase; HYBRID: Hybrid PKS-NRPS enzyme; MFS: Major 

facilitator superfamily; ABC: ATP-binding cassette; CYP: Cytochrome P450; GPCR: G-protein 

coupled receptor; PK: Protein kinase; HK: Histidine kinase; TF: Transcription factor. 



  

1. Introduction  

Plant-parasitic nematodes cause an estimated global loss of US $100 billion annually (Casas-

Flores and Herrera-Estrella, 2007). Fungi that parasitize and infect female nematodes and 

destroy their eggs include the worldwide-distributed egg-parasitic fungus Pochonia 

chlamydosporia (syn. Verticillium chlamydosporium, teleomorph Metacordyceps 

chlamydosporia) (Sung et al., 2007; Zare et al., 2007). P. chlamydosporia is a well known soil 

fungus (Domsch et al., 1993) which infects nematode females and eggs of economically 

important plant parasitic nematodes (such as Heterodera spp. and Meloidogyne spp.). In some 

agroecosystems this fungus is a main cause of soil suppressiveness to these nematodes acting as 

their agent of “natural” biological control. Since P. chlamydosporia is not an obligate parasite, it 

also acts as a true endophyte, colonizing plant roots of diverse species including main crops 

(such as barley and tomato). When switching host or habitats, this fungus faces a number of  

barriers and niches which requires diverse abilities (e.g. protein-glycan degradation), using  

hydrolases presumably encoded in its genome. 

Infection of nematode eggs by P. chlamydosporia involves adhesion, differentiation of 

appressoria and egg-shell penetration (Lopez-Llorca et al., 2002b). We have recently 

documented the development of penetration hyphae in the Meloidogyne javanica egg-shell and 

invasion of egg contents by trophic hyphae using a GFP-tagged P. chlamydosporia strain 

(Escudero and Lopez-Llorca, 2012). However, information on the molecular basis of the 

infection process of nematode eggs by Pochonia species is scarce. There is evidence suggesting 

that secreted hydrolytic enzymes including proteases (Huang et al., 2004; Lopez-Llorca and 

Robertson 1992; Morton et al., 2003) and chitinases (Tikhonov et al., 2002) are fundamental for 

the degradation of egg-shell components. Rosso et al. (2011) used cDNA-amplified fragment 

length polymorphism (cDNA-AFLP) based on transcript profiling in order to identify genes 

involved in the pathogenesis of nematode eggs by P. chlamydosporia, and found that genes 

encoding transcription factors, transporters and enzymes involved in fungal metabolism are 



  

enriched. In particular, expression of the P. chlamydosporia VCP1 serine protease is induced in 

response to nitrogen and carbon sources, environmental conditions and the presence of nematode 

eggs (Ward et al., 2012). 

Similarly to other Hypocreales (such as Trichoderma spp. and Beauveria bassiana), P. 

chlamydosporia has a broad host range and can act as an endophyte in both monocot (Lopez-

Llorca et al., 2002a) and dicot (Bordallo et al., 2002) plants. Interestingly, this fungus promotes 

plant growth in barley (Hordeum vulgare) (Macia-Vicente et al., 2009b), wheat (Triticum 

aestivum) (Monfort et al., 2005), tomato (Solanum lycopersicum) (Escudero and Lopez-Llorca, 

2012), lettuce (Lactuca sativa) (Dias-Arieira et al., 2011) and pistachio (Pistacia vera) (Ebadi et 

al., 2009). P. chlamydosporia colonizes the rhizoplane of crop plants, especially cereals, forming 

abundant chlamydospores (Bordallo et al., 2002; Kerry, 2000). This fungus then penetrates root 

hairs and epidermal cells, and colonizes the cortex but not the root vascular system (Bordallo et 

al., 2002; Macia-Vicente et al., 2009a). P. chlamydosporia modulates biochemical (e.g. 

biosynthesis of secreted phenolic compounds) and structural (e.g. root papillae formation) plant 

defenses (Bordallo et al., 2002; Escudero and Lopez-Llorca, 2012; Macia-Vicente et al., 2009a), 

but these do not prevent root colonization by the fungus. P. chlamydosporia expresses proteases 

during this process, such as VCP1 and SCP1, the latter a newly reported serine carboxypeptidase 

(Larriba et al., 2012; Lopez-Llorca et al., 2010). 

P. chlamydosporia also produces several polyketide compounds named pochonins (Hellwig et 

al.,2003), which are resorcylic acid lactones derived from radicicol. Different multifunctional 

polyketide synthases are responsible for carbon skeleton construction, acting at the initial steps 

in the pochonin biosynthesis pathway (Reeves et al., 2008). Despite the potential of pochonins in 

biotechnology and pharmacology (Barluenga et al., 2009), only two genes encoding polyketide 

synthases from P. chlamydosporia have been cloned and characterized so far (Reeves et al., 

2008; Zhou et al., 2010). 



  

The sequencing and functional analysis of genomes recently available from fungal pathogens of 

invertebrates (Gao et al., 2011; Zheng et al., 2011) have increased our knowledge on the 

biocontrol capabilities of these organisms. The in-depth functional genomic characterization of 

the nematophagous fungus P. chlamydosporia presented in this work provides new insights into 

the molecular mechanisms enabling its multitrophic lifestyle as a saprophyte, nematode pathogen 

and endophyte. 



  

2. Materials and methods 

2.1. Fungal strains 

Pochonia chlamydosporia isolate 123 (ATCC number MYA-4875) grown on corn meal agar 

(CMA) at 25 ºC in the dark for 1–4 weeks was inoculated in four flasks each containing 50 ml of 

potato dextrose broth (PDB) and incubated at 25º C for 8 days with shaking at 120 rpm.  

2.2. Fungal genome sequencing and assembly 

Isolation of genomic DNA was carried out using the DNeasy Plant Mini Kit (Qiagen) according 

to the manufacturer´s fungal protocol. Total DNA obtained was subjected to quality control by 

agarose gel electrophoresis and quantified by the same method. The genome of P. 

chlamydosporia was sequenced with MPS (massively parallel sequencing) Illumina technology. 

Two DNA libraries were constructed: a pair-end library with an insert size of 200 bp and a mate-

pair library with an insert size of 3 kb. Each DNA library was sequenced using an Illumina 

HiSeq 2000 at the Donnelly Sequencing Centre (University of Toronto). Pair-end and mate-pair 

sequences were analyzed using the FastQC application 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) for quality control. In order to improve 

the quality of the sequences, Illumina PCR adapter sequences were removed using the Cutadap 

tool (Martin, 2011), and sequences were then futher trimmed based on the Phred quality score 

(>20) using DynamicTrim (Cox et al., 2010). The genomic trimmed sequences were assembled 

by SOAPdenovo (http://soap.genomics.org.cn/soapdenovo.html) using mate-pair reads to 

generate scaffolds. Transfer RNA (tRNA) genes were predicted with tRNAscan-SE (Lowe and 

Eddy 1997), and genome repetitive sequences were analyzed using RepeatMasker 

(http://www.repeatmasker.org/). Repetitive elements were identified by RMBlastN search against 

RepBase v. 20120418 (http://www.girinst.org/repbase). This Whole Genome Shotgun project has 

been deposited at the DDBJ/EMBL/GenBank database under the accession number 

AOSW00000000. 



  

2.3. Gene prediction, annotation and protein classification 

Ab initio gene prediction was performed on the P. chlamydosporia genome assembly by using 

the Augustus program (Stanke et al., 2006), and as evidence genes of this fungus available in the 

GenBank database (consulted in June 2013). ESTs from P. chlamydosporia (Rosso et al., 2011) 

and M. anisopliae (Wang et al., 2005; Zhang and Xia 2008, 2009), and the training annotation 

files from F. graminearum were incorporated as references. The GeneMark-ES program (Ter-

Hovhannisyan et al., 2008) was used as a self-training ab initio predictor. A final set of gene 

models was selected by MAKER2 (Holt and Yandell, 2011) by combining ab initio predictions 

with transcripts listed above aligned using Exonerate (http://www.ebi.ac.uk/~guy/exonerate). 

Consensus sets of gene models were functionally annotated using Blast2GO 

(http://www.blast2go.com/b2ghome). Gene families were established using the Interpro database 

(http://www.ebi.ac.uk/interpro), and putatively-secreted proteins were identified using SignaIP 

(http://www.cbs.dtu.dk/services/SignalP), both implemented in the Blast2GO suite. Proteases 

were classified into families by means of batch Blast search against the MEROPS database 

(Rawlings and Morton, 2008). Carbohydrate-active enzymes (CAZymes) were classified by 

performing a HMMER (http://eddylab.org) scan based on the profiles compiled in dbCAN 

release 2.0 on the CAZy database (http://www.cazy.org). To identify potential pathogenesis 

genes, a whole genome Blast search (E-value <10-6) was conduced against the Pathogen Host 

Interactions (PHI) database v. 3.2 (http://www.phi-base.org). Secondary metabolism genes were 

predicted using SMURF (http://jcvi.org/smurf/index.php). 

2.4. Transcriptomic analysis by RNA-Seq 

Barley roots were inoculated with P. chlamydosporia as described in Lopez-Llorca et al. (2010). 

Isolation of RNA from barley roots inoculated with the fungus and non-colonized barley roots  

was carried out using the RNeasy Plant Mini Kit (Qiagen). Subsequently, the RNA obtained was 

amplified using the MessageAmp II kit (Ambion, Life Technologies) according to the 



  

manufacturer's instructions. Amplified RNA obtained was reverse-transcribed into cDNA and 

sequenced using a Illumina Genome Analyzer at Macrogen Inc. (South Korea). Pair-end 

sequencing yielded 77,606,102 reads from control roots and 99,966,600 reads from inoculated 

roots, all of them with an average length of 101 bp. All reads were aligned against the genome of 

P. chlamydosporia using Bowtie (Langmead et al., 2009), and 544,060 reads (0.54% of total) 

from inoculated plants RNA were found to map with the genome of P. chlamydosporia. On the 

contrary, zero reads from control roots RNA mapped against the fungus genome. To validate the 

gene models predicted in the P. chlamydosporia genome, the genes expressed during fungal 

endophytic colonization of barley roots were identified by employing a combination of TopHat 

(Trapnell et al., 2009) and HTSeq v0.5.4p2 (http://www-huber.embl.de/users/anders/HTSeq) 

software. These genes were annotated and classified as described in section 2.3.  

2.5. Orthology and phylogenomic analysis 

Orthologous gene detection in P. chlamydosporia and 28 additional fungal genomes was carried 

out using ProteinOrtho (Lechner et al., 2011). In total, 382 orthologous sequences were 

identified, acquired and aligned using T-Coffee (Notredame et al., 2000). Alignments of 

orthologous sequences were concatenated using FASconCAT (Kück and Meusemann, 2010), and 

a maximum likelihood phylogenomic tree was created with the program TREE-PUZZLE using 

the Dayhoff model (Schmidt et al., 2002). The tree obtained was edited using the TreeGraph 2 

software (Stöver and Müller, 2010). 

3. Results  

3.1. Genome sequencing and general features 

P. chlamydosporia strain 123 (ATCC MYA-4875) was found suppressing a cereal cyst nematode 

(Heterodera avenae) population in a field near the city of Seville (SW Spain). The genome of 

this fungus was sequenced 136-fold coverage using a whole-genome shotgun approach and 

Illumina sequencing technology. The completed assembly (N50, 225 kb) comprised 901 



  

scaffolds and 57 additional contigs >3 kb (not assembled into scaffolds) which, after discarding 

ambiguous bases, yielded a final genome size of 41.2 Mb. The main features of this fungal 

genome are summarized in Table 1. From this assembly we predicted a total of 12,122 gene 

models using MAKER2 (see section 2.3), a coding capacity that was similar to that of other 

ascomycetes (Table 2). A 63% fraction of these gene models was expressed, i.e. validated using 

RNA-Seq, under endophytism (Supplementary Table 1). A 5.5% (672) of total predicted genes in 

the genome did not exhibit any homologous counterparts in the NCBI database (accessed June 

2013), of which ca. 41% (277 genes) were expressed during P. chlamydosporia endophytic 

lifestyle. Protein-coding genes of this fungus showed the highest number of homologous proteins 

(34% and 30%, respectively) with the entomopathogenic fungi M. anisopliae and M. acridum 

(Table 2). 

We built a phylogenomic tree based on P. chlamydosporia genome-encoded orthologous proteins 

found in the genomes of other 28 filamentous fungi and yeasts (Fig. 1). This tree illustrated that 

P. chlamydosporia was most closely related to entomopathogenic fungi M. anisopliae and M. 

acridum. The endophyte Epichloë festucae, also belonging to the Clavicipitaceae, formed a clade 

with both the nematode egg-parasite and the two entomopathogens. Other relevant 

entomopathogenic fungi (B. bassiana and Cordyceps militaris) formed an independent, but 

closely related clade, whereas mycoparasitic Trichoderma spp. and plant-pathogenic Fusarium 

spp. form adjacent, independent clades (Fig. 1).  

3.2. Mobile elements 

A 0.46% fraction of the P. chlamydosporia genome consisted of repeated sequences, using the 

RepBase database, we were able to identify 209 retrotransposons (class I), 133 DNA transposons 

(class II), and 7 unknown elements (Fig. 2A). The number and family distribution of mobile 

elements of P. chlamydosporia compared to those of insect pathogenic fungi are shown in Fig. 

2B. This comparison showed that the P. chlamydosporia genome exhibited more copies of most 



  

of the 7 families of mobile elements than did the closely-related insect pathogenic fungi 

Metarhizium spp. 

3.3. Gene Ontology analysis of protein-coding genes 

We functionally annotated 7,887 protein-coding genes, representing 65% of the P. 

chlamydosporia whole set of genes in the genome. The distribution of these genes into functional 

groups according to Gene Ontology (GO) is shown in Fig. 3. Within the Biological Process GO 

domain (Fig. 3A), protein-coding genes distributed into the following GO terms: ca. 21% were 

associated with primary metabolism, 11% with macromolecule metabolism, such as protein 

synthesis and modification, 6% of annotated genes with catabolism, 9% with biosynthetic 

processes and 7% with nitrogen metabolism (Supplementary Fig. 1A). Within the metabolism 

GO term, 13% of the annotated genes belonged to the cellular metabolic processes GO term (Fig. 

3A), whereas 17% of genes were related to other cellular processes, such as cell cycle regulation, 

cell growth, cell communication and cell death (Supplementary Fig. 1B). Finally, 2% of genes 

were related to stress responses, and 1% were annotated within interspecies interactions between 

organisms (Fig. 3A). Within the Molecular Function GO domain (Fig. 3A), we found that 23% 

of annotated genes encoded proteins related to hydrolase activity, breaking of phosphorus ester 

bonds, acid anhydrides and peptides, while a further 21% of genes were related to transferase 

activity, including protein kinases (Supplementary Fig. 1C). A larger set of genes (43%) were 

associated with binding of molecules and ions (Supplementary Fig. 1D), with 23% of them being 

involved in binding to small molecules and 16% in nucleic-acid binding, and transcription 

factors representing an additional 2% of annotated genes (Fig. 3A).  

3.4. Pathogenesis-related genes 

To identify genes involved in pathogenicity in the P. chlamydosporia genome, we conducted a 

Blast search against the Pathogen-Host Interaction (PHI) database, which compiles 

experimentally-validated pathogenesis-related genes of fungi, bacteria and oomycetes 



  

(Winnenburg et al., 2008). We found that 16% of the protein-coding genes in the genome of P. 

chlamydosporia (1,981 genes) shared homology with genes present in the PHI database 

(Supplementary Fig. 2A), 24% of which (468 genes) coded for putatively secreted polypeptides. 

Despite the absence of nematophagous fungi in this database, we considered experimental 

validation of pathogenesis for a gene in a given fungal species as suggestive of a pathogenic role 

for its homolog in other fungi. Using this criterion, virulence genes have been analyzed in the 

entomopathogenic fungi M. anisopliae and M. acridum (Gao et al., 2011). In order to identify the 

biological processes and molecular functions attributable to the virulence genes identified using 

the PHI database, we carried out a functional annotation using Blast2GO (Fig. 3B). Genes 

identified within the Biological Process GO domain fell into 28 functional subcategories, which 

included genes related to primary metabolism (20%), establishment of localization (15%) and 

cellular processes (13%). Likewise, regulation of biological processes (7%), biosynthetic 

processes (6%) and catabolism (7%) were represented in that domain. Interestingly, of the 81 

protein-coding genes identified as associated with the GO term relationships between organisms, 

i.e. pathogenesis/symbiosis (Fig. 3A), 47 of them were found in the PHI database (Fig. 3B and 

Supplementary Fig. 2A). This set of genes included those coding for glycoside hydrolases, 

proteases, proteins involved in signal transduction, detoxification processes and stress response 

factors (Supplementary Fig. 2B, 2C and Supplementary Table 2). Within the Molecular Function 

GO domain (Fig. 3B), we found that nucleotide-binding was the most represented GO term 

(31%), and a large proportion of the annotated genes to encode proteins having hydrolase 

activity (14%), transferase activity (16%) or nucleic acid-binding properties (12%), with an 

additional 3% being related to transcription factors (Fig. 3B).  

3.5. Transcriptomic analysis of root endophytic colonization 

In order to identify protein-coding genes involved in P. chlamydosporia endophytic behavior, an 

RNA-Seq analysis was carried out using fungus-colonized barley roots. Using this technique we 

identified a set of 7,586 genes expressed from the P. chlamydosporia genome (Supplementary 



  

Table 1). Fifty-seven percent of all P. chlamydosporia genes coding for predicted secreted 

proteins (1,432) were detected to be expressed during endophytism. Within the Biological 

Process GO domain the genes expressed by this fungus were associated with a total of 28 GO 

terms, including primary metabolic process (21% of the genes), cellular metabolic process (19%) 

and nitrogen compound metabolic process (Fig. 3C). Likewise, regulation of biological 

processes (6%), biosynthetic processes (9%) and macromolecule metabolic process (6%) were 

represented GO terms. Within the Molecular Function GO domain we found that the most 

represented terms were related to small molecule binding and hydrolase activity. Likewise, 

transferase activity, binding to nucleic acids, and protein binding were each represented by a 

16% fraction of expressed genes (Fig. 3C).  

The genes found to be expressed in our transcriptomic analysis of barley root colonization by P. 

chlamydosporia were compared with those exhibiting a homolog within the PHI database  

(putatively associated with pathogenesis) and with those annotated under the interaction between 

organisms GO term, and a common set of 32 genes was obtained (Supplementary Fig. 2A). The 

set of genes putatively associated with pathogenesis plus endophytism is shown in  

Supplementary Fig. 2B and Supplementary Table 2, the majority of which encoded hydrolytic 

enzymes and signal transduction proteins. Hydrolases found to have homologs in the PHI 

database mostly included metalloproteases and a chitinase precursor, whereas those expressed 

under endophytism were more diverse, including serine and rhomboid protease families and a 

protein phosphatase (Supplementary Fig. 2D and supplementary Table 2). 

3.6. Hydrolytic enzymes encoded by the P. chlamydosporia genome 

The nematode egg-shell constitutes the main barrier against parasitism by nematophagous fungi. 

P. chlamydosporia employs an array of hydrolytic enzymes, including proteases, chitinases, 

esterases and lipases, in order to degrade and penetrate nematode egg-shells (Huang et al., 2004; 

Yang et al., 2007). As illustrated in Fig. 4, its genome contained an ample set of genes putatively 



  

encoding hydrolytic enzymes, over half of which were detected to be expressed during root 

endophytic colonization (Supplementary Table 3). 

3.6.1. Proteases 

We carried out a batch Blast search against the complete MEROPS protease database (Rawlings 

and Morton, 2008) and found 522 genes coding for proteases, which were classified into six 

categories according to their catalytic type, and distributed in a total of 68 families 

(Supplementary Table 3). Serine proteases (189 genes) were the largest category of proteases 

encoded in the P. chlamydosporia genome (Fig. 4), with 59% of genes in this family being 

expressed during endophytism (Fig. 4). Serine proteases constituted the second largest family of  

hydrolytic enzymes expressed under endophytism (Fig. 5A). Among these enzymes, subtilisins 

and serine carboxypeptidases are known to be involved in nematode egg-parasitism (Lopez-

Llorca et al., 2002b; Ward et al., 2011) and expressed during root endophytic colonization 

(Lopez-Llorca et al., 2010) by this fungus. We found in this context that the P. chlamydosporia 

genome coded for 32 serine proteases of the S8 family (subtilisins) and 16 proteases of the S10 

family (serine carboxypeptidases), 7 of the latter being putatively secreted  enzymes (Fig. 5B). 

Fifty percent of genes in the S10 family were expressed during root endophytism (Figure 5B and 

Supplementary Table 3). A Blast search against the PHI database returned a number of 

homologous genes coding for putatively secreted serine proteases belonging to other fungi 

(Supplementary Table 4). Among these genes, the P. chlamydosporia genome encodes two S54 

(rhomboid family) membrane proteases (Fig. 5B), identified in this study as putatively involved 

in endophytic capacity (Supplementary Tables 2 and 3). Also during endophytism, we detected 

the expression of 55% of the S33 family members, this being the family of serine proteases 

(prolyl aminopeptidases) with the highest number of members identified in the genome 

(Supplementary Table 3). The second largest group of proteases in this genome was 

metalloproteases, with 147 genes belonging to 25 families (Supplementary Table 3), of which 



  

71% were identified in our transcriptomic analysis (Fig. 4). The largest family within 

metalloproteases was glutamate carboxypeptidases, M20 (Fig. 5B). The P. chlamydosporia 

genome contained genes encoding 3 enzymes of the metalloproteases M36 (fungalysins) family, 

9 of the M28 (aminopeptidase Y-related), 6 of the M35 (deuterolysins) and 14 of the M43 

(cytophagalysins) (Fig. 5B), with representatives of all of them being expressed during 

endophytism (Fig. 5B and Supplementary Table 3). Other abundant families of putatively 

secreted proteases were aspartic (A1) and cysteine proteases (Fig. 4 and 5B), of which we 

detected expression of many of its members during root endophytism (Fig. 5A and 

Supplementary Table 3).  

3.6.2. Glycoside hydrolases 

Besides proteins, P. chlamydosporia needs to degrade structural polysaccharides of nematode 

egg-shells, such as chitin. Using CAZy database models (see section 2.3) we identified 305 

genes encoding glycoside hydrolases (GH) and 159 encoding carbohydrate esterases (CE) in its 

genome, 200 and 54 of which, respectively, were putatively secreted (Fig. 4A and  

Supplementary Table 3). During endophytic root colonization 60% and 39% of the genes 

identified as GH and CE, respectively, were expressed (Fig. 5B and Supplementary Table 3). 

Among hydrolases the GH group included the largest number of genes expressed during  

endophytism (Fig. 5A). Chitinases (GH18) were the most abundant P. chlamydosporia glycoside 

hydrolases, represented by 22 genes, of which 15 were putatively secreted (Fig. 5B and 

Supplementary Table 3). These enzymes degrade the chitin present in the chitin–protein complex 

of the nematode egg-shell (Bird and McClure, 1976). Regarding chitosanases (GH75), the 

genome of this fungus encoded 11 enzymes of this family, 10 of which were putatively secreted 

(Fig. 5A). Of the enzymes related with chitin/chitosan degradation, i.e. GH18 plus GH75 

families, less than 40% of their members were expressed during root endophytism (Fig. 5B). 

GH76 (α-1,6-mannanases) constituted the family exhibiting the highest number of putatively 



  

secreted hydrolases, with 14 encoding genes (Fig. 5B). Genes encoding members of cellulase 

families (GH5-GH12) were also expressed during root colonization (Fig. 5B) and exhibited 

homology with enzymes in the PHI database (Supplementary Table 4). We were also able to 

identify expressed GH families involved in the degradation of callose, lignocellulose and xylans 

(Fig. 5B), or in changes in cell wall composition and morphogenesis (GH17, GH31, GH72 and 

GH125) in fungal pathogens ( Fig. 5B, Supplementary Tables 2 and 3). 

3.6.3. Carbohydrate esterases 

The largest family CE genes contained in the genome of P. chlamydosporia was sterol esterases 

(CE10), represented by 93 genes, 29 of which were predicted to encode putatively secreted 

enzymes and 36% of which were expressed during root endophytic colonization (Fig. 5B and 

Supplementary Table 3). Its genome encoded 9 cutinases (CE5 family) with homologous 

counterparts in the PHI database (Fig. 5B and Supplementary Table 4). We also detected 27 

genes encoding triglyceride lipases and 11 phospholipases (Fig. 5B) with homologs in the PHI 

database (Supplementary Table 4). Only 18 % phospholipase genes were expressed during 

endophytic behavior, in contrast to the high number of triglyceride lipase genes (82%) expressed 

during this phase (Fig. 5A). 

3.7. Secondary metabolism gene clusters 

P. chlamydosporia produces a variety of secondary metabolites, such as radicicol (=monorden), 

tetrahydromonorden, pseurotin A, pochonins A to J (Hellwig et al., 2003, Shinonaga et al., 2009 

and Zhou et al., 2010) and various aurovertin-type metabolites (Niu et al., 2010). In this context, 

we found that its genome contained genes putatively encoding 15 polyketide synthases (PKS) 

and 12 putative non-ribosomal peptide synthases (NRPS), together with a number of PKS and 

NRPS-like proteins and 4 NRPS-PKS hybrid genes (Supplementary Table 5). We also found a 

radicicol gene cluster, Rdc1-Rdc5 (Zhou et al., 2010) (Supplementary Table 6). During 



  

endophytic root colonization, P. chlamydosporia expressed 56% of the secondary metabolism 

pathway core genes identified in its genome (Supplementary Table 5). Among them we detected 

the expression of seven genes related to the radicicol cluster (Supplementary Table 6).  

3.8. Genes involved in transport, detoxification and cell wall modification 

The P. chlamydosporia genome encoded 290 transporters of the major facilitator superfamily 

(MFS), 58 ATP-binding cassette (ABC) transporters and 113 general transporters (Fig. 4 and 

Supplementary Table 7), most of which exhibited homologs in the PHI database (Supplementary 

Table 5). During endophytic root colonization P. chlamydosporia expressed genes encoding drug 

resistance, sugar/inositol, oligopeptide and amino acid transporters (Fig. 4 and Supplementary 

Table 8). Also, we detected several genes encoding  oxidoreductases, many of them related to 

detoxification (Fig. 4 and Supplementary Table 8). These comprised 110 cytochrome P450 

(CYP) enzymes, a number similar to those found in the entomopathogen M. anisopliae and in 

fungal plant pathogens (Supplementary Table 7 ). Interestingly, the number of members of these 

oxidoreductase families, which are likely involved in counteracting oxidative stress, was higher 

in P. chlamydosporia than in most invertebrate and plant pathogens (Supplementary Table 7). 

Sixty percent of CYP-coding genes in the P. chlamydosporia genome were expressed during 

endophytism (Fig. 4) and 72% showed homology with genes in the PHI database 

(Supplementary Table 8). Finally, the P. chlamydosporia genome included genes coding for 

enzymes involved in cell wall biosynthesis and modification, such as chitin synthesis activators 

(Sel-1 domain-containing proteins), chitin synthases, lipopolysaccharide-modifying proteins and 

hydrophobins (Fig. 4), which were expressed during endophytic colonization (Fig. 4 and 

Supplementary Table 8). 

3.9. Signal transduction and regulation of gene expression 



  

In order to adjust to its different lifestyles (saprophytic, parasitic and endophytic), P. 

chlamydosporia needs genes involved in signaling and regulation of gene expression. G proteins 

are involved in different biological processes in filamentous fungi, including development and 

pathogenesis, and are responsible as well of transducing environmental signals. The genome of 

this fungus encoded eight G-protein  subunits (Fig. 4), three of which showed homology with G 

proteins involved in vegetative growth, conidiation, conidium attachment, appressorium 

formation, mating, and pathogenicity in Ma. oryzae (Liu and Dean, 1997). Six of these G 

protein-coding genes were expressed during P. chlamydosporia endophytism (Fig. 4 and 

Supplementary Table 8). The genome of this fungus encoded 54 proteins homologous to Pth11-

like G protein-coupled receptors (GPCR) of Magnaporthe spp., i.e. the same number found in 

the M. anisopliae genome (Supplementary Table 7). The P. chlamydosporia genome encoded as 

well 27 small GTPase regulators, (96% of which had homology with genes in the PHI database) 

and 12 Rab GTPase activators, all of which presumably modulate its endophytic behavior (Fig. 4 

and Supplementary Tables 2 and 8). Among proteins involved in the regulation of cell and 

metabolic processes, the P. chlamydosporia genome encoded 153 protein kinases (PKs), 75% of 

which returned homologous partners within the PHI database (Fig. 4 and Supplementary Table 

8). This number was similar to that found in entomopathogens and plant pathogens, except for 

Ma. oryzae (Supplementary Table 7). Together with PKs, we found genes coding for histidine 

kinases (HKs) in the genome of P. chlamydosporia (Fig. 4), nearly all which had homologous 

partners in the PHI database and 14 of which were expressed in endophytism (Fig. 4 and 

Supplementary Table 8). Finally, its genome encoded 409 putative transcription factors (TFs) 

grouped into six families (Fig. 4), of which that containing the highest number of genes 

expressed under endophytism was the Zn2Cys6 fungal type TF family (Fig. 4 and Supplementary 

Table 8). 



  

4. Discussion  

In this study we used MPS techniques in combination with bioinformatic tools (Jackman and 

Birol, 2010; Yandell and Ence, 2012) to obtain the first genome sequence of a nematode-egg 

parasitic fungus. In addition, we used RNA-Seq to validate our bioinformatically-predicted gene 

models, this being the first transcriptomic study of root endophytic colonization by a 

nematophagous fungus. P. chlamydosporia uses appressoria for host penetration (Escudero and 

Lopez-Llorca, 2012; Lopez-Llorca et al., 2002b), just like entomopathogenic (St. Leger et al., 

1991) and plant-pathogenic fungi (Tucker and Talbot, 2001). On the contrary, nematode-trapping 

fungi, such as Arthrobotrys oligospora, generate complex hyphal networks and constrictive rings 

to capture motile nematodes (Liu et al., 2012; Yang et al., 2011). These differences in 

pathogenesis mechanisms are reflected in the higher homology we have found between P. 

chlamydosporia predicted protein-coding genes and those of entomopathogenic fungi 

(Metarhizium spp.) compared to those of the nematode-trapping fungus A. oligospora. This 

would support the idea that the genomic machineries of nematode egg-parasites and trapping 

fungi are very different, and that the nematophagous habit evolved independently several times 

in the Fungi. Our phylogenomic tree shows the existence of a close relationship between P. 

chlamydosporia, entomopathogenic, mycoparasitic (Trichoderma spp.) and -especially-  

endophytic fungi (Epichloë festucae). However, other specialized plant pathogens (Verticillium 

spp. wilt fungi) are less related to P. chlamydosporia. This confirms that the former Verticillium 

genus, which included nematode-egg (such as P. chlamydosporia) and insect parasites, plant 

pathogens and soil saprophytes, was artificially based on morphological features (mainly 

conidiophore morphology). Taken together, these results support the taxonomic affiliation of P. 

chlamydosporia as well as its ecology as endophyte and invertebrate pathogen (nematode-egg 

parasite). Also, they provide evidence of strong links with entomopathogenic fungi and of an 

existing evolutionary distance with nematode-trapping fungi. The present genome-wide study is 

also consistent with our recent sequence comparative analysis of VCP1 and P32 serine proteases 



  

from the closely related egg-parasites P. chlamydosporia and P. rubescens, respectively, which 

exhibited higher similarity to proteases of fungal pathogens of insects than to those of nematode-

trapping fungi (Larriba et al., 2012). The multitrophic lifestyle of P. chlamydosporia, i.e. as soil 

saprophyte, nematode-egg pathogen and root endophyte, is reflected in the large number of 

putatively secreted enzymes encoded by its genome, being the species showing the highest 

number of these among all ascomycete genomes sequenced to date (Galan et al., 2005: Gao et 

al., 2011; Islam et al., 2012; Xiao et al., 2012). More than half of them are expressed during P. 

chlamydosporia endophytic behavior. In this context, fungal adaptation to several lifestyles is 

thought to require a large number of hydrolytic enzymes and transporters for an efficient use of 

the diverse nutrients available (Gao et al., 2011). Accordingly, 30% of the P. chlamydosporia 

genes annotated within the Molecular Function GO domain are involved in the hydrolysis of a 

wide array of substrates, which is one of the most represented gene sets expressed during root 

endophytism. For instance, P. chlamydosporia genome encodes more proteases (and putatively 

secreted proteases) than the fungal insect pathogens M. anisopliae and M. acridum (Gao et al., 

2011). The most studied proteases in P. chlamydosporia are those belonging to the serine 

protease category, among which subtilisins (S8) are the family with the highest number of 

putatively secreted members in its genome. Within this family, the VCP1 protease (Morton et al., 

2003) has been found to be involved in degradation and penetration of the nematode egg-shell 

(Lopez-Llorca et al., 2002b) and to participate in the endophytic phase of the fungus (Lopez-

Llorca et al., 2010). It must be mentioned that serine proteases are well known pathogenic 

determinants of both entomopathogenic (St. Leger, 1995) and human pathogenic fungi (Monod, 

2008). Prolyl aminopeptidases (S33) are the most abundant serine protease family in the P. 

chlamydosporia genome. To this respect, proline residues constitute a large fraction (35%) of the 

amino acids of proteins forming the Tylenchida family egg-shell (to which plant-parasitic 

nematodes such as M. javanica belong) (Bird and McClure 1976). Likewise, the finding of P. 

chlamydosporia homologous protease genes in the PHI database related to the evasion of host 



  

defenses, suggests that its proteases may play roles other than nematode egg-shell disruption 

(Hung et al., 2005; Jia et al., 2000; Newport et al., 2003; Soloviev et al., 2011). To this respect, 

the nematode Meloidogyne incognita genome contains genes related to the immune response and 

antifungal defenses (Abad et al., 2008). Expression of the VCP1 protease and the serine 

carboxypeptidase SCP1 has been detected during P. chlamydosporia endophytism (Lopez-Llorca 

et al., 2010). Additionally, we have identified in this work several families of expressed proteases 

putatively related to fungal-plant interaction, such as the rhomboid protease family (S54), likely 

involved in its endophytic behavior. Alongside, metalloproteases M28, M35, M36 and M43 

expressed during P. chlamydosporia endophytism have been related to root endophytism by the 

basidiomycete Piriformospora indica, presumably by allowing degradation of plant cell wall 

proteins (Zuccaro et al., 2011).  

Chitin is a major component of nematode egg-shells (Bird and McClure, 1976; Warton, 1980), 

and P. chlamydosporia is known to express chitinases for egg penetration (Gortari and Hours 

2008; Mi et al., 2010; Tikhonov et al., 2002). Our P. chlamydosporia genome analysis has shown 

that chitinases (GH18) are the most represented family of GH, the majority of them predicted to 

be putatively secreted. Chitinases and chitosanases are coexpressed with protease VCP1 by P. 

chlamydosporia in the presence of chitin (Palma-Guerrero et al., 2008), perhaps suggesting their 

co-involvement in the pathogenesis of nematode eggs. The number of GH enzymes encoded by a 

fungus genome has been linked to its capacity to adaptation to diverse environments (Van den 

Brink and De Vries, 2011). P. chlamydosporia expresses 60% of its GH encoding genes during 

endophytism. These include GH enzymes that have been related to the degradation of cellulose, 

hemicellulose, xylans and other constituents of the plant cell wall (Gibson, 2012). Additionally, 

this fungus exhibits a large number of CE enzymes, which would cleave ester bonds present in 

plant polysaccharides (Biely, 2012). Transporters that have been involved in the trophic behavior 

of fungal endophytes (Zuccaro et al., 2011) and during pathogenesis of nematode eggs (Rosso et 

al., 2011) are encoded in the P. chlamydosporia genome and exhibit homologs in the PHI 



  

database, some of which are also expressed during endophytism. P. chlamydosporia also 

expresses a large number of genes related to sugar/inositol transport, which are involved in the 

establishment of plant-fungus relationships by M. anisopliae (Fang an d St. Leger 2010).  

The multiple modes of life of P. chlamydosporia would require an extensive signaling machinery 

to perceive and respond to a wide variety of environmental stimuli. In this light, its genome 

contains more genes encoding G-protein α-subunits than the entomophatogen M. anisopliae, 

which are involved in the P. chlamydosporia endophytic phase, as well as a larger number of 

Pth11-like G-proteins involved in physiological processes in the plant pathogen Ma. grisea 

(DeZwaan et al., 1999). Several genes encoding protein kinases were also identified here in the 

P. chlamydosporia genome, a type of proteins that have been involved in the regulation of 

virulence genes in the entomopathogenic fungus M. anisopliae (Fang et al., 2009). Our analyses 

show that most families of genes coding for proteins related to signal sensing and transduction in 

P. chlamydosporia exhibit homologous genes in the PHI database and are expressed in 

endophytism. During the pathogenesis of nematode eggs, P. chlamydosporia is known to express 

transcription factors (Rosso et al., 2011) belonging to Zn2Cys6 fungal-type, bZIP and 

bromodomain-containing TF families, which are well represented in the P. chlamydosporia 

genome. These observations highlight the importance of identifying the signaling and 

transduction pathways involved in the transitions between diverse P. chlamydosporia lifestyles.  

Nematode-egg parasitism and root endophytism by P. chlamydosporia requires a broad set of 

genes involved in detoxification and resistance to oxidative stress, such as cytochrome P450 

genes, present in a similar number than in the M. anisopliae genome (Gao et al., 2011). The P. 

chlamydosporia genome encodes more monoxygenases that any insect-pathogenic fungal 

genome sequenced to date (Xiao et al., 2012), and which are presumably involved in its 

endophytic phase. Monoxygenases have been found in fungal oxidation of plant phenolic 

compounds, thereby reducing plant defenses (Morrissey and Osbourn, 1999). Besides, P. 



  

chlamydosporia encodes a large number of zinc type alcohol dehydrogenases, wich are 

necessary for mannitol synthesis, a sugar associated with stress tolerance and energy storage in 

fungi (Solomon et al., 2007). Finally, the P. chlamydosporia genome includes genes for the 

synthesis of a large number of secondary metabolites (Hellwig et al., 2003; Niu et al., 2010; 

Shinonaga et al., 2009). Our analysis allowed us to identify the elements of a gene cluster 

involved in the biosynthesis of radicicol, a compound which is the structural basis for pochonin 

production (Reeves et al., 2008). Expression of PKS genes (necessary for polyketide 

biosynthesis) has been detected during the P. chlamydosporia endophytic and saprophytic phases 

(Rosso et al., 2011). There is also evidence that the production of secondary metabolites is 

involved in the pathogenesis of nematode eggs (Niu et al., 2010) and in adaptation to the root 

environment (Johnson et al., 2007).  

5. Conclusions 

In this work we show evidence that the genome of the nematode-egg parasite P. chlamydosporia 

is most closely related to those of Clavicipitaceous enthomopathogenic fungi (Metarhizium spp.). 

Both fungi form a clade with Epichloë festucae, an endophyte. This supports the presence of 

endophytism in both nematophagous and entomopathogenic fungi. In addition, the P. 

chlamydosporia genome is evolutionarily close to that of mycoparasitic (Trichoderma spp.) and 

plant pathogenic (Fusarium spp.) fungi. However, the nematode-trapping fungus A. oligospora is 

phylogenomically far apart from P. chlamydosporia. This would agree with the idea of 

independent and multiple evolution of nematophagous behavior in fungi. The wide array of 

hydrolytic enzymes and transporters encoded by the P. chlamydosporia genome support the 

observations of multitrophic behavior (pathogenic, endophytic and saprophytic) by P. 

chlamydosporia (Fig. 6). To this respect, this fungus expresses ca. 62% of its protein-coding 

genes during barley root endophytism. The number and diversity of genes related to signal 

transduction and gene regulation in its genome suggests that the transitions between the different 

trophic modes require a sophisticated signaling network (Fig. 6). This study provides the 



  

“essential parts” list to understand the molecular basis of these phenomena and the interactions 

among their complex underlying pathways. Furthermore, the genomic-level information here 

provided on P. chlamydosporia should be helpful to enhance the capabilities of this fungus as a 

biocontrol agent of plant-parasitic nematodes and a growth-promoting agent of crop plants 

(Lahrmann and Zuccaro 2012).  
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Figures. 

Fig. 1. Phylogenomic tree of P. chlamydosporia. A maximum likelihood phylogenomic tree was 
constructed on the basis of 382 concatenated orthologous protein-coding genes using the 
Dayhoff amino acid substitution model showing the evolutionary relationships between the 
indicated 29 fungal species. Bootstrap values are shown on relevant tree branches. 

Fig. 2. Mobile elements predicted in the genomes of P. chlamydosporia and other fungal 

pathogens of invertebrates. A) Mobile elements classified into subclasses predicted in the 

genome. B) Families of mobile elements predicted in the sequenced genomes of fungal 

pathogens of invertebrates. Class II transposons are in yellow, class I retrotransposons in blue 

and unknown elements in green. The families of mobile elements in the P. chlamydosporia 

genome are indicated by brackets. Subclasses and families of mobile elements are indicated 

below each bar. 

Fig. 3. Gene Ontology (GO) functional annotation of proteins encoded by genes in the P. 

chlamydosporia genome. GO charts were generated using generic Slim terms at level 3 within 

the GO Biological Process (left) and Molecular Function (right) domains. A) Protein-coding 

genes predicted in the P. chlamydosporia genome. B) P. chlamydosporia genes with homologous 

counterparts in the PHI database. C) Genes expressed during endophytic colonization of barley 

roots by P. chlamydosporia detected by RNA-Seq. 

Fig. 4. Families of proteins encoded in the P. chlamydosporia genome. Protein families with 

an involvement in the different P. chlamydosporia lifestyles are shown grouped by different 

colors according to their biological roles. Each bar represents the number of members of each 

protein family predicted in the genome, and the stripped area indicates the number of them 

predicted to be extracellular. The black line indicates the number of genes within each family 

that are expressed during endophytic root colonization.  

Fig. 5. Hydrolytic enzymes encoded by the P. chlamydosporia genome and expressed 

during endophytic behavior. A) Sector graph showing the percentage of hydrolytic enzyme-



  

coding genes identified within each catalytic type that are expressed during root endophytic 

colonization. B) Selected hydrolytic enzymes are grouped by different colors according to 

their substrate types. Each bar represents the number of hydrolytic enzymes belonging to 

each family represented in the genome, and the stripped area the number of them predicted 

to be secreted. The red line indicates the number of genes within each hydrolase family 

expressed during endophytic colonization. 

Fig. 6. Tritrophic lifestyles of the nematophagous fungus P. chlamydosporia. The three 

trophic modes of P. chlamydosporia as nematode-egg parasite (P), soil saprophyte (S) and 

root endophyte (E), are shown in the figure. The parasitic life-mode of P. chlamydosporia is 

illustrated (P inset) by an image of a GFP transformant strain of this fungus infecting a plant-

parasitic nematode (Meloidogyne javanica) egg. The fungus forms an appresorium on the 

egg-shell from which penetration and colonization of egg contents takes place (from 

Escudero and Lopez-Llorca, 2012). P. chlamydosporia is a true endophyte, since it colonizes 

living barley root cells (E inset). The image portraits the fungus penetrating the cell wall of 

two adjacent cortex cells(arrowheads). The sample has been labeled with the membrane 

tracker FM4-64 to show that the fungus-colonized cells retain membrane integrity (blue 

staining) (from Macia-Vicente et al., 2009) Finally, the saprophytic lifestyle of P. 

chlamydosporia in the soil is illustrated (S inset) by a chlamydospore (resting stage) of the 

fungus (picture gift from Dr. Palma-Guerrero, U. Berkeley, USA). P. chlamydosporia switches 

lifestyles and makes a differential use of protein families encoded in its genome. The 

suggested importance of key protein families in the different lifestyles of this fungus is 

indicated by the font size of its corresponding protein family abbreviation. Hydrolytic enzymes 

are in brackets. Abbreviations: PROT: proteases, GH: glycoside hydrolases, CE: 

carbohydrate esterases, DEX: detoxification, SM: secondary metabolism, TRS, transporters, 

TF: transcription factors, ST: signal transducers.  

 

 



  

Table 1. Main features of the Pochonia chlamydosporia genome 

Genome size 

(Mb) 

41.2 

Assembly N50 

(kb) 

225 

Coverage (fold) 136 

G+C content 

(%) 

49.9 

Repeat rate (%) 0.46 

Protein-coding 

genes 

12,122 

Unique proteins 672 

Secreted 

proteins 

2,485 

Transmembrane 

proteins 

2,707 

Genome coding 

(%) 

42.1 

Gene density 

(genes/Mb) 

294 



  

Average ORF 

length (kb) 

1.4 

tRNA genes 45 

Mobile 

elements 

349 

 

 

 

 

 

 

 

 

 

Table 2. Genome size, number of predicted protein-

coding genes, G+C content and best Blast top hit 

homology between the genomes of P. chlamydosporia 

and those of 28 other fungi. 

Species Genome 

size 

(Mb)a 

G+C 

(%)a 

Number 

of 

proteinsa

BBTHb Lifestyle NCBI 

Bioproject 



  

Pochonia 

chlamydosporia 

41.2 49.9 12,122 – Nematophagous PRJNA68669 

Metarhizium 

anisopliae 

39.0 51.5 10,582 4,169 Entomopathogenic PRJNA38717 

Metarhizium acridum 38.0 49.9 9,849 3,608 Entomopathogenic PRJNA38715 

Epichloë festucae 34.7 44.3 9,273 871 Endophytic PRJNA42133 

Fusarium solani 51.2 50.8 15,708 411 Phytopathogenic PRJNA51499 

Trichoderma virens 39.0 49.2 12,406 386 Mycopathogenic PRJNA19983 

Fusarium oxysporum 61.4 48.2 15,438 271 Phytopathogenic PRJNA174274

Trichoderma 

atroviride 

36.1 49.7 11,816 227 Mycopathogenic PRJNA19867 

Beauveria bassiana 33.6 51.5 10,364 187 Entomopathogenic PRJNA38719 

Cordyceps militaris 32.2 51.4 9,651 162 Entomopathogenic PRJNA41129 

Trichoderma reesei 33.3 52.8 9,115 140 Mycopathogenic PRJNA15571 

Aspergillus oryzae 36.5 48.3 11,397 124 Saprophytic PRJNA88495 

Fusarium 

graminearum 

72.7 48.3 11,628 111 Phytopathogenic PRJNA243 

Colletotrichum 

graminicola 

50.9 49.1 12,02 99 Phytopathogenic PRJNA37879 

Aspergillus niger 35.7 50.4 11,182 92 Saprophytic PRJNA19263 



  

Verticillium dahliae 32.9 55.8 10,535 86 Phytopathogenic PRJNA28529 

Colletotrichum 

higginsianum 

44.1 55.1 16,141 83 Phytopathogenic PRJNA47061 

Botryotinia 

fuckeliana 

39.5 43.5 16,389 72 Phytopathogenic PRJNA20061 

Aspergillus clavatus 27.8 49.2 9,121 62 Saprophytic PRJNA18467 

Arthrobotrys 

oligospora 

39.9 44.5 11,479 53 Nematophagous PRJNA41495 

Magnaporthe oryzae 40.9 51.6 12,836 47 Phytopathogenic PRJNA13840 

Verticillium albo-

atrum 

30.3 56 10,237 45 Phytopathogenic PRJNA51263 

Neurospora crassa 39.2 49.3 9,841 31 Saprophytic PRJNA132 

Laccaria bicolor 58.7 47 18,215 10 Mycorrhizal  PRJNA29019 

Piriformospora 

indica 

25.0 50.6 11,791 6 Endophytic PRJEA76339 

Saccharomyces 

cerevisiae 

12.1 38.2 5,905 6 Saprophytic PRJNA128 

Ustilago maydis 19.9 53.7 6,548 5 Phytopathogenic PRJNA14007 

Schizosaccharomyces 

pombe 

12.5 36 5,133 2 Saprophytic PRJNA127 



  

Kluyveromyces lactis 10.7 38.7 5,076 1 Saprophytic PRJNA13835

aGenome size, G+C content and number of protein-coding genes for each fungus were obtained 

from the Genome database at NCBI. 

bBBTH (Best Blast Top Hit) refers to the number of sequences returning the top hit after a 

BlastP search of 28 fungal genomes.  
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