
A Tutorial Guide to Programming
PIC18 Microcontrollers with FlashForth.

Mechanical Engineering Report 2012/05
P. A. Jacobs

School of Mechanical and Mining Engineering
The University of Queensland.

December 1, 2013

Abstract

Modern microcontrollers provide an amazingly diverse selection of hardware peripher-
als, all within a single chip. One needs to provide a small amount of supporting hardware
to power the chip and connect its peripheral devices to the signals of interest and, when
powered up, these devices need to be configured and monitored by a suitable firmware
program. These notes focus on programming a PIC18F2520 microcontroller in a simple
hardware environment and provide a number of example programs (in the Forth language)
to illustrate the use of some of the MCU’s peripheral devices.

1

CONTENTS 2

Contents

1 Microchip’s PIC18F2520 microcontroller 3

2 Development boards 6

3 FlashForth 8
3.1 Getting FlashForth and programming the MCU 9

4 Interacting with FlashForth 10

5 Introductory examples 11
5.1 Hello, World: Flash a LED . 11
5.2 Set the cycle duration with a variable . 12
5.3 Hello, World: Morse code . 13

6 Read and report an analog voltage 14

7 Counting button presses 15

8 Scanning a 4x3 matrix keypad 16

9 Using I2C to get temperature measurements 19

10 Making high-resolution voltage measurements 20

11 An I2C slave example 22

12 Speed of operation 26

1 MICROCHIP’S PIC18F2520 MICROCONTROLLER 3

1 Microchip’s PIC18F2520 microcontroller

Over the past couple of decades, microcontrollers have evolved to be cheap, powerful
computing devices that even Mechanical Engineers can use in building bespoke instru-
mentation for their research laboratories. Typical tasks include monitoring of analog
signals, sensing pulses and providing timing signals. Of course these things could be done
with a modern personal computer, connected via USB to a commercial data acquisition
and signal processing system but there are many situations where the small, dedicated
microcontroller, requiring just a few milliamps of current, performs the task admirably
and at low cost.

Modern microcontrollers provide an amazingly diverse selection of hardware peripher-
als, all within a single chip. One needs to provide a small amount of supporting hardware
to power the chip and connect its peripheral devices to the signals of interest and, when
powered up, these devices need to be configured and monitored by a suitable firmware
program. These following sections provide an introduction to the details of doing this with
a Microchip PIC18F2520 microcontroller, programmed with the FlashForth interpreter.

Microchip’s PIC18 microcontroller units (MCUs) all have the same core, i.e. same
instruction set and memory organisation. Your selection of which MCU to actually use in
your project can be based on a couple of considerations. If you are on a tight budget and
will be making many units, choose an MCU with just enough functionality, however, if
convenience of development is more important, choose one with “bells and whistles”. For
this tutorial guide, we will value convenience and so will work with the PIC18F2520-I/SP
which has:

• a nice selection of features, including a serial port, several timers and an analog-
to-digital converter. See the feature list and the block diagram of the MCU on the
following pages.

• a 28-pin narrow DIL package, which is convenient for prototyping and has enough
I/O pins to play without needing very careful planning.

• a pinout is shown at the start of the Microchip datasheet (book) on the PIC18F2420 [1].
You will be reading the pages of this book over and over but we include the following
couple of pages togive an overview.

• an internal arrangement that is around an 8-bit data bus.

• the “Harvard architecture” with separate paths and storage areas for program in-
structions and data.

We won’t worry too much about the details of the general-purpose registers, the inter-
nal static RAM or the machine instruction set because we will let the Forth interpreter
handle most of the details, however, memory layout, especially the I/O memory layout is
important for us as programmers. The peripheral devices are controlled and accessed via
registers in the data-memory space.

1 MICROCHIP’S PIC18F2520 MICROCONTROLLER 4

© 2008 Microchip Technology Inc. DS39631E-page 1

PIC18F2420/2520/4420/4520

Power Management Features:
� Run: CPU on, Peripherals on
� Idle: CPU off, Peripherals on
� Sleep: CPU off, Peripherals off
� Ultra Low 50nA Input Leakage
� Run mode Currents Down to 11 µA Typical
� Idle mode Currents Down to 2.5 µA Typical
� Sleep mode Current Down to 100 nA Typical
� Timer1 Oscillator: 900 nA, 32 kHz, 2V
� Watchdog Timer: 1.4 µA, 2V Typical
� Two-Speed Oscillator Start-up

Flexible Oscillator Structure:
� Four Crystal modes, up to 40 MHz
� 4x Phase Lock Loop (PLL) � Available for Crystal

and Internal Oscillators
� Two External RC modes, up to 4 MHz
� Two External Clock modes, up to 40 MHz
� Internal Oscillator Block:

- Fast wake from Sleep and Idle, 1 µs typical
- 8 use-selectable frequencies, from 31 kHz to

8 MHz
- Provides a complete range of clock speeds

from 31 kHz to 32 MHz when used with PLL
- User-tunable to compensate for frequency drift

� Secondary Oscillator using Timer1 @ 32 kHz
� Fail-Safe Clock Monitor:

- Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:
� High-Current Sink/Source 25 mA/25 mA
� Three Programmable External Interrupts
� Four Input Change Interrupts
� Up to 2 Capture/Compare/PWM (CCP) modules,

one with Auto-Shutdown (28-pin devices)
� Enhanced Capture/Compare/PWM (ECCP)

module (40/44-pin devices only):
- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time
- Auto-shutdown and auto-restart

Peripheral Highlights (Continued):
� Master Synchronous Serial Port (MSSP) module

Supporting 3-Wire SPI (all 4 modes) and I2C�
Master and Slave modes

� Enhanced Addressable USART module:
- Supports RS-485, RS-232 and LIN/J2602
- RS-232 operation using internal oscillator

block (no external crystal required)
- Auto-wake-up on Start bit
- Auto-Baud Detect

� 10-Bit, up to 13-Channel Analog-to-Digital (A/D)
Converter module:
- Auto-acquisition capability
- Conversion available during Sleep

� Dual Analog Comparators with Input Multiplexing
� Programmable 16-Level High/Low-Voltage

Detection (HLVD) module:
- Supports interrupt on High/Low-Voltage Detection

Special Microcontroller Features:
� C Compiler Optimized Architecture:

- Optional extended instruction set designed to
optimize re-entrant code

� 100,000 Erase/Write Cycle Enhanced Flash
Program Memory Typical

� 1,000,000 Erase/Write Cycle Data EEPROM
Memory Typical

� Flash/Data EEPROM Retention: 100 Years Typical
� Self-Programmable under Software Control
� Priority Levels for Interrupts
� 8 x 8 Single-Cycle Hardware Multiplier
� Extended Watchdog Timer (WDT):

- Programmable period from 4 ms to 131s
� Single-Supply 5V In-Circuit Serial

Programming� (ICSP�) via Two Pins
� In-Circuit Debug (ICD) via Two Pins
� Wide Operating Voltage Range: 2.0V to 5.5V
� Programmable Brown-out Reset (BOR) with

Software Enable Option

-

Device

Program Memory Data Memory

I/O
10-Bit

A/D (ch)

CCP/
ECCP
(PWM)

MSSP

E
U

S
A

R
T

Comp.
Timers
8/16-BitFlash

(bytes)
Single-Word
Instructions

 SRAM
(bytes)

EEPROM
(bytes)

SPI
Master
I2C™

PIC18F2420 16K 8192 768 256 25 10 2/0 Y Y 1 2 1/3

PIC18F2520 32K 16384 1536 256 25 10 2/0 Y Y 1 2 1/3

PIC18F4420 16K 8192 768 256 36 13 1/1 Y Y 1 2 1/3

PIC18F4520 32K 16384 1536 256 36 13 1/1 Y Y 1 2 1/3

28/40/44-Pin Enhanced Flash Microcontrollers with
10-Bit A/D and nanoWatt Technology

1 MICROCHIP’S PIC18F2520 MICROCONTROLLER 5

PIC18F2420/2520/4420/4520

DS39631E-page 10 © 2008 Microchip Technology Inc.

FIGURE 1-1: PIC18F2420/2520 (28-PIN) BLOCK DIAGRAM

Instruction
Decode and

Control

PORTA

PORTB

PORTC

RA4/T0CKI/C1OUT
RA5/AN4/SS/HLVDIN/C2OUT

RB0/INT0/FLT0/AN12

RC0/T1OSO/T13CKI
RC1/T1OSI/CCP2(1)

RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

RA3/AN3/VREF+
RA2/AN2/VREF-/CVREF

RA1/AN1
RA0/AN0

RB1/INT1/AN10

Data Latch

Data Memory
(3.9 Kbytes)

Address Latch

Data Address<12>

12

AccessBSR FSR0
FSR1
FSR2

inc/dec
logic

Address

4 12 4

PCH PCL

 PCLATH

8

31-Level Stack

Program Counter

PRODLPRODH

8 x 8 Multiply

8

BITOP
88

ALU<8>

Address Latch

Program Memory
(16/32 Kbytes)

Data Latch

20

8

8

Table Pointer<21>

inc/dec logic

21

8

Data Bus<8>

Table Latch
8

 IR

12

3

ROM Latch

RB2/INT2/AN8
RB3/AN9/CCP2(1)

PCLATU

PCU

OSC2/CLKO(3)/RA6

Note 1: CCP2 is multiplexed with RC1 when Configuration bit, CCP2MX, is set, or RB3 when CCP2MX is not set.

2: RE3 is only available when MCLR functionality is disabled.

3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O.
Refer to Section 2.0 “Oscillator Configurations” for additional information.

RB4/KBI0/AN11
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD

EUSARTComparator MSSP
10-Bit
ADC

Timer2Timer1 Timer3Timer0

CCP2

HLVD

CCP1

BOR Data
EEPROM

W

Instruction Bus <16>

STKPTR Bank

8

State Machine
Control Signals

Decode

8

8
Power-up

Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

OSC1(3)

OSC2(3)

VDD,

Brown-out
Reset

Internal
Oscillator

Fail-Safe
Clock Monitor

Precision

Reference
Band Gap

VSS

MCLR(2)

Block

INTRC
Oscillator

8 MHz
Oscillator

Single-Supply
Programming

In-Circuit
Debugger

T1OSO

OSC1/CLKI(3)/RA7

T1OSI

PORTE

MCLR/VPP/RE3(2)

2 DEVELOPMENT BOARDS 6

2 Development boards

This tutorial is based around simple support hardware for the MCU. If you don’t want to
do your own soldering, Microchip’s PICDEM 2 PLUS demonstration board is a convenient
way to get your hardware up and going.

Here is a picture of PICDEM 2 PLUS with PIC18F2520 (U2) in the 28-pin socket.
We’ll make use of the serial RS-232 interface (MAX232ACPA, U3) to both program
Forth application and to communicate with running applications. Other conveniences
include on-board LEDs, switches, a potentiometer (RA0) and I2C devices, such as a
TC74 temperature sensor (U5), just below the MCU and a 24LC256 serial EEPROM
(U4). Initial programming of the FlashForth system into the MCU can be done via jack
J5 with a Microchip IDC3, PICkit3, or similar.

If you want a homebrew system, you can build a minimal system on strip-board that
works well. One of the nice things about such a strip-board construction is that you
can easily continue construction of your bespoke project on the board and, with careful
construction, your prototype can provide years of reliable service. The schematic diagram
of a home-brew board, suitable for the exercises in this guide, is shown on the following
page.

2 DEVELOPMENT BOARDS 7

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

L
E

2 4 61 3 5

C
O

N
N

_
IC

S
P

+
5

V

Vss

!M
C

L
R

V
D

D

V
S

S

D
A

T
A

C
L
K

N
C

1
N

4
1
4
8

1
0
k

1
5
p
F

1
5
p
F

V
s
s

4
M

H
z

3
3
0

3
3
0

p
ic

1
8
f2

5
2
0
 m

in
im

a
l
d
e
m

o
 b

o
a
rd

P
e
te

r
J
a
c
o
b
s

1
0
0
n

470

V
s
s

1
1

P
IC

1
8
F

2
5
2
0

!M
C

L
R

/V
P

P
/R

E
3

1

R
A

0
/A

N
0

2

R
A

1
/A

N
1

3

R
A

2
/A

N
2
/V

R
E

F
−

/C
V

R
E

F
4

R
A

3
/A

N
3
/V

R
E

F
+

5

R
A

4
/T

0
C

K
I/
C

1
O

U
T

6

R
A

5
/A

N
4
/!
S

S
/H

L
V

D
IN

/C
2
O

U
T

7

V
S

S
8

O
S

C
1
/C

L
K

I/
R

A
7

9

O
S

C
2
/C

L
K

O
/R

A
6

1
0

R
C

0
/T

1
O

S
O

/T
1
3
C

K
I

1
1

R
C

1
/T

1
O

S
I/
C

C
P

2
1

2

R
C

2
/C

C
P

1
1

3

R
C

3
/S

C
K

/S
C

L
1

4
R

C
4
/S

D
I/
S

D
A

1
5

R
C

5
/S

D
O

1
6

R
C

6
/T

X
/C

K
1

7

R
C

7
/R

X
/D

T
1

8

V
S

S
1

9

V
D

D
2

0

R
B

0
/I
N

T
0
/F

L
T

0
/A

N
1
2

2
1

R
B

1
/I
N

T
1
/A

N
1
0

2
2

R
B

2
/I
N

T
2
/A

N
8

2
3

R
B

3
/A

N
9
/C

C
P

2
2

4

R
B

4
/K

B
I0

/A
N

1
1

2
5

R
B

5
/K

B
I1

/P
G

M
2

6

R
B

6
/K

B
I2

/P
G

C
2

7

R
B

7
/K

B
I3

/P
G

D
2

8

U
2

+
5

V

V
s
s

Vss

4
7
0

4
7
0

0
R

0
R

R
B

1

R
B

0

21

C
O

N
N

_
R

E
S

E
T

+
5

V

V
s
s

21

C
O

N
N

_
P

O
W

E
R

1
N

4
0
0
4

1
N

4
0
0
4

1 2

1
0
u

1 2

1
u

IN
O

U
T

7
8

0
5

G
N

D

1

2

3

U
1

+
9
 t
o
 1

2
V

0
V

21 3

C
O

N
N

_
T

T
L
_
2
3
2

32 41

C
O

N
N

_
I2

C

2k2

2k2

Vss

+
5

V

10

V
s
s

S
D

A

S
C

L

+
V

G
N

D
G

N
D

M
C

U
_
T

X

M
C

U
_
R

X

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

R
B

5

R
B

4

R
B

3

R
B

2

R
A

1

R
A

0

R
A

2

R
A

3

R
A

4

R
A

5

R
C

0

R
C

1

R
C

2

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

R
B

6

R
B

7

1
5
−

O
c
t−

2
0
1
2

3
3
0

R
C

5

R
C

4
R

C
3

3 FLASHFORTH 8

Look below for a detailed view of the home-made demo board with PIC18F2520 in
place. The left photograph shows the minimal board for getting started. It is simple
to make, with just header pins for the reset switch and connections to the LEDs. Two
4-pin headers are connected to the I2C bus at the lower left and more may be added
easily. The ICSP header is only needed to program FlashForth into the MCU, initially.
All communication with the host PC is then via the TTL-level serial header at the lower
right. The right photograph shows the same board with current-limit resistors and header
pins on most of the MCU’s I/O pins. This arrangement is convenient for exercises such
as interfacing to the 4x3 matrix keypad (Section 8).

3 FlashForth

Forth is a word-based language, in which the data stack is made available to the pro-
grammer for temporary storage and the passing of parameters to functions. Everything
is either a number or a word. Numbers are pushed onto the stack and words invoke func-
tions. The language is simple enough to parse that full interactive Forth systems may
be implemented with few (memory) resources. Forth systems may be implemented in a
few kilobytes of program memory and a few hundred bytes of data memory such that it
is feasible to provide the convenience of a fully interactive program development on very
small microcontrollers.

The classic beginners book by Brodie [2] is available online1, as is Pelc’s more recent
book [3]2. A more detailed reference is published by Forth Inc [4]. These books are biased
toward Forth running on a personal computer rather than on a microcontroller, however,

1http://home.iae.nl/users/mhx/sf.html and http://www.forth.com/starting-forth/
2http://www.mpeforth.com/

3 FLASHFORTH 9

they are a good place to start your reading. For an introductory document that is specific
to FlashForth, see the companion report [5].

FlashForth for the PIC18 family of MCUs is a full interpreter and compiler that
runs entirely on the MCU. It is a 16-bit Forth with a byte-addressable memory space.
It does use some resources, both memory and compute cycles, but it provides such a
nice interactive environment that these costs are usually returned in convenience while
tinkering with your hardware. Forth programs are very compact so you will have less
code to maintain in the long run. The interpreter can also be available to the end user of
your instrument, possibly for making parameter adjustments or for making the hardware
versatile by having a collection of application functions present simultaneously in the
firmware, with the user selecting the required function as they wish.

3.1 Getting FlashForth and programming the MCU

FlashForth can be downloaded from SourceForge at the URL
http://sourceforge.net/projects/flashforth/

You can get a packaged release or you can clone the git repository.

For a minimal system, using the serial port as the communications channel, it is
sufficient to assemble the principal source file ff18_usb.asm along with the headers
pic18f-main.cfg, pic18f2420-2530-4420-4520.cfg, pic18fxxxx.cfg and the MPLAB’s
include file for the processor P18F2520.INC. Despite the main file name alluding to USB,
we build without USB capability (by leaving USB_CDC undefined) and use the linker script
FF_0000.lkr. The image below shows the result of building in Microchip’s MPLAB X
IDE. Timer 3 (MS_TMR3) is used for the system ticks (milliseconds) and the watchdog
timer is left enabled with a 1:256 postscale.

4 INTERACTING WITH FLASHFORTH 10

The lower left frame in MPLAB X shows the MCU resources used. With 381 bytes of
SRAM used (another 1155 free) and 8828 bytes of program memory used (23940 free), For
a more details on the SRAM memory map, see “The Hitchkiker’s Guide to FlashForth
on PIC18 Microcontrollers”. There, Mikael Nordman has provided a memory map that
shows that 434 bytes are dedicated to the FlashForth system. For the PIC18F2520 MCU,
FlashForth occupies only about one third of the MCU memory. The rest is available for
the your application.

4 Interacting with FlashForth

Principally, interaction with the programmed MCU is via the serial port. Settings are
38400 baud 8-bit, no parity, 1 stop bit, with software flow control.

On a linux machine the cutecom terminal program is very convenient. It has a line-
oriented input that doesn’t send the text to the MCU until you press the enter key. This
allows for editing of the line before committing it to the MCU and convenient recall of
previous lines. GtkTerm is available as more conventional terminal program. The following
images shows the GtkTerm window just afer sending the content of the demo01.txt file.
The device name of /dev/ttyUSB0 refers to the USB-to-serial interface that was plugged
one of the PC’s USB ports.

There is also a send-file capability and, importantly, the capability to set the period
between lines of text that are sent to the serial port so as to not overwhelm the FlashForth
MCU. Although USB-to-serial interfaces usually implement software Xon-Xoff handshak-
ing, my experience of using them with a minimal 3-wire connection (GND, RX and TX)

5 INTRODUCTORY EXAMPLES 11

has been variable. When sending large files, an end-of-line delay of 20 milliseconds has
been found adequate. This makes the transfer of large files slow, however, the text still
scrolls past too quickly for me to watch the dialog and know how well the compilation is
going. Building your application code incrementally with small files is a good thing.

5 Introductory examples

We begin with examples that demonstrate a small number of features of the MCU or of
FlashForth. Our interest will primarily be in driving the various peripherals of the MCU
rather than doing arithmetic or dealing with abstract data.

5.1 Hello, World: Flash a LED

The microcontroller version of the “Hello, World” program is typically a program that
flashes a single LED. It makes use of a digital input-output pin via the registers that
control the IO port. The datasheet [1] has a very readable introduction to the IO ports.
Please read it.

1 marker -demo00

2 $ff8a con latb

3 $ff93 con trisb

4 : init 1 trisb mclr ; \ want RB0 as output

5 : do_output latb c@ 1 xor latb c! ; \ toggle RB0

6 : wait #500 ms ;

7 : main init begin do_output wait again ;

8 main

Here is the minimal demo board in action, running the flash-LED example code. The
connection to the PC is via a TTL-level serial interface built from a PIC18F14K50 MCU,
as per the Microchip low pin-count USB demonstration board.

5 INTRODUCTORY EXAMPLES 12

Notes on this program:

• Line 1 records the state of the dictionary so that we can reset it to it’s state before
the code was compiled, simply by executing the word -demo00.

• Lines 2 and 3 define convenient names for the addresses of the file registers that
control IO-port B. Note the literal hexadecimal notation with the $ character.

• Line 4 is a colon definition for the word init that sets up the peripheral hardware.
Here, we set pin RB0 as output. The actual command that does the setting is
mclr, which takes a bit-mask (00000001) and a register address ($ff93) and then
clears the register’s bits that have been set in the mask. Note the comment starting
with the backslash character. Although the comment text is sent to the MCU, it is
ignored. Note, also, the spaces delimiting words. That spaces after the colon and
around the semicolon are important.

• Line 5 is the definition that does the work of fiddling the LED pin. We fetch the
byte from the port B latch, toggle bit 0 and store the resulting byte back into the
port B latch.

• Line 6 defines a word to pause for 500 milliseconds.

• Line 7 defines the “top-level” coordination word, which we have named main, fol-
lowing the C-programming convention. After initializing the relevant hardware, it
unconditionally loops, doing the output operation and waiting, each pass.

• Line 8 invokes the main word and runs the application. Pressing the Reset button
will kill the application and put the MCU back into a state of listening to the serial
port. Typing main, followed by Enter will restart the application.

Instead of going to the bother of tinkering with the MCU IO Port, we could have taken
a short-cut and used the string writing capability of Forth to write a short version that
was closer the the operation of typical Hello World programs.

1 : greet -me ." Hello World" ;

2 greet -me

5.2 Set the cycle duration with a variable

We enhance the initial demonstration by making the waiting period setable. Because of
the interactive FlashForth environment, the extra programming effort required is tiny.
The appearance of the code, however, looks a bit different because we have laid out the
colon definitions in a different style and have included more comments.

5 INTRODUCTORY EXAMPLES 13

1 -demo01

2 marker -demo01

3 \ Flash a LED attached to pin RB0.

4

5 $ff8a con latb

6 $ff93 con trisb

7 variable ms_count \ use this for setting wait period.

8

9 : init (--)

10 1 trisb mclr \ want RB0 as output

11 ;

12

13 : do_output (--)

14 latb c@ 1 xor latb c! \ toggle RB0

15 ;

16

17 : wait (--)

18 ms_count @ ms

19 ;

20

21 : main (n --)

22 ms_count ! \ store for later use in wait

23 init

24 begin

25 do_output

26 wait

27 again

28 ;

29

30 #500 main \ exercise the application

Notes on this program:

• If the file has been sent earlier defining the application’s words, line 1 resets the
state of the dictionary to forget those previous definitions. This makes it fairly
convenient to have the source code open in an editing window (say, using emacs)
and to simply reprogram the MCU by resending the file (with the Send file...

button in cutecom).

• Line 7 defines a 16-bit variable ms_count.

• Line 30 leaves the wait period on the stack before invoking the main word.

• On each pass through the wait word, the 16-bit value is fetched from ms_count and
is used to determine the duration of the pause.

5.3 Hello, World: Morse code

Staying with the minimal hardware of just a single LED, we can make a proper “Hello
World” application. The following program makes use of Forth’s colon definitions so that
we can spell the message directly in source code and have the MCU communicate that
message in Morse code.

6 READ AND REPORT AN ANALOG VOLTAGE 14

1 -hello -world

2 marker -hello -world

3 \ Flash a LED attached to pin RB0 , sending a message in Morse -code.

4

5 $ff8a con latb

6 $ff93 con trisb

7 variable ms_count \ determines the timing.

8

9 : init (--)

10 1 trisb mclr \ want RB0 as output

11 1 latb mclr \ initial state is off

12 ;

13

14 : led_on 1 latb mset ;

15 : led_off 1 latb mclr ;

16 : gap ms_count @ ms ; \ pause period

17 : gap2 gap gap ;

18 : dit led_on gap led_off gap2 ;

19 : dah led_on gap2 led_off gap2 ;

20

21 \ Have looked up the ARRL CW list for the following letters.

22 : H dit dit dit dit ;

23 : e dit ;

24 : l dit dit ;

25 : o dah dah dah ;

26 : W dit dah dah ;

27 : r dit dah dit ;

28 : d dah dit dit ;

29

30 : greet (--)

31 H e l l o gap W o r l d gap2

32 ;

33

34 : main (n --)

35 ms_count ! \ store for later use in gap

36 init

37 begin

38 greet

39 again

40 ;

41

42 #100 main \ exercise the application

6 Read and report an analog voltage

Use of the analog-to-digital converter (ADC) is a matter of, first, reading Section 19 of
the PIC18F2520 datasheet, setting the relevant configuration/control registers and then
giving it a poke when we want a measurement. Again, the interactive nature of FlashForth
makes the reporting of the measured data almost trivial.

1 -demo02

2 marker -demo02

3 \ Read and report the analog value on RA0/AN0.

4 \ The PICDEM 2 Plus has a potentiometer attached to RA0.

5

6 $ffc4 con adresh

7 $ffc3 con adresl

8 $ffc2 con adcon0

9 $ffc1 con adcon1

10 $ffc0 con adcon2

7 COUNTING BUTTON PRESSES 15

11 $ff92 con trisa

12

13 : init (--)

14 1 trisa mset \ want RA0 as input

15 %00001110 adcon1 c! \ RA0 is AN0

16 %10111111 adcon2 c! \ right -justified result , long acquisition time

17 %00000001 adcon0 c! \ Power on ADC , looking at AN0

18 ;

19

20 : adc@ (-- u)

21 %10 adcon0 mset \ Start conversion

22 begin %10 adcon0 mtst 0= until \ Wait until DONE

23 adresl @

24 ;

25

26 : wait (--)

27 #500 ms

28 ;

29

30 : main (--)

31 init

32 begin

33 adc@ u.

34 wait

35 again

36 ;

37

38 \ Exercise the application , writing digitized values periodically.

39 decimal

40 main

Notes on this program:

• Although not much needs to be done to set up the ADC, you really should read the
ADC section of the datasheet to get the full details of this configuration.

• Lines 15 to 17 uses binary literals (with the % character) to show the configuration
bits explicitly.

• Line 22 conditionally repeats testing of the DONE bit for the ADC.

• Line 23 fetches the full 10-bit result and leaves it on the stack for use after the adc@

word has finished. Because of the selected configuration of the ADC peripheral, the
value will be right-justified in the 16-bit cell.

• Line 33 invokes the adc@ word and prints the numeric result.

7 Counting button presses

Example of sensing a button press, with debounce in software.

1 \ Use a push -button on RB0 to get user input.

2 \ This button is labelled S3 on the PICDEM2+ board.

3 -pb-demo

4 marker -pb-demo

5

8 SCANNING A 4X3 MATRIX KEYPAD 16

6 $ff81 con portb

7 $ff8a con latb

8 $ff93 con trisb

9

10 variable count

11

12 : init (--)

13 %01 trisb mset \ RB0 as input

14 %10 trisb mclr \ RB1 as output

15 %10 latb mclr

16 ;

17 : RB1toggle (--)

18 latb c@ %10 xor latb c!

19 ;

20 : RB0@ (-- c)

21 portb c@ %01 and

22 ;

23 : button? (-- f)

24 \ Check for button press , with software debounce.

25 \ With the pull -up in place , a button press will give 0.

26 RB0@ if

27 0

28 else

29 #10 ms

30 RB0@ if 0 else -1 then

31 then

32 ;

33

34 : main (--)

35 0 count !

36 init

37 begin

38 button? if

39 RB1toggle

40 count @ 1+ count !

41 count @ .

42 #200 ms \ allow time to release button

43 then

44 cwd

45 again

46 ;

47

48 main \ exercise the application

Notes on this program:

• If the pause after acknowledging the button press is too long, we may lose later
button press events. This depends on how frantically we press S3.

8 Scanning a 4x3 matrix keypad

We connect a 4x3 matrix keypad to PORTB, using RB0, RB1 and RB2 to drive the
columns while sensing the rows with RB4 through RB7. The schematic figure below
shows the arrangement of keys and pins.

8 SCANNING A 4X3 MATRIX KEYPAD 17

1 2 3

4 5 6

7 8 9

* 0 #

pin 2, RB7

pin 7, RB6

pin 6, RB5

pin 4, RB4

pin 3 1 5
RB0 RB1 RB2

The photograph shows the demo board with jumper wires connecting the PORTB
header pins to corresponding pins on the keypad. Connection to the UART is via the
rather neat FTDI USB to 5 volt UART cable with the 3.5 mm connector shown in the
upper right of the photograph. To minimize hardware, we have used the weak pull-ups
on PORTB. Pressing a key while it’s column wire is held high does nothing, however,
pressing a key on a column that is held low will result in its row being pulled low.

1 -keypad

2 marker -keypad

3 \ Display key presses from a 4x3 (telephone -like) keypad

4

5 $ff81 con portb

6 $ff8a con latb

7 $ff93 con trisb

8 $ffc1 con adcon1

9 $fff1 con intcon2

10

11 : init (--)

12 0 latb c!

13 %00001111 adcon1 c! \ set as all digital I/O pins

14 %11110000 trisb c! \ RB7 -4 as input , RB3 -0 as output

15 %10000000 intcon2 mclr \ turn on pull -ups

16 ;

17

18 flash

19 create key_chars

20 char 1 c, char 2 c, char 3 c,

21 char 4 c, char 5 c, char 6 c,

8 SCANNING A 4X3 MATRIX KEYPAD 18

22 char 7 c, char 8 c, char 9 c,

23 char * c, char 0 c, char # c,

24 create key_scan_bytes

25 $7e c, $7d c, $7b c,

26 $be c, $bd c, $bb c,

27 $de c, $dd c, $db c,

28 $ee c, $ed c, $eb c,

29 ram

30

31 : scan_keys (-- c)

32 \ Return ASCII code of key that is pressed

33 #12 for

34 key_scan_bytes r@ + c@

35 dup

36 latb c!

37 portb c@

38 = if

39 \ key must be pressed to get a match

40 key_chars r@ + c@

41 rdrop

42 exit

43 then

44 next

45 0 \ no key was pressed

46 ;

47

48 : keypad@ (-- c)

49 \ Read keypad with simple debounce.

50 \ ASCII code is left on stack.

51 \ Zero is returned for no key pressed or inconsistent scans.

52 scan_keys dup

53 #20 ms

54 scan_keys

55 = if exit else drop then

56 0 \ inconsistent scan results

57 ;

58

59 : main (--)

60 init

61 begin

62 keypad@

63 dup

64 0= if

65 drop \ no key pressed

66 else

67 emit

68 #300 ms \ don ’t repeat key too quickly

69 then

70 again

71 ;

Notes on this program:

• In lines 18–29, we make use of character arrays to store (into the program memory)
the the ASCII code and the scan code for each key. The scan code is made up of
the 3-bit column pattern to be applied to RB2-RB0 and the resulting 4-bit row-
sense pattern (RB7-RB4) expected for the particular key if it is pressed. RB3 is
maintained high (and is of no consequence) for this 3-column keypad, however, it
would be used for a 4x4 keypad.

• Lines 33 and 44 make use of the for–next control construct to work through the set
of 12 scan codes

9 USING I2C TO GET TEMPERATURE MEASUREMENTS 19

• We should go further by making use a state-machine and also keeping track of the
last key pressed.

9 Using I2C to get temperature measurements

Using the MSSP peripheral in master mode, one may talk to the TC74A5 temperature
measurement chip on the PICDEM 2 PLUS and report sensor temperature.

1 \ Read temperature from TC74 on PICDEM2+ board.

2 \ Modelled on Mikael Nordman ’s i2c_tcn75.txt.

3 \ This program requires i2c_base.txt to be previously loaded.

4 -read -tc74

5 marker -read -tc74

6

7 %1001101 con addr -tc74 \ default 7-bit address for TC74

8

9 : add -read -bit (7-bit -c -- 8-bit -c)

10 \ Make 8-bit i2c address with bit 0 set.

11 1 lshift 1 or

12 ;

13 : add -write -bit (7-bit -c -- 8-bit -c)

14 \ Make 8-bit i2c address with bit 0 clear.

15 1 lshift 1 invert and

16 ;

17 : sign -extend (c -- n)

18 \ If the TC74 has returned a negative 8-bit value ,

19 \ we need to sign extend to 16-bits with ones.

20 dup $7f > if $ff80 or then

21 ;

22 : init -tc74 (--)

23 \ Selects the temperature register for subsequent reads.

24 addr -tc74 add -write -bit i2cws 0 i2c! spen

25 ;

26 : degrees@ (-- n)

27 \ Wake the TC74 and receive its register value.

28 addr -tc74 add -read -bit i2cws i2c@nak sign -extend

29 ;

30 : main (--)

31 i2cinit

32 init -tc74

33 begin

34 degrees@ .

35 #1000 ms

36 again

37 ;

38

39 \ Now , report temperature in degrees C

40 \ while we warm up the TC74 chip with our fingers ...

41 decimal main

With a Saleae Logic Analyser connected to the pins of the TC74A5, we can see the I2C
signals as a result of calling the init-tc74 word.

A little later on, the degrees@ word is invoked. The returned binary value of 0b00010101
corresponds to the very pleasant 21oC that exists in the back shed as this text is being

10 MAKING HIGH-RESOLUTION VOLTAGE MEASUREMENTS 20

written.

Notes on this program:

• This builds upon the i2c_base and asm words supplied with FlashForth.

10 Making high-resolution voltage measurements

The Microchip MCP3422 is a Σ∆-ADC that can connected via I2C port. This neat little
converter can measure voltages with a resolution of 18 bits (at the lowest data rate of
3.75 samples per second) and includes a programmable gain amplifier [6]. Being available
in a surface-mount package only, it was convenient to use a prebuilt evaluation board, the
green board between the home-built FlashForth demo board and the fixed-voltage supply
board. The MCP3422 evaluation board is connected to and powered from the I2C header
on the FlashForth demo board. Separately, the fixed-voltage supply board provides the
measurement voltage to channel 1 of the MCP3422 via a potentiometer that is set to give
1.0 V.

1 \ mcp3422.txt

2 \ Play with mcp3422 eval board.

3 \ PJ, 21-Oct -2013

4

5 -mcp3422

6 marker -mcp3422

7

8 : mcp3422init (--)

9 \ $d0 is default mcp4322 address for writing

10 \ $9c is config for 18-bit continuous conversions of ch 1

11 $d0 i2cws $9c i2c! spen

12 ;

10 MAKING HIGH-RESOLUTION VOLTAGE MEASUREMENTS 21

13

14 : mcp3422@ (-- d f) \ Read the 18-bit result as 3 bytes

15 $d1 i2cws i2c@ak \ only 2 bits in first byte

16 dup $3 > if $fffa or then \ sign -extend to full cell

17 i2c@ak $8 lshift i2c@ak or \ next two bytes into one cell

18 swap \ leave double result

19 i2c@nak $80 and 0= \ leave true if result is latest

20 ;

21

22 : microvolts (d1 -- d2)

23 \ The least -significant bit corresponds to 15.625 microvolts

24 #125 #8 m*/

25 ;

26

27 : (d.3) (d --)

28 swap over dabs

29 <# # # # [char] . hold #s rot sign #>

30 ;

31

32 : report (d f --) \ Assuming decimal , print millivolt value

33 cr if ." new " else ." old " then

34 microvolts (d.3) type space ." mV "

35 ;

36

37 : mcp3422 -run (--)

38 decimal

39 i2cinit mcp3422init

40 begin

41 mcp3422@ report

42 #1000 ms

43 key? until

44 hex

45 ;

Notes on this program:

• mcp3422-run is the top-level word that initializes the hardware, then periodically
reads the MCP3422 data and reports the voltage (in millivolts) to the user terminal.
The program runs until a key is pressed.

• The converted value is read from the MCP3422 as and 18-bit value in 2-complement
format. The word mcp3422@ reads the data as three bytes from the I2C port and
then shuffles it into a double-cell value that is left on the stack, along with a flag to
indicate whether the value sent by the MCP3422 happened to be the latest data.

• The value is scaled to microvolts and then the resultant double value is output using
the pictured numeric output to have 3 decimal places so that it looks like a millivolt
reading. Several lines from the terminal look like the following:

new -999.421 mV

new -999.421 mV

new -999.406 mV

• This program builds upon the i2c_base and asm words supplied with FlashForth,
in order to communicate with the MCP3422. The code for scaling of the measured
data requires words from core.txt, math.txt and qmath.txt.

11 AN I2C SLAVE EXAMPLE 22

11 An I2C slave example

The MSSP in the PIC18F2520 can also be used in slave mode. Here, the FlashForth demo
board is presented as an I2C slave device to an Aardvark serial interface, acting as master.
The UART communication is provided by a Future Technology Devices International USB
TTL-serial cable.

The core of the program is the i2c service word which is invoked each time a serial-port
event is flagged by the SSPIF bit in the PIR1 flag register. This word is an implementation
of the state look-up approach detailed in the Microchip Application Note AN734 [7]. The
rest of the program is there to provide (somewhat) interesting data for the I2C master
to read and to do something (light a LED) when the master writes suitable data to the
slave.

1 -i2c -slave

2 marker -i2c -slave

3 \ Make the FlashForth demo board into an I2C slave.

4 \ An I2C master can read and write to a buffer here ,

5 \ the least -significant bit of the first byte controls

6 \ the LED attached to pin RB0.

7

8 $ff81 con portb

9 $ff82 con portc

10 $ff8a con latb

11 $ff93 con trisb

12 $ff94 con trisc

13

14 : led_on (--)

15 %00000001 latb mset

16 ;

17 : led_off (--)

18 %00000001 latb mclr

19 ;

20 : err_led_on (--)

21 %00000010 latb mset

22 ;

23 : err_led_off (--)

24 %00000010 latb mclr

11 AN I2C SLAVE EXAMPLE 23

25 ;

26

27 \ Establish a couple of buffers in RAM , together with index variables.

28 ram

29 8 con buflen

30 \ Receive buffer for incoming I2C data.

31 create rbuf buflen allot

32 variable rindx

33 : init_rbuf (--)

34 rbuf buflen erase

35 0 rindx !

36 ;

37 : incr_rindx (--) \ increment with wrap -around

38 rindx @ 1 +

39 dup buflen = if drop 0 then

40 rindx !

41 ;

42 : save_to_rbuf (c --)

43 rbuf rindx @ + c!

44 incr_rindx

45 ;

46

47 \ Send buffer with something interesting for the I2C master to read.

48 create sbuf buflen allot

49 variable sindx

50 : incr_sindx (--) \ increment with wrap -around

51 sindx @ 1 +

52 dup buflen = if drop 0 then

53 sindx !

54 ;

55 : init_sbuf (--) \ fill with counting integers , for interest

56 buflen

57 for

58 r@ 1+

59 sbuf r@ + c!

60 next

61 0 sindx !

62 ;

63

64 \ I2C -related definitions and code

65 $ffc5 con sspcon2

66 $ffc6 con sspcon1

67 $ffc7 con sspstat

68 $ffc8 con sspadd

69 $ffc9 con sspbuf

70 $ff9e con pir1

71

72 \ PIR1 bits

73 %00001000 con sspif

74

75 \ SSPSTAT bits

76 %00000001 con bf

77 %00000100 con r_nw

78 %00001000 con start_bit

79 %00010000 con stop_bit

80 %00100000 con d_na

81 %01000000 con cke

82 %10000000 con smp

83

84 d_na start_bit or r_nw or bf or con stat_mask

85

86 \ SSPCON1 bits

87 %00010000 con ckp

88 %00100000 con sspen

89 %01000000 con sspov

90 %10000000 con wcol

91

92 \ SSPCON2 bits

93 %00000001 con sen

94

95 : i2c_init (--)

11 AN I2C SLAVE EXAMPLE 24

96 %00011000 trisc mset \ RC3==SCL RC4==SDA

97 %00000110 sspcon1 c! \ Slave mode with 7-bit address

98 sen sspcon2 mset \ Clock stretching enabled

99 smp sspstat mset \ Slew -rate disabled

100 $52 1 lshift sspadd c! \ Slave address

101 sspen sspcon1 mset \ Enable MSSP peripheral

102 ;

103

104 : release_clock (--)

105 ckp sspcon1 mset

106 ;

107

108 : i2c_service (--)

109 \ Check the state of the I2C peripheral and react.

110 \ See App Note 734 for an explanation of the 5 states.

111 \

112 \ State 1: i2c write operation , last byte was address.

113 \ D_nA=0, S=1, R_nW=0, BF=1

114 sspstat c@ stat_mask and %00001001 =

115 if

116 sspbuf @ drop

117 init_rbuf

118 release_clock

119 exit

120 then

121 \ State 2: i2c write operation , last byte was data.

122 \ D_nA=1, S=1, R_nW=0, BF=1

123 sspstat c@ stat_mask and %00101001 =

124 if

125 sspbuf c@ save_to_rbuf

126 release_clock

127 exit

128 then

129 \ State 3: i2c read operation , last byte was address.

130 \ D_nA=0, S=1, R_nW=1

131 sspstat c@ %00101100 and %00001100 =

132 if

133 sspbuf c@ drop

134 0 sindx !

135 wcol sspcon1 mclr

136 sbuf sindx @ + c@ sspbuf c!

137 release_clock

138 incr_sindx

139 exit

140 then

141 \ State 4: i2c read operation , last byte was outgoing data.

142 \ D_nA=1, S=1, R_nW=1, BF=0

143 sspstat c@ stat_mask and %00101100 =

144 ckp sspcon1 mtst 0=

145 and

146 if

147 wcol sspcon1 mclr

148 sbuf sindx @ + c@ sspbuf c!

149 release_clock

150 incr_sindx

151 exit

152 then

153 \ State 5: master NACK , slave i2c logic reset.

154 \ From AN734: D_nA=1, S=1, BF=0, CKP=1, however ,

155 \ we use just D_nA=1 and CKP=1, ignoring START bit.

156 \ This is because master may have already asserted STOP

157 \ before we service the final NACK on a read operation.

158 d_na sspstat mtst 0 > ckp sspcon1 mtst 0 > and

159 stop_bit sspstat mtst or

160 if

161 exit \ Nothing needs to be done.

162 then

163 \ We shouldn ’t arrive here ...

164 err_led_on

165 cr ." Error "

166 ." sspstat " sspstat c@ u.

11 AN I2C SLAVE EXAMPLE 25

167 ." sspcon1 " sspcon1 c@ u.

168 ." sspcon2 " sspcon2 c@ u.

169 cr

170 begin again \ Hang around until watch -dog resets MCU.

171 ;

172

173

174 : init (--)

175 %00000011 trisb mclr \ want RB0 ,RB1 as output pins

176 init_rbuf

177 init_sbuf

178 i2c_init

179 led_on err_led_on #200 ms led_off err_led_off

180 ;

181

182 : main (n --)

183 cr ." Start I2C slave "

184 init

185 begin

186 sspif pir1 mtst

187 if

188 sspif pir1 mclr

189 i2c_service

190 then

191 rbuf c@ %00000001 and

192 if led_on else led_off then

193 cwd

194 again

195 ;

196

197 \ ’ main is turnkey

With a Saleae Logic Analyser connected, we can see the I2C signals as a result of writing
the byte 0x01 to turn on the LED. The following figure shows the data and clock signals
from the time that the master asserts the START condition (green circle) until it asserts
the STOP condition (as indicated by the red square).

The clock frequency is 100kHz and there is a 138µs gap between the ninth clock pulse of
the address byte and the start of the pulses for the data byte. This gives an indication of
the time needed to service each SSPIF event.

A little later on, the Aardvark reads two bytes from the bus, as shown here.

Zooming in, to show the finer annotation, the same signals are shown below.

Again, the inter-byte gap is 138µs resulting in about 200µs needed to transfer each byte.
This effective speed of 5 kbytes/s should be usable for many applications, since the I2C
bus is typically used for low speed data transfer.

Notes on this program:

• Need to load core.txt before the source code of the i2c-slave.txt.

12 SPEED OF OPERATION 26

• Slave examples found in documentation on the Web usually have the service function
written in the context of an interrupt service routine. The MSSP can be serviced
quite nicely without resorting to the use of interrupts, however, you still have to
check and clear the SSPIF bit for each event.

• The implementation of the test for State 5 (Master NACK) is slightly different to
that described in AN734 because it was found that the master would assert an I2C
bus stop after the final NACK of a read operation but before the MCU could service
the SSPIF event. This would mean that STOP was the most recent bus condition
seen by the MSSP and the START and STOP bits set to reflect this. In the figures
shown above, there is only about 12µs between the ninth clock pulse for the second
read data byte and the Aardvark master asserting the STOP condition on the bus.
This period is very much shorter than the (approx.) 140µs period needed by the
slave firmware to service the associated SSPIF event.

12 Speed of operation

All of this nice interaction and convenience has some costs. One cost is the number of
MCU instruction cycles needed to process the Forth words. To visualize this cost, the
following program defines a word which toggles an IO pin using the (high-level) FlashForth
words and an alternative word uses assembler instructions to achieve an equivalent effect.

1 -speed -test

2 marker -speed -test

3 \ Waggle RB1 as quickly as we can , in both high - and low -level code.

4 \ Before sending this file , we should send asm.txt so that we have

5 \ the clrwdt , word available.

6

7 $ff8a con latb

8 $ff93 con trisb

9

10 : initRB1

11 %10 trisb mclr \ RB1 as output

12 %10 latb mclr \ initially known state

13 ;

14

15 \ high -level bit fiddling , presumably slow

16 : blink -forth (--)

17 initRB1

18 begin

19 %10 latb c! 0 latb c! \ one cycle , on and off

20 %10 latb c! 0 latb c!

21 %10 latb c! 0 latb c!

22 %10 latb c! 0 latb c!

23 cwd \ We have to kick the watch dog ourselves.

24 again

25 ;

26

27 \ low -level bit fiddling , via assembler

28 : blink -asm (--)

29 initRB1

30 [

31 begin ,

32 latb 1 a, bsf , latb 1 a, bcf , \ one cycle , on and off

33 latb 1 a, bsf , latb 1 a, bcf ,

34 latb 1 a, bsf , latb 1 a, bcf ,

12 SPEED OF OPERATION 27

35 latb 1 a, bsf , latb 1 a, bcf ,

36 clrwdt , \ kick the watch dog

37 again ,

38]

39 ;

Notes on this program:

• We have had to worry about clearing the watch-dog timer. In the early examples,
the FlashForth interpreter was passing through the pause state often enough to keep
the watch-dog happy. The words in this example give the FlashForth interpreter no
time to pause so we are responsible for clearing the watch-dog timer explicitly.

• In the source code config file for the specific MCU, the watch-dog timer postscale
is set to 256. With an 8 MHz internal RC frequency, this leads to a default timeout
period of a little over 4 milliseconds (0.125µs × 128 × 256).

• The MCU on the PICDEM 2 PLUS board is running off the external 4 MHz crystal
and has the 4× PLL enabled. This leads to an instruction cycle period of 250 ns.

• The screen image on the left shows the output signal for running the high-level
Forth code while the image on the right uses the assembler words.

• For the pure Forth code, one on+off cycle of the LED executes in 6 words and is seen
(in the oscilloscope record) to require about 51 instruction cycles. So, on average,
these threaded Forth words, are executed in about 8 MCU instructions. Note that
this overhead includes the cost of using 16-bit cells for the data. Extra machine
instructions are used to handle the upper bytes. In other applications, where we
actually want to handle 16-bit data, this will no longer be a penalty.

• The assembler version has no overhead and the cycle time for the MCU instructions
defines the period of the output signal. One on-off cycle requires 2 instructions so
we see a short 500 ns period. This is fast enough that the capacitive loading on the
output pin is noticeable in the oscilloscope trace. Also, the time required for the
machine instructions to clear the watch-dog timer and the instruction jump back to
the start of the loop now shows up clearly in the oscilloscope record.

REFERENCES 28

References

[1] Microchip Technology Inc. PIC18(L)F2420/2520/4420/4520 data sheet: 28/40/44-pin
enhanced flash microcontrollers with 10-bit A/D and nanowatt technology. Datasheet
DS39631E, Microchip Technology Inc., www.microchip.com, 2008.

[2] L. Brodie and Forth Inc. Starting Forth: An introduction to the Forth Language and
operating system for beginners and professionals, 2nd Ed. Prentice Hall, Englewood
Cliffs, New Jersey, 1987.

[3] S. Pelc. Programming Forth. Microprocessor Engineering Limited, 2011.

[4] E. K. Conklin and E. D. Rather. Forth Programmer’s Handbook, 3rd Ed. Forth Inc.,
California, 2007.

[5] Peter Jacobs, Peter Zawasky, and Mikael Nordman. Elements of FlashForth. School
of Mechanical and Mining Engineering Technical Report 2013/08, The University of
Queensland, Brisbane, May 2013.

[6] Microchip Technology Inc. MCP3422/3/4: 18-bit, multi-channel ∆Σ analog-to-digital
converter with I2C interface and on-board reference. Technical Report DS22088C,
Microchip Technology Inc., www.microchip.com, 2009.

[7] S. Bowling and N. Raj. Using the PIC devices SSP and MSSP modules for slave I2C
communication. Application Note AN734, Microchip Technology Inc., 2008.

