
Note on invariant properties of a quantum system

placed into thermodynamic environment

(Published: Physica A 398 (2014) 65-75)

A. Y. Klimenko∗

The University of Queensland, SoMME
QLD 4072, Australia

January 29, 2014

Abstract

The analysis conducted in this work indicates that interactions of a
CP-violating (and CPT-preserving) quantum system with a thermody-
namic environment can produce the impression of a CPT violation in the
system. This conclusion is reasonably consistent with the results reported
for decays of neutral K-mesons.
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1 Introduction

The influence of a thermodynamic environment, commonly referred to as a
thermodynamic bath, on quantum systems has been repeatedly discussed in
publications. Zurek [1] introduced a theory explaining loss of coherence in a
quantum system under the influence of the environments that have a large
number of degrees of freedom. Goldstein et. al. [2], Popescu et. al. [3] and
others demonstrated the property called canonical typicality: for most pure
states of the environment, the quantum system behaves as if the environment
was in the thermodynamic (i.e. maximally mixed) state. Linden et. al. [4]
proved that under certain conditions the evolution of a quantum system placed
into a bath leads to equilibration. These and other aspects of thermalisation
have been reviewed by Yukalov [5], who stressed that, practically, any quantum
system cannot be completely isolated and is subject to some influence from the
environment. The existence of a degree of similarity between thermodynamic
and pure-state quantum engines has been discussed by Abe [6].
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The goal of the present work is to show that thermodynamic environment
can affect apparent invariant properties of a quantum system, whose intrinsic
behaviour involves a CP-violation. Here we refer to charge, parity and time
symmetries conventionally denoted by C, P and T in quantum mechanics [7].
While the overwhelming majority of known quantum effects are CP-compliant,
the case of CP violation in decay of K-mesons (kaons) has been known and
investigated for many decades [8].

While the present work focuses on the effects induced by the environment
(assuming conventional unitarity of quantum evolutions) the likelihood of spon-
taneous (intrinsic) violations of quantum mechanics, which can coexist with
induced mechanisms and also be responsible for thermalisation, has been repeat-
edly discussed in publications [9, 10, 11]. The possibility that these violations
can affect decays of K-mesons has been raised by Ellis et. al. [12]. Although the
influence of spontaneous violations of quantum mechanics can not be excluded
a priori and needs to be considered, such violations remain outside the scope of
the present work. Here, we consider the influence of the environment within the
framework of conventional quantum mechanics while relying on causality and
proper choice of parameters to reproduce the thermodynamic direction of time.

2 Quantum system in a radiation bath

Consider a quantum system, which involves both particles and antiparticles and
is placed into environment filled by radiation. The radiation is equilibrated by
surroundings, which, of course, are made of matter prevalently present in the
Universe. The system under consideration is a quantum system but is sub-
ject at least to some thermodynamic influence from the environment. Since
antiparticles cannot interact weakly (i.e. without annihilations) with an en-
vironment formed by matter, these interactions are performed only through
radiation, which is always generated by surrounding matter having non-zero
temperatures. Note that we do not consider stronger interaction of quantum
system with radiation through emission or adsorption. Only very weak inter-
actions of the system and radiation that tend to impose quantum decoherence
on the system [1, 5] are of interest, while radiation refers to any field that can
be responsible for such interactions. The system placed in a radiation bath,
which is equilibrated by surroundings, is schematically depicted in Figure 1.
This scheme of interactions of the system and the environment through the ra-
diation bath reflects the fact that surrounding matter needs to be removed from
direct contact with the system that involves both particles and antiparticles.
We conduct our analysis within the limits of quantum mechanics and take into
account the thermodynamic direction of time through causality and choice of
the interaction parameters.

The state of the radiation bath is characterised by its set of energy eigenstates
HB |β〉 = Eβ |β〉 . The dimension of this system is very large. In the same way,
the state of the environment, which, as some publications [3] prefer to describe,
may involve the rest of the universe, is characterised by an even larger set of
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Figure 1: Quantum system placed into a radiation bath.

eigenstates HΩ |Ω〉 = EΩ |Ω〉 . The state of the system can be described by a
set of orthogonal ket states |s〉. Hence the overall state of the universal system
involving the system, the bath and the environment is specified by vectors in
the tensor product space |s〉 ⊗ |β〉 ⊗ |Ω〉 (and the corresponding bra space 〈s| ⊗
〈β| ⊗ 〈Ω|). Our analysis is conducted under several assumptions, which can be
summarised by:

1. the quantum system is small and connected to a much larger environment
through the radiation bath;

2. the radiation bath can exercise some influence on the system;

3. the system has little effect on the bath, which is equilibrated by the envi-
ronment and remains in a thermodynamic state.

Our use of the words ”strong” and ”weak” generally pertains to common
understanding of these terms, which nevertheless does not exclude links with
the strong and electroweak interactions of particle physics. Although the pres-
ence of the environment must always be kept in mind, our assumptions lead to
autonomous consideration of the supersystem, which involves only the system
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and the radiation bath. The state of the supersystem is specified by the tensor
product, which can be equivalently denoted by |s〉 ⊗ |β〉 = |s〉 |β〉 = |sβ〉. Note
that we do not intend to demonstrate that the bath should be in its thermody-
namic state but simply introduce this physical fact as a principal postulate of
our analysis.

2.1 The interaction Hamiltonian

The overall Hamiltonian of the supersystem can be conventionally written in
the form

H = HS ⊗ IB+IS ⊗HB + HSB (1)

where HS is Hamiltonian of the system, HB is the Hamiltonian of the bath,
HSB is the system/bath interaction Hamiltonian and I represents the corre-
sponding identity operators. Our assumptions, as detailed below, correspond to
the following form of the bath and interaction Hamiltonians

〈α|HB |β〉 = EβIαβ , 〈qα|HSB |sβ〉 = h(β)
qs Iαβ (2)

Here, Iαβ is the identity matrix Iαβ = 0 for α 6= β and Iαβ = 1 for α = β. The
corresponding indices run over the same sets of states, that is {s} = {q} and
{β} = {α}.

The Hamiltonian specified by (2) does not change the state of the bath but
may alter the behaviour of the system. Indeed, the supersystem wave function
Ψ can be written in the form of the sum

|Ψ(t)} =
∑
β

p
1/2
β [β] |Ψβ(t)〉 (3)

where
|Ψβ(t)〉 =

∣∣∣ψ(β)
〉
|β〉 ,

∣∣∣ψ(β)
〉

=
∑
s

csβ(t) |s〉 (4)

Dependence on time can be omitted for brevity when this does not cause con-
fusion, for example |Ψ} = |Ψ(t)}. Here, the random phases [β] indicate that
|Ψ} is not a pure state but is a mixture of pure states |Ψβ〉 with probabilities
pβ . The notations involving the random phases and their links with the density
matrix (operator)

�(t) = |Ψ} {Ψ| =
∑
s,q,β

pβ csβ(t)c∗qβ(t) |sβ〉 〈qβ| (5)

are explained in Appendix A. The shape of the density matrix � depends on
presence of [β] in (3), which forces β = α by

〈
[α]∗ [β]

〉
= Iαβ in (5).

Hamiltonian (2) corresponds to our assumption 3 as well as to the action
of quantum decoherence [1, 5] and canonical typicality [2, 3]. This Hamilto-
nian ensures that not only |Ψ} but also every |Ψβ〉 represents a solution of the
Schrodinger equation for the supersystem

i
∂

∂t
|Ψβ(t)〉 = H |Ψβ(t)〉 (6)
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For simplicity, the time t is measured in Planck constants ~. If |Ψβ〉 was not an
autonomous solution, each |Ψβ〉 would evolve into a superposition of pure states
involving different |β1〉 , |β2〉 , ... This would contradict our understanding [1, 2,
3, 4, 5] that interactions of the bath with the environment should decohere the
bath eigenstates |β1〉 , |β2〉 , ... and dissolve any superposition of these states into
a mixture. The presence of a small system should not change the behaviour of
the bath. The wave function of the bath is deemed to stay in thermal equilibrium
specified by the mixed state

|ΨB} =
∑
β

p
1/2
β e−iEβt [β] |β〉 , pβ ∼ exp

(
−Eβ
kBT

)
(7)

Note that although the eigenstates of the bath are not affected by interactions
with the system according to (2), the eigenvalues Eβ can in principle be altered
by these interactions. This alteration, however, is practically insignificant and
neglected here — consider that the bath is more affected by the environment
than by the system.

2.2 Reduced density matrix and wave function of the sys-
tem

The behaviour of the quantum system is conventionally characterised by the
reduced density operator

�S(t) =
∑
β

〈β| � |β〉 =
∑
s,q

(ρS)sq |s〉 〈q| , (ρS)sq =
∑
β

pβcsβ(t)c∗qβ(t), (8)

which is obtained from the density � specified in (5) by tracing the bath states
out. One can easily see that the mixed state of the system specified by the wave
function

|ΨS(t)} =
∑
β

p
1/2
β [β]

∣∣∣ψ(β)
〉
, (9)

where
∣∣ψ(β)

〉
, given by (4), is equivalent to the density operator specified by (8).

That is �S = |ΨS} {ΨS | , where the random phase rule
〈
[α]∗ [β]

〉
= Iαβ applies.

This equivalence implies that, for any system observable QS , the values found
from the density matrix and from the wave function are indistinguishable to the
observer

QS = tr (�SQS) = {ΨS |QS |ΨS} =
∑
β

pβQ
(β)
S , Q

(β)
S =

〈
ψ(β)

∣∣∣QS

∣∣∣ψ(β)
〉
(10)

and so are the mixed states specified by (8) and (9). Hence, we can use |ΨS(t)},
which is called here the reduced wave function, as a convenient tool for inves-
tigating of the state of the system. Note that in this case the reduced wave
function |ΨS(t)} specified by (9) can be obtained from the wave function of the
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supersystem |Ψ(t)} specified by (3) through the following procedure: multiply-
ing |Ψ} by the bra 〈α| , summing over all α

|ΨS(t)} =
∑
α

〈α||Ψ} =
∑
α,β

〈α|β〉 p1/2
β [β]

∣∣∣ψ(β)
〉

(11)

and noting orthonormality 〈α|β〉 = Iαβ . The double ”||” indicates incomplete-
ness of the inner product since the ket spans over a wider space |Ψ} ∼ |s〉 |β〉
than the bra 〈α|.

The system wave functions
∣∣∣Ψ(β)

S

〉
, which are similar to

∣∣ψ(β)(t)
〉

but have
the effect of the bath energy eigenstates Eβ factored out, are introduced by∣∣∣ψ(β)(t)

〉
= e−iEβt

∣∣∣Ψ(β)
S (t)

〉
, (12)

that is ∣∣∣Ψ(β)
S (t)

〉
=
∑
s

C(β)
s (t) |s〉 , C(β)

s = eiEβtcsβ

The wave functions
∣∣∣Ψ(β)

S

〉
can now be considered independently from each

other. Note that the expression for the reduced wave function remains the same

|ΨS(t)} =
∑
β

p
1/2
β [β◦]

∣∣∣Ψ(β)
S (t)

〉
, [β◦] = e−iEβt [β] (13)

since, as discussed in the Appendix, the random phases [β◦] are functionally
equivalent to [β] . Each

∣∣∣Ψ(β)
S

〉
represents an independent solution of the reduced

Schrodinger equation

i
∂

∂t

∣∣∣Ψ(β)
S (t)

〉
= H(β)

∣∣∣Ψ(β)
S (t)

〉
(14)

with the β-dependent effective system Hamiltonian H(β) specified by

H(β) = 〈β|H |β〉 − EβIS = HS + h
(β) (15)

h
(β) = 〈β|HSB |β〉 =

∑
s,q

h(β)
sq |s〉 〈q| (16)

Equation (14) can be obtained by multiplying (6) by 〈β| [β]∗ and factorising
ei(IS⊗HB)t from the rest of the solution. Here, we take into account that the
operators H and IS ⊗ HB commute [H, IS ⊗HB ] = 0 as long as HB and HSB

are defined by (2). Note that the operators H and HS ⊗ IB are not necessarily
commutative due to the possibility of

[
HS ,h

(β)
]
6= 0.
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2.3 On unitarity of quantum models and decoherence

From the perspective of the canonical typicality, the state of the bath — maxi-
mally mixed or a typical pure state — should have little effect on the properties
of the system characterised by reduced quantities. While being important, this
property does not change our treatment since the bath is physically in thermo-
dynamic equilibrium with the environment. When considered from the perspec-
tive of interactions of the small system with the large bath, the microcanonical
maximally mixed state of the bath (i.e. state with maximal entropy and fixed
total energy) is essentially the same as the canonical equilibrium state of the
bath specified by (7). The main effect of the bath on the state of the system is
in inducing decoherence of the eigenstates of the system, which is not the same
as decoherence of the wave functions multiplied by different random phases [β]
in (3) and (9). Assuming that the states |s〉 are energy eigenstates of the sys-
tem in the absence of interference from the bath (this is assumed only in this
subsection), the decoherence of these eigenstates results in

(ρS)sq ≈ 0 for s 6= q (17)

that is the reduced density matrix becomes diagonal. This property is not
synonymous with the decoherence of [β]

∣∣∣Ψ(β)
S

〉
.

The theory of quantum decoherence induced by interactions with a bath or
environment has been introduced by Zurek [1]. This theory is based on assuming
that the interaction term is diagonal, that is

h(β)
sq = h(β)

s Isq (18)

implying that operators HS and h(β) commute[
HS ,h

(β)
]

= 0 (19)

Note that (18) and (19) are assumptions of the conventional decoherence theory
[1] and not of the present work. The solution of equation (14) is then easily
obtainable ∣∣∣Ψ(β)

S (t)
〉

= exp
(
−i
(
Es + h(β)

s

)
t
)

(20)

resulting in

(ρS)sq = Asq exp (−i (Es − Eq) t) , Asq =
∑
β

pβ exp
(
−i
(
h(β)
s − h(β)

q

)
t
)
(21)

As a sum of a large number of uncorrelated values, Asq should be small on
average assuming that the number of probable states indexed by β is large and,
of course, that q 6= s [1].

While decoherence is an essentially non-unitary (and irreversible) process
increasing the entropy, the description of induced decoherence given above is
based on placing the system into a bath to form a supersystem of a much
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larger dimension than that of the system. However, even a very large super-
system is still described by its Schrodinger equation (6), which is unitary and,
consequently, time reversible. Is this reversible description consistent with the
irreversible reality? This question can be traced back to historic discussions
between Boltzmann, Loschmidt and Zermelo. It should be noted first that both
canonical typicality and induced decoherences deal with average, typical prop-
erties that may, without contradicting the formulation of these statements, be
subject to some rare exceptions. For example, Asq(t) is a quasiperiodic function
of time in (21) and, eventually, should recur to the proximity of its initial value
Asq(0), but, in large supersystems, these recurrences occur after extremely long
times and would be impossible to observe in practice. A very small correction,
uncertainty or external interference added to the model would be sufficient to
remove these recurrences. While, as remarked in the Introduction, spontaneous
violations of unitarity are also likely to play a role in decoherence and thermal-
isation, the present work focuses on the induced mechanisms of decoherence.
Unitary evolution of a sufficiently large dimension combined with the causal-
ity principle can provide a very good approximation for irreversible evolutions
observed in reality.

2.4 Decay kinetics

This section introduces an influence of the environment into the Weisskopf-
Wigner approximation [13]. Since the 1930s, this approximation is convention-
ally used for characterisation of decaying states. The Weisskopf-Wigner approx-
imation is derived from the Schrodinger equation for specific initial conditions
and under assumptions of relatively weak interactions of the few initial with
many final states. Later publications [14] demonstrated the rigorous asymp-
totic character of this approximation.

Among the system states |s〉, we distinguish two groups: the initial state or
states |k〉 (〈j| is used when an alternative index is needed for the bra-space),
and many possible final states, which are indexed by |f〉 , that is {s} = {k, f}
and {k} = {j}. The system is initially placed into a pure state that spans over
one or several k-states but then decays into one or several of the f -states. The
system Hamiltonian is given by HS = H0 + H1, where the smaller component
H1 is responsible for relatively weak interactions of the initial and final states.
The states |s〉 , involving the initial |k〉 and final |f〉 states, are eigenstates
H0 |s〉 = Es |s〉 of the undisturbed Hamiltonian H0 (i.e. strong eigenstates)
but not necessarily the eigenstates of HS . If there are several initial states
(for example a particle and its antiparticle), then these states are assumed to
possess the same energy Ek = E0 for all k. After tracing out the state of the
environment from the Hamiltonian, we rewrite (1) as

H(β) = 〈β|H |β〉 − EβIS = H0 + H(β)
2 , H(β)

2 ≡ H1 + h
(β) (22)
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The matrix Λ(β)
kj , which specifies the evolution of the k-states

i
d

dt

∣∣∣Ψ(β)
k

〉
=
∑
j

Λ(β)
kj

∣∣∣Ψ(β)
j

〉
(23)

is obtained by applying the Weisskopf-Wigner approximation [13] to equation
(14)

Λ(β)
jk = 〈j|H(β) |k〉+ λ

(β)
jk , λ

(β)
jk ≡

∑
f

〈j|H(β)
2 |f〉 〈f |H(β)

2 |k〉
E0 − Ef + iε

(24)

where ε → 0 and the sign of ε is selected to produce decaying exponents as
required by causality. The matrix Λ(β)

jk is generally not Hermitian, while Her-

mitian M
(β)
jk and Γ(β)

jk in

Λ(β)
jk = M

(β)
jk −

i

2
Γ(β)
jk (25)

represent the energy-mass matrix and the decay matrix correspondingly. The
imaginary component of the sum λ

(β)
jk , which is associated with the term Γ(β)

jk ,

appears as the contribution of so-called ”on-shelf” states f̂ where E0 = Ef̂ .

The states f̌ , representing the remaining or ”off-shelf” states in {f} = {f̂ , f̌},
contribute only to M

(β)
jk . Since the set of final states is large and, possibly,

continuous, the sum in (24) is understood and evaluated as the corresponding
integral.

2.5 The interaction term and the eigenstates

According to Zurek’s theory [1], the terms responsible for decoherence act pri-
marily along the eigenstates of the system — see the discussion around equation
(19). Applying the same strategy to the present case encounters difficulties for
the on-shelf states that are discussed below. These difficulties indicate that (19)
is excessively restrictive and not suitable for the present analysis.

If we restrict our attention only to the strongest interactions specified by the
undisturbed Hamiltonian H0 then at the leading order, this implies that h(β) is
diagonal

〈q|h(β) |s〉 ≈ h(β)
s Iqs (26)

This expression is responsible for interference of the bath with the initial |k〉
states and final |f〉 states autonomously without any transition from |k〉 to
|f〉, while we are interested in interference of the bath with the process of the
transition.

One might try to correct the set of eigenstates {|s〉} = {|k〉 , |f〉} to account
for weak interactions specified by H1. At the leading order, the corrected eigen-
states |s′〉 are given by the standard quantum perturbation theory [15] yielding

|s′〉 = |s〉+
∑
q 6=s

〈q|H1 |s〉
Es − Eq

|q〉+ ... (27)
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Assuming that, according to (19), the decohering term is aligned with the cor-
rected eigenstates |s′〉 we obtain

h
(β) =

∑
s

h(β)
s |s′〉 〈s′| =

∑
s

h(β)
s |s〉 〈s|+

∑
s,q 6=s

(
h(β)
s − h(β)

q

) 〈q|H1 |s〉
Es − Eq

|q〉 〈s|+...

(28)
Substitution of (28) and (22) into (24) produces integrals (represented by sums
over f in the equations) which diverge as (E0−Ef )−2 in vicinities of the on-shelf
states f̂ , where E0 = Ef . This shows that bath interference with decay is mostly
contributed to by the vicinities of the on-shelf states f̂ and, at the same time,
indicates that our approximations and assumptions need to be reevaluated in
these vicinities. Since the exact sub-atomic mechanisms of decoherence remain
unknown, our consideration is necessarily based on qualitative analysis of the
system/bath interaction term.

Since the on-shelf states f̂ are degenerate due to E0 = Ef , the eigenstates
experience large and rapid changes in vicinities of these states, induced by higher
order terms in the Hamiltonian [15] (the degeneracy of the initial states Ek = E0

is uniformly present in all transitions and does not cause rapid adjustments). Al-
though the interference terms are likely to be affected when f → f̂ , these terms
can not be assumed to be fully aligned with the rapidly changing eigenstates in
vicinity of the on-shelf states. Hence, the interference term is no longer compli-
ant with (19), when the on-shelf states are involved. This implies interactions
between different energy modes. While the decoherence theory [1] presumes de-
coherence at short times without energy exchange, decays are more affected by
interference with the bath and involves some redistribution of energy in vicinity
of the on-shelf states.

3 Invariant properties

We note that the overwhelming majority of quantum effects that we know of
are CP-invariant. Only very few exceptions have been found that contradict
this rule. We assume that the system under consideration may be one of these
exceptions, i.e. CP-violating and CPT-invariant. Note that here we refer only
to the intrinsic properties of the system and not to the interaction of the system
and the environment.

For interactions of the system and the thermodynamic environment, we as-
sume CP invariance and, possibly, T violation. These assumptions need further
comments. The current understanding of the influence of the environment on
quantum systems [1, 2, 3, 4, 5] does not have any provisions for discriminat-
ing between its effects on particles and antiparticles; hence interactions of the
system and the bath are expected to be CP-invariant. As there is no proof or
assertion that these interactions must be T-invariant, we should allow for the
possibility of T violations in environmental interactions.

The last point needs a more detailed discussion. Thermodynamic interac-
tions taking place far from equilibrium are time directional and irreversible. For
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example, decoherence always occurs only forward and not backward in time. A
number of theories [9, 10, 11, 16] relate macroscopic irreversibility to intrinsic
microscopic processes at quantum level. These processes are expected to vi-
olate both quantum mechanics and microscopic time symmetry while having
very small magnitudes that make any direct detection of the time-generating
processes very difficult. In general, these time-generating violations of uni-
tarity should violate either CPT or CP symmetry, giving rise to two possible
alternative thermodynamics of interactions of matter and antimatter [17]. In
this work, however, we do not consider violations of quantum mechanics and
focus our attention on the influence of the environment but note that the a
priori presumption of time symmetry in interactions of a quantum system and
its thermodynamic environment (which effectively encompasses the rest of the
universe) would not be justified.

One may notice that our interpretation of the system’s interactions with the
universe — CP-invariance combined with possible T-violation — may constitute
a CPT-violation. In general, CPT invariance is a theorem in quantum field the-
ory but its validity in the context of statistical or general physics would be only
a hypothesis. While some published opinions (see, for example, Penrose [16])
favour the view that the processes enacting the second law of thermodynamics
are CPT-violating and that CPT invariance is not a property of the entire uni-
verse, we give a different interpretation for the case considered here. If it exists,
CPT violation in thermodynamic interactions with the environment is only an
apparent feature since the operation of charge conjugation is not rigorous in our
setup. Indeed, under charge conjugation, we correctly swap particle and an-
tiparticles in the system and correctly leave the radiation bath unchanged but
we do not and cannot appropriately adjust the environment (i.e. change mat-
ter populating the universe into antimatter). Thus our operator C is, strictly
speaking, incomplete, creating opportunities for apparent CPT violations when
interactions with the environment are of some influence. According to the line
of thinking adopted in quantum thermodynamics [1, 2, 3, 4, 5], interactions with
the environment are deemed to be unavoidable.

Approximation (24) is conventionally used to analyse decay of neutral kaons,
K◦ and K̄◦ [8]. Here, we investigate the CPT-compliance of the decay, which
requires that the term

∆Λ(β) = Λ(β)
KK − Λ(β)

K̄K̄
(29)

is nullified [8]. Unlike the running indices k and j, the subscripts K and K̄
denote the fixed states corresponding to the kaon and antikaon.

3.1 Invariance of the system/bath interactions

The property of radiation-induced interactions being CP-invariant and T-asymmetric
can be expressed in terms of the interaction Hamiltonian

〈qα|HSB |sβ〉 =
〈
qα
∣∣HSB

∣∣sβ〉⇒ h(β)
qs = h

(β)
q̄s̄ (30)

∆h(β)
qs = 〈qβ|HSB |sβ〉 − 〈sβ|HSB |qβ〉 6= 0 (31)
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where the overbars denote anti-states. The property β = β̄ is taken into account
for radiation (i.e. matter and antimatter interact with radiation in the same
way). Note that ∆h(β)

qs is imaginary when interactions with the environment are
unitary and h(β) is Hermitian (if h(β) were the term responsible for violations of
unitarity in thermodynamic interactions, this would correspond to real ∆h(β)

qs ).
As previously noted, equations (30) and (31) imply an apparent CPT violation:

〈qβ|HSB |sβ〉 6=
〈
sβ
∣∣HSB

∣∣qβ〉 (32)

3.2 The case of a CP-invariant system

Most quantum systems possess CP symmetry and relatively few CP violations
are known in quantum mechanics. When the system Hamiltonian HS is intrin-
sically CP-invariant, we obtain

Hkf = 〈k|HS |f〉 =
〈
k
∣∣HS

∣∣f〉 = Hk̄f̄ (33)

∆Λ(β) ≡ Λ(β)
KK − Λ(β)

K̄K̄
= 0 (34)

Here we use equations (30), (24), (33) to obtain (34) and conclude that the
system appears to the observer as being CPT-compliant. Here, we refer only to
opinion of the observer, who uses ∆Λ(β) to test the CPT-invariance; in general,
the system may or may not be CPT-invariant under these conditions. We also
note that, since the Hamiltonians H0 and H(β)

2 are CP-preserving, there is no
T violation in this system apparent to the observer Λ(β)

KK̄
= Λ(β)

K̄K
, although,

once again, the system’s interactions with the environment may in fact be T-
violating.

3.3 The case of a CP-violating and CPT-invariant system

The system Hamiltonian HS is CPT-invariant provided that

Hkf = 〈k|HS |f〉 =
〈
f
∣∣HS

∣∣k〉 = Hf̄ k̄ (35)

We use equations (30), (24) and (35) and note that the first term in (24) does
not contribute to ∆Λ(β) so that

∆Λ(β) = λ
(β)
KK − λ

(β)

K̄K̄

=
∑
f

(
H ′Kf + h

(β)
Kf

)(
H ′fK + h

(β)
fK

)
−
(
H ′
K̄f̄

+ h
(β)

K̄f̄

)(
H ′
f̄K̄

+ h
(β)

f̄K̄

)
E0 − Ef + iε

=
∑
f

(
H ′Kf + h

(β)
Kf

)(
H ′fK + h

(β)
fK

)
−
(
H ′fK + h

(β)
Kf

)(
H ′Kf + h

(β)
fK

)
E0 − Ef + iε

= −
∑
f

∆H ′Kf
E0 − Ef + iε

∆h(β)
Kf (36)
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where we denote H ′kf ≡ 〈k|H1 |f〉 , ∆H ′kf = H ′kf − H ′fk. As such, thermo-
dynamic interactions with the environment through radiation may appear in
CP-violating (but CPT preserving) systems as an apparent CPT violation. Ab-
sence of the time symmetry ∆H ′Kf 6= 0 and ∆h(β)

Kf 6= 0 is essential for this effect.

Note that the product ∆H ′Kf∆h(β)
Kf is always real, since ∆H ′Kf and ∆h(β)

Kf are
both imaginary. As discussed in Section 2.4, the major contribution to the
sum (36) takes place in the vicinities of the on-shelf states f̂ where h(β)

sq is not
restricted to the diagonal Isq and ∆h(β)

sq is non-zero.

4 Tests of CPT invariance in kaon decays

Decay of neutral kaons is one of very few known cases of CP-violation in quan-
tum systems (it was the only known case of CP-violation for several decades and
is widely covered in the literature see, for example, [8, 18]). The CP violation
takes the form ΛKK̄ 6= ΛK̄K , were we omit the superscript β since the CP vio-
lation is induced by ∆H ′kf 6= 0 in (24) and does not need any interaction with

the environment (i.e. we can put h(β)
kf = 0). This CP violation is conventionally

understood as preserving CPT and violating T invariance.
The CPT invariance of kaon decays has also been repeatedly tested [8, 18].

The results of these tests are summarily presented in a recent review of particle
physics [18] and are shown in Figure 2. These results neither constitute an
unambiguous CPT violation nor assert the CPT invariance, although there is
a noticeable CPT-violating bias in the results. The magnitude of the apparent
CPT violation is only 10 times smaller than that of the established CP-violation
in this system but the relative scattering of the results is much larger in CPT
than in CP tests which prevents any conclusive statements on CPT invariance.

Our explanation of the bias is that the apparent CPT violation in kaon de-
cays is induced by thermodynamic interactions with the environment (and does
not contradict to a rigorous interpretation of CPT invariance). This violation
can be traced to the fact that, in our experiments, we cannot possibly perform
charge conjugation of the environment. As discussed below, this explanation
seems to be consistent with the results presented in Figure 2.

The apparent CPT violation in (36) is caused by interference of the environ-
ment with quantum interactions of the initial and the on-shelf final states of the
system. Hence, the contribution to the violation from the sum in (36) is domi-
nated by the vicinities of the on-shelf states f̂ . Since the product ∆H ′Kf∆h(β)

Kf

is always real, this product contributes to both the real ∆M (β) ≡M (β)
KK−M

(β)

K̄K̄

and imaginary ∆Γ(β) ≡ Γ(β)
KK − Γ(β)

K̄K̄
components of ∆Λ(β). This implies that,

if only the realisations β that possess the property ∆Γ(β) ≈ 0 (due to ∆h(β)
Kf

being small in the vicinity of f̂ ) are selected, then the corresponding energy-
mass term should also vanish ∆M (β) ≈ 0. This expectation is consistent with
the experimental results presented in Figure 2. Another feature of equation
(36) is its linearity with respect to the fluctuating term ∆h(β)

Kf , which does not

13
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Figure 2: Test of CPT invariance in kaon decays [18]. The two contours show
the 95% and 65% confidence levels. The solid dot corresponds to the mean
value. The cross indicates the coordinate origin – the point where no CPT
violation occurs. The vertical dashed lines show the 95% confidence region for
∆M in realisations conditioned on ∆Γ = 0.

contradict the results shown in Figure 2 that seem to indicate the existence of
a linear correlation or connection between ∆Γ(β) and ∆M (β). Fluctuations of
large magnitudes (i.e. of the same order as mean values) are also consistent
with the thermodynamic origin of the fluctuations, since microscopic systems
placed in a thermodynamic environment are subject to fluctuations of magni-
tude comparable to the corresponding mean values.

5 Conclusions

The perspective suggested in this work is based on assumption that the ther-
modynamic influence of the environment is omnipresent in the real world; insu-
lating experimental systems only weakens this influence but cannot exclude it
completely. Although decays have stronger coupling with thermodynamic envi-
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ronment than quantum steady states, the direct influence of the environment on
invariant properties may be difficult to notice in systems that are CP-invariant
— the overwhelming majority of quantum systems belong to this group. In
the case of intrinsic CP violations, interference of the environment is likely to
produce the impression of a CPT violation: the decay of neutral kaons seems
to support this view. This violation is only apparent and does not contradict
strict interpretations of the CPT symmetry, which is fundamental in particle
physics.
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APPENDIX: The random phase notation

This appendix explains the system of notation that is based on random phases
and used in this paper. These notations can be useful in distinguishing pure
and mixed states of quantum mechanics, especially in cases where dealing with
wave functions seems to be more convenient than using density matrices. We
stress that the random phases serve only to provide notional convenience and
do not represent a physical explanation or a theory. Let

[β] = exp(−iθβ), [β]∗ = exp(+iθβ), (37)

where θβ is a random angle uniformly distributed between 0 and 2π. When a
wave function is multiplied by a random phase, evaluation of the density matrix
involves averaging over the random phases, which is obviously compliant with
the following rule 〈

[α]∗ [β]
〉

= 〈exp (−i(θβ − θα))〉 = Iαβ (38)

where Iαβ is the identity matrix:

Iαβ =
{

1 α = β
0 α 6= β

(39)

Note that the product of two random phases [β3] = [β1] [β2] is also a ran-
dom phase that is different from both [β1] and [β2] since

〈
[β3]∗ [β1]

〉
= 0

and
〈
[β3]∗ [β2]

〉
= 0. Multiplication of a random phase by a fixed phase is

still a random phase, although not an independent one: [β◦] = e−iφ [β] and〈
[β◦]∗ [β]

〉
= eiφ.

Consider the following examples. The first expression

|ψ1〉 =
∑
β

cβ |β〉 (40)
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represents a pure state, which is a superposition of pure states |β〉 . The second
expression

|ψ2} =
∑
β

cβ [β] |β〉 (41)

represents a mixed state, which is a mixture of the pure states |β〉. Let us
evaluate the corresponding density operators to see the difference

�1 = |ψ1〉 〈ψ1| =
∑
α,β

c∗αcβ |β〉 〈α| (42)

�2 = |ψ2} {ψ2| =
∑
α,β

c∗αcβ
〈
[α]∗ [β]

〉︸ ︷︷ ︸
=Iαβ

|β〉 〈α| =
∑
β

cβc
∗
β |β〉 〈β| (43)

where rule (38) is applied. The second density operator corresponds to a mixed
state.

In a mixed state, superposition and mixing can be performed over different
indices. For example, the expression

|ψ} =
∑
s,β

csβ [β] |s〉 (44)

represents the pure states

|ψβ〉 =
∑
s

csβ

p
1/2
β

|s〉 , β = 1, 2, ... (45)

that are mixed with the probabilities pβ = Σsc∗sβcsβ .
Generally, the random phase notation is equivalent to notations using the

density matrices, although in some cases the random phases can distinguish
different mixed states that have identical density matrices. A good example,
which has been mentioned in many publications [16], can be expressed in terms
of the random phases by the following expressions

|ψ+1〉 =
|↑〉+ |↓〉√

2
, |ψ−1〉 =

|↑〉 − |↓〉√
2

|ψ2} =
[α] |↑〉+ [β] |↓〉√

2
, |ψ3} =

[α] |ψ+1〉+ [β] |ψ−1〉√
2

(46)

The first two expressions specify |ψ+1〉 and |ψ−1〉 as pure states that are different
superpositions of two other pure states |↑〉 and |↓〉 representing spin. The last
two expressions indicate that |ψ2} is a mixture of two pure states |↑〉 and |↓〉
with equal probability and that |ψ3} is a mixture of two other pure states |ψ+1〉
and |ψ−1〉. Note that |ψ3} is different from |ψ2} and this difference is reflected
by the random phase notation. The density operators corresponding to these
cases are evaluated according to (43) and, in matrix form, are given by

�+1 =
1
2

[
1 1
1 1

]
, �−1 =

1
2

[
1 −1
−1 1

]
�2 =

1
2

[
1 0
0 1

]
, �3 =

1
2

[
1 0
0 1

]
(47)
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Another interesting example is given by the mixture

|ψ} = p1/2
α [α] |1〉+ p

1/2
β [β] ( c1 |1〉+ c2 |2〉 ) (48)

of two pure states |ψα〉 = |1〉 and |ψβ〉 = c1 |1〉 + c2 |2〉, where c∗1c1 + c∗2c2 = 1
and pα + pβ = 1. Note that arithmetically the same expression

|ψ} =
(
p1/2
α [α] + p

1/2
β c1 [β]

)
|1〉+ p

1/2
β c2 [β] |2〉 (49)

would be more difficult to interpret. Hence, the random phases need to be
factored out and the summation of different random phases, such as p1/2

α [α] +
p

1/2
β [β] , is generally not permitted. If c2 → 0 then |ψ} becomes

|ψ} =
(
p1/2
α [α] + p

1/2
β [β]

)
|1〉 = |ψ〉 (50)

which, as the mixture of the same pure states |ψα〉 = |ψβ〉 = |1〉 , is conven-
tionally interpreted as a pure state |ψ〉. If we follow this convention, then in
this case the sum of the random phases can be formally interpreted as another
random phase [γ] , that is [γ] = p

1/2
α [α] + p

1/2
β [β].

In these work we distinguish pure and mixed states by different bra and ket
symbols. Since, as canonical typicality indicates, the difference between pure
and mixed states tends to be blurred for very large quantum systems, using
the same bras and kets for both |ψ〉 and |ψ} may be more convenient. The
random phases notation is a convenient notation for distinguishing pure and
mixed states of quantum mechanics. In conventional quantum mechanics, the
random phase multipliers [α] , [β] are orthonormal and do not evolve in time.
Spontaneous decoherence, however, corresponds to [α] being the same as [β]
initially but then evolving into stochastically independent quantities.
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