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ABSTRACT We measured the thermodynamic stability conditions for the N2, CO2, or CH4 semi-clathrate 

hydrate formed from the aqueous solution of Tri-n-butylphosphine Oxide (TBPO) at 26 wt%, corresponding 

to the stoichiometric composition for TBPO·34.5H2O. The measurements were performed at the temperature 

range of (283.71 to 300.34) K and pressure range of (0.35 to 19.43) MPa with using an isochoric equilibrium 

step-heating pressure search method. The results showed that the presence of TBPO made these 

semi-clathrate hydrates much more stable than the corresponding pure N2, CO2, and CH4 hydrates. At a given 

temperature, the semi-clathrate hydrate of 26 wt% TBPO solution + CH4 was more stable than that of 26 wt% 

TBPO solution + CO2, which in turn was more stable than 26 wt% TBPO solution + N2. We analyzed the 

phase equilibrium data using the Clausius-Clapeyron equation and found that at the pressure range of (0 to 20) 

MPa, the mean dissociation enthalpies for the semi-clathrate hydrates systems of 26 wt% TBPO solution + N2, 

26 wt% TBPO solution + CO2, and 26 wt% TBPO solution + CH4 were 177.75 kJ·mol-1, 206.23 kJ·mol-1 and 

159.00 kJ·mol-1, respectively.  
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1. INTRODUCTION 

  Gas hydrates are a group of ice-like crystalline compounds stabilized under low temperature and elevated 

pressure conditions.1 Accommodating guest molecules of certain size by gas hydrates has found its potential 

applications in gas storage and separation.2, 3 However, the high pressure requirement and slow formation 

kinetics remain an impediment to the technology development for hydrate-based gas separation, storage, and 

transport. 

  One of the promising methods for reducing the pressure requirement for hydrate formation is to use 

chemical additives, which can lead to the formation of semi-clathrate hydrates (SCHs) at relatively high 

temperatures and low pressures. SCHs were first reported by Fowler et al.4 in 1940 and were subsequently 

analyzed using X-ray diffraction by McMullan and Jeffrey 5. The latter found that in some clathrate hydrates, 

the guest molecules such as organic salts not only occupy the voids, but also act as part of the cages. These 

SCH crystalline solids are built up by the water-anion-framework containing empty dodecahedral cavities and 

large cavities encaging the cations covalently bonded to alkyl chains. Shimada et al. 6 provided the first 

evidence that unoccupied cages in SCH could enclathrate suitably sized gas molecules, such as hydrogen 

sulphide, methane and nitrogen, and suggested that the SCH could be used for separating gas molecules. 

Kamata et al. 7 then experimentally showed that with tetra-n-butyl ammonium bromide (TBAB) as a SCH 

former, it was possible to separate smaller molecules (e.g. nitrogen, methane, and hydrogen sulfide) from 

larger molecules (e.g. ethane, propane and carbon dioxide). In other words, SCHs are capable of selectively 

incorporating small gas guest molecules within the small cavities of the SCHs. Unlike ordinary hydrates 

having well defined structures (Structure I, Structure II, and Structure H), SCHs have diverse structures and 

have hydrogen-bonding interaction between guests and hosts molecules, which is much stronger than the van 



 

der Waals force in ordinary hydrates5  

  SCHs have drawn increasingly more interest from researchers for their potential applications in hydrogen 

storage 8, carbon dioxide storage 9, and gas separation 10-14. The thermodynamic data of SCHs are limited, and 

the majority of them are for TBAB 8, 15-32. More phase equilibrium data on SCHs are needed for acquiring 

in-depth knowledge of gas hydrate formation, optimizing the thermodynamic models, and developing 

effective gas processing technologies. 

  One of the SCH formers, which are less known, is tri-n-butylphosphine oxide (TBPO). TBPO and water 

could form both TBPO·28H2O and TBPO·34.5H2O SCHs under atmospheric pressure, with the melting point 

being 279.65 and 280.25 K, respectively 33, 34. The latter TBPO hydrate with higher melting point has a crystal 

unit composed of four 51264 cages, four 51263 cages, four 51262 cages, and fourteen 512 cages associated with 

138 H2O in real structure33, and the empty 512 cage can encage small gas molecules. Recently, Gholinezhad 12 

reported one phase equilibrium data point (i.e. 280.25 K, 0.1 MPa) of CH4 with TBPO solution at a 

stoichiometric concentration (26 wt%). To the best of our knowledge, there are no other studies on SCHs 

formed in the systems of gas + TBPO + water. In the present study, we systematically report the phase 

equilibrium data for the SCHS with N2, CH4 or CO2 + 26 wt % TBPO solution.  

2. EXPERIMENTAL 

2.1. Materials 

TBAB (0.99 mass fraction pure) and TBPO (0.95 mass fraction pure) used in this work were supplied by 

Sigma-Aldrich. CH4 (0.99995 volume fraction pure), N2 (0.99999 volume fraction pure) and CO2 (0.99995 

volume fraction pure) were obtained from Coregas. All of these materials were used as received. Deionized 

water was used to prepare the aqueous solutions of TBPO or TBAB.  



 

2.2. Experimental apparatus  

A schematic diagram and specifications of the experimental apparatus are given in Figure 1. The high 

pressure reactor used in the present work was a home-made non-visual 102 ml stainless steel cylindrical 

vessel with inside diameter of 38 mm and inside depth of 90 mm. The reactor was immersed in a liquid bath, 

which was connected to a temperature control circulator (PC200-A25, Thermo Scientific) with temperature 

stability of 0.01 K. The bath was covered by two heat insulation layers to ensure that the constant-temperature 

step could be controlled precisely at 0.1 K. A thermowell coupled with a matched 1/10 DIN ultra precise 

immersion RTD sensor (Omega) was inserted into ¾ depth of the reactor to measure the liquid or hydrate 

phase temperature with an uncertainty of ± 0.03 K. A pressure transducer (OMEGA) with accuracy of ± 0.01 

MPa (± 0.03% and pressure range of 34.5 MPa) was used to measure the gas pressure inside the reactor. A 

magnetically driven stirrer (PTFE-coated cross bar, purchased from Industrial Equipment and Control) was 

used to agitate the test liquid. The gas discharged from the gas booster (Maximator MGB-ROB8-37) was fed 

into the reactor. The experimental data were collected at 10 seconds intervals using a data acquisition system 

(Agilent 34970A).  

2.3. Experimental procedure 

The high pressure cell was cleaned at least seven times with using deionized water and dried prior to the 

introduction of TBAB or TBPO aqueous solution. The cell was filled with 30 g of 26 wt% TBPO solution, 

corresponding to the stoichiometric ratio TBPO·34.5H2O. Likewise, TBAB solutions (30 g) were prepared for 

examining the reliability of the current experimental system. Finally, the test solution was loaded into the 

clean and dry reactor. A vacuum pump (Javac CC-45) was used to degas the entire system except the reactor 

for 5 to 10 minutes. Subsequently, the test solution in the reactor was degassed for 0.5 - 1 minute before 



 

undergoing hydrate experiments. The effect of degassing on the concentration of the test solution was 

negligible. 

The hydrate phase equilibrium measurements were performed at the temperature range of (283.71 to 

300.34) K and pressure range of (0.35 to 19.43) MPa with using an isochoric equilibrium step-heating 

pressure search method1. Figure 2 shows typical pressure-temperature traces for the SCHs obtained in the 

present work. For each experimental run, the temperature was initially set at 303 K, and the initial gas 

pressure was set at a specific value (e.g. 20, 15, 10, 6, or 2 MPa). The temperature in the reactor was gradually 

reduced at a rate of 0.5 K per hour with a 1-hour constant-temperature stage after every 5-hour temperature 

decreasing until 273.2 K, while the rotating speed of the magnetic stirrer remained high at around 600 rpm 

(corresponding to Reynolds number ~7000) to obtain an adequate mixing. A sudden drop of gas pressure 

indicated the onset of the hydrate formation, and the hydrate formation ended at around 274 K. The duration 

of hydrate formation process took about 1 to 2 days, depending on the initial pressure. The temperature was 

then increased first at a relatively large rate of 0.2 K per hour, which is considered acceptable for reducing the 

time requirement.35 After every five-hour continuous heating, there was a one-hour constant-temperature stage. 

Once the temperature was close to (usually 1-2 K lower than) the possible dissociation point which can be 

inferred from the pressure-temperature trace, the stepwise heating rate was adjusted to 0.1 K for every 6 hours. 

Between these temperature rising stages were two-hour constant-temperature stages. The hydrate dissociation 

point was determined from the abrupt change in the slope of the hydrate dissociation line approaching the 

initial cooling line. As shown in Figure 2a, the typical pressure-temperature trace of TBAB + N2 hydrate is 

similar to those reported in the literature.25,36 For TPBO + N2 hydrate, however, Figure 2b shows an unusual 

pressure-temperature trace. Similar pressure-temperature traces were obtained for TPBO + CO2 hydrate and 



 

TPBO + CH4 hydrate. This abnormal increase in pressure near the end of hydrate formation suggests that with 

TPBO, a pronounced change in crystal structure might have occurred. The release of gas at lower temperature 

could be explained by two different gas hydrate phases (e.g. gas-containing hydrate and gas-free hydrate) in 

equilibrium with a peritectic liquid. Note that there are at least two structures for TBPO hydrate: 

TBPO·34.5H2O and TBPO·28H2O.33 Further work with using spectroscopic techniques is under way to 

understand this phenomenon. 

3. RESULTS AND DISCUSSION 

First, the reliability and accuracy of the apparatus and isochoric experimental procedure was verified by 

comparing the phase equilibrium data of TBAB + water + N2 and TBAB + water + CH4 obtained in the 

present work with the corresponding data in the literature. Next, we reported the phase equilibrium data for 

SCHs with 26 wt% TBPO solution + N2, CO2, or CH4. Finally, we estimated the dissociation enthalpies of 

these TBPO-containing SCHs. 

3.1 Examination of the reliability of the current experimental system  

The phase equilibrium data for 5 wt% TBAB solution + N2 semi-clathrate hydrate were shown in Table 1 

and Figure 3. Also plotted in Figure 3 are the data reported by Lee et al. 19, Mohanmmadi et al. 25 and Duc et 

al. 9 using the same method. As shown in Figure 3, the data obtained in the present work are in good 

agreement with those reported in refs 19,25, and these three sets of data fall essentially on the same line. The 

role of thermal path, especially the heating rate and heating paths (continuous and stepwise), in determining 

the accuracy of gas hydrate phase equilibrium data using isochoric method has been discussed in detail by 

Tohidi et al.35 and Mohammad et al.36  

The repeatability of our experimental data can be seen from Figure 1S and Table 1S in Support Information. 



 

We have repeated the measurement twice for one hydrate dissociation point of 5 wt% TBAB solution + N2. 

The standard deviation of measured temperature was 0.03 K, and the standard deviation of measured pressure 

was 0.01 MPa, within the uncertainty range of the RTD and pressure transducer used in the present work. 

The phase equilibrium data for 10 wt% TBAB solution + CH4 semi-clathrate hydrate are shown in Table 2 

and Figure 4. Also plotted in Figure 4 are the data reported by Refs 8, 21, 25. Again, these three sets of data fall 

essentially on the same line, indicating that our experimental setup applying the equilibrium step-heating 

pressure-search method is reliable over the pressure range under study. 

3.2 Experimental phase equilibrium data of 26 wt% TBPO solution + N2, CH4 or CO2 hydrates 

We measured the phase equilibrium conditions for SCHs with 26 wt% TBPO solution + N2, 26 wt% TBPO 

solution + CO2, and 26 wt% TBPO solution + CH4, and the results are shown in Figure 5 and Table 3. The 

systems exhibit three-phase equilibrium: SCH phase + aqueous phase + vapor phase. In Figure 5, the upper 

left region of each curve represents the conditions at which the solid SCH phase (H) is stable for the relevant 

system and in the lower right region, the solid SCH phase (H) disappears and only aqueous phase (Lw) and 

vapor phase (V) are present. As shown, the equilibrium pressure steadily decreased with decreasing 

temperature. All these curves which represent different guest gases appear to converge at a certain point 

where the temperature was approximately 284 K. At a temperature above 284 K, however, the SCH of 26 

wt% TBPO solution + CH4 was considerably more stable than that of 26 wt% TBPO solution + CO2, which in 

turn was much more stable than that of 26 wt% TBPO + N2. Note that the curve of 26 wt% TBPO solution + 

CH4 is below that of 26 wt% TBPO solution + CO2. By contrast, the phase equilibrium curve of pure CH4 

hydrate is above that of pure CO2 hydrate at the temperature range under study.  

Figure 6 compares the phase equilibrium data obtained in the present work for 26 wt% TBPO solution 



 

(corresponding to TBPO·34.5H2O
33) with those from the literature25 for the SCHs of 25 wt% TBAB aqueous 

solution, with CO2, N2 or CH4. Note that in the literature25 the equilibrium data with 26 wt% TBAB are not 

available, and the closest is 25 wt%. Also plotted in the sub-figures are the pure gas hydrate equilibrium data25. 

As shown, the presence of TBPO made these SCHs much more stable than the corresponding pure CO2, N2 

and CH4 hydrates, with the equilibrium pressure being dropped by approximately 10- to 100-fold at 285 K. 

The effect of TBPO on reducing the phase equilibrium pressure was comparable with that of TBAB except 

the CO2 hydrate, for which TBAB gave slightly milder hydrate equilibrium conditions than TBPO. 

Figure 7 compares the effects of TBPO and TBAB on the hydrate phase equilibrium conditions. Note that 

in the presence of TBAB, the semi-clathrate hydrate phase equilibrium curves of CO2 and CH4 are close to 

each other and even have a crossover. By contrast, with TBPO, the SCH phase equilibrium curves of CO2 and 

CH4 are far from each other and more importantly, there is no crossover between these two phase equilibrium 

curves. These results provide a clue that TBPO could potentially be more useful than TBAB for gas 

separation applications, including removal of CO2 from conventional natural gas and purification of coal seam 

gas (coal bed methane). Further work is under way to investigate the potential of TBPO for gas separation, 

including selectivity and efficiency.  

TBPO is a very strong hydrogen-bond acceptor, while TBAB is a strong proton acceptor. The difference in 

the molecular structure between TBPO and TBAB should have a significant impact on the intermolecular 

interactions and thus the enthalpies during the process of CO2 hydrate formation and dissociation. In what 

follows, we analyzed the phase equilibrium data using the Clausius-Clapeyron equation to roughly estimate 

the dissociation enthalpies of these SCHs.  

3.3. Dissociation enthalpy of 26 wt% TBPO + N2, CH4 or CO2 hydrates 



 

The dissociation enthalpies (∆disHm) of the semi-clathrate hydrates were determined by using a modified 

Clausius-Clapeyron equation:40, 41  

                           
ln

(1 / )
dis md P H

d T zR

∆= −                              (1)  

where R is the gas constant and z is the compressibility factor that accounts for the non-ideality of the gases. 

The z values were calculated using the SRK equation of state, which is highly accurate for N2, CH4 and CO2 

at non-ideality. These z values are shown in Table 2S. Equation (1) is a simplification of the Clapeyron 

equation. Here, only the gas phase is considered and the dissolved gas is neglected. For CO2, Equation (1) 

could also be applicable in spite of the relatively high solubility of CO2 in water, and the calculated ∆disHm 

values are in good agreement with those reported in the literatures.42-44  

Figure 8 shows the semilogarithmic plots of hydrate dissociation pressure versus reciprocal absolute 

temperature (lnP versus 1/T), and the straight lines represent the best linear fit of the experimental data. As 

shown, for N2 and CH4, the slopes of the lines for TBPO semiclathrate hydrates were larger than those of 

TBAB, whereas for CO2, the slope for TBPO semiclathrate hydrate was smaller than that of TBAB. In using 

Equation (1), the value of dlnP/d(1/T) was set equal to the slope of the fitted straight lines shown in Figure 8. 

The mean enthalpies of dissociation for the 26 wt% TBPO solution + N2, CO2 and CH4 systems and the 25 

wt% TBAB aqueous solution + N2, CO2 and CH4 system were shown in Table 4 along with those of the 

corresponding pure gas hydrates. Note that the ∆disHm values were largely determined by the slope of ln P 

versus 1/T. As shown, with these different guest gas molecules, TBPO gave the CO2 semi-clathrate hydrate 

the highest dissociation enthalpy, whereas TBAB gave the CO2 semi-clathrate hydrate the lowest. The 

changes in the ∆disHm of SCHs with TBPO follow the same trend as the pure gas hydrates. This difference 



 

suggests that TBPO and TBAB should differ greatly in getting involved with the hydrate formation through 

cavity occupation and hydrogen bonding interaction. It has been accepted that the Br+ ions dissociated from 

TBAB in water can play a role in forming the cages in the SCHs, whereas no such anions but phosphoryl 

oxygen from TBPO can get involved with the cage formation. These arguments and conjectures point to the 

need for more work to understand the observed difference in the pressure - temperature trace between TBAB 

and TBPO (see Figure 2), especially near the end of hydrate formation and the start of hydrate dissociation. 

It is known that the enthalpy of dissociation is determined by the cavity sizes occupied by the guests for 

ordinary hydrate such as sI and sII; the size of hydrate guest increases in the order of N2, CH4, and CO2, so is 

the slope of the fitted straight lines for the lnP versus 1/T plots.1 For SCHs, however, there is no apparent 

relationship between the fitted straight lines for the lnP versus 1/T plots and the sizes of cavities or SCH 

formers. SCH formers participate in the cage structure or framework mainly through hydrogen bonding, in 

contrast to ordinary hydrate guest molecules that are incorporated into the hydrate cage mainly through van 

der Waals force. Furthermore, the hydrogen bonding interaction is much stronger than van der Waals force, so 

the interaction between the SCH formers and water molecular of SCHs cages should be quite different from 

that between the guest molecular and water molecular in ordinary cages. As can be seen from Table 4, the 

∆disHm values of the SCHs are systematically larger than the corresponding pure gas hydrates.   

4. SUMMARY AND CONCLUSIONS 

A 102-ml stirred reactor was used to measure the phase equilibrium conditions for SCHs using the 

isochoric equilibrium step-heating pressure search method. The reliability and accuracy of the apparatus and 

isochoric experimental procedure was verified by comparing the phase equilibrium data of 5 wt% TBAB 

solution + N2 and 10 wt% TBAB solution + CH4 obtained in the present work with the corresponding data in 



 

the literature. 

The phase equilibrium conditions of 26 wt% TBPO solution and CO2, N2 or CH4 semi-clathrate hydrates 

were measured in the temperature range of (283.71 to 300.34) K and pressure range of (0.35 to 19.43) MPa. It 

was found that addition of TBPO allowed the dissociation conditions of the CO2, N2 or CH4 hydrate to shift to 

higher temperatures and lower pressures. Over the temperature range of (283.7 to 300.3) K, the semi-clathrate 

hydrate of 26 wt% TBPO solution + CH4 was substantially more stable than that of 26 wt% TBPO solution + 

CO2, which in turn was more stable than 26 wt% TBPO solution + N2.  

We estimated the dissociation enthalpies of these TBPO-containing SCHs. The dissociation enthalpies were 

calculated from the measured phase equilibrium data of the N2, CH4 or CO2 + 26 wt% TBPO solution 

semi-clathrate hydrates using the Clausius-Clapeyron equation. The mean dissociation enthalpies for the N2, 

CH4 or CO2 + 26 wt% TBPO solution semi-clathrate hydrates systems at the pressure range of (0 to 20) MPa 

were 177.75 kJ·mol-1, 206.23 kJ·mol-1 and 159 kJ·mol-1, respectively.  
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Figure captions 

Figure. 1. Schematic of the experimental apparatus used for phase equilibrium measurements (not drawn to 

scale). 

Figure. 2. Determination of hydrate dissociation point from typical pressure-temperature traces obtained in 

the present work: a), 5 wt% TBAB aqueous solution + N2; b), 26 wt% TBPO aqueous solution + N2.  

Figure 3. Phase equilibrium data for TBAB + H2O + N2 semi-clathrate hydrate at 5 wt%: ●, this work 

(isochoric equilibrium step-heating pressure-search method); □, ref 19 (the same method); △, ref 25 (the 

same method). The dashed line represents the best fit of the experimental data obtained in the present work. 

Figure 4. Phase equilibrium data for 10 wt% TBAB + CH4 semi-clathrate hydrate: ●, this work (isochoric 

equilibrium step-heating pressure-search method); □, ref 17 (the same method); △, ref 21 (the same method); 

○, ref 22 (the same method).  

Figure 5. Experimental phase equilibrium data for three systems: ■ (black), 26 wt% TBPO + N2; ● (red), 26 

wt% TBPO + CO2; ▲ (green), 26 wt% TBPO + CH4. 

Figure 6. Comparison of experimental phase equilibrium data for various hydrate systems. 

Figure 7. Experimental phase equilibrium data: ● (red), 26 wt% TBPO aqueous solution + CO2, this work; 

▲ (green), 26 wt% TBPO aqueous solution + CH4, this work; ○ (red), 25 wt% TBAB aqueous solution + 

CO2, ref 25. △ (green), 25 wt% TBAB aqueous solution + CH4, ref 25.  

Figure 8. Semilogarithmic plot of semi-clathrate hydrate phase equilibrium pressure versus reciprocal phase 

equilibrium temperature: systems with 26 wt% TBPO aqueous solution + (a) N2, (c) CO2, and (e) CH4, in the 

present work; systems with 25 wt% TBAB aqueous solution + (b) N2, (d) CO2, and (f) CH4, from ref 25.  

 



 

Table 1. Semi-clathrate Hydrate Phase Equilibrium Data of 5 wt% TBAB aqueous solution + N2,  

 

T/K P/MPa 

287.31 19.12 

287.09 18.33 

286.63 16.07 

285.88 13.99 

285.11 11.64 

284.67 10.31 

284.14 9.01 

283.63 7.76 

282.51 5.62 

280.95 3.92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Phase equilibrium data for 10 wt% TBAB + CH4 semi-clathrate hydrate  

T/K P/MPa 

291.47 8.55 

289.4 4.69 

286.96 2.33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3. Semi-clathrate Hydrate Phase Equilibrium Data in the Three Component Systems of TBPO + H2O + 

N2, CO2 and CH4, Corresponding to the Boundary Condition between Water-Hydrate-Vapor (Lw + H + V) 

Phases and Water-Vapor (Lw + V) Phases. 

Phase T/K P/MPa 

Lw +H+V > Lw +V 

26 wt% TBPO + N2 

284.12 1.02 
285.14 2.03 
286.88 3.71 
287.82 4.83 
289.01 6.15 
289.97 7.54 
290.93 8.94 
291.89 10.79 
292.31 11.83 
292.94 13.44 
293.14 13.96 
293.63 15.18 
294.04 17.17 
294.49 19.43 

26 wt% TBPO + CO2 
283.94 0.56 
285.27 0.85 
286.62 1.51 
287.94 2.57 
289.79 3.81 

26 wt% TBPO + CH4 
283.71 0.35 
287.21 0.79 
289.72 1.44 
292.06 2.17 
292.93 2.96 
293.67 3.69 
294.31 4.34 
296.04 6.86 
297.47 10.14 
298.58 12.98 
299.66 15.63 
300.34 18.9 

 

 



 

Table 4. Enthalpies of dissociation ∆disHm/kJ·mol-1 for N2, CO2 and CH4 in 25 wt% TBAB solution, 26 wt% 

TBPO solution and pure water 

Guest TBPO TBABa Pure waterb 

N2 177.75 319.04 62.98 

CO2 206.23 195.03 70.03 

CH4 159.00 265.18 59.39 

a Calculations made on the basis of phase equilibrium data source of ref 25 

b Calculations made on the basis of phase equilibrium data source of ref 37-39  
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     (a), phase equilibrium measurement system              (b), the high pressure reactor          

Figure 1. Schematic of the experimental apparatus used for phase equilibrium measurements (not drawn to 

scale). 
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Figure 2. Determination of hydrate dissociation point from typical pressure-temperature traces obtained in the 

present work: a), 5 wt% TBAB aqueous solution + N2; b), 26 wt% TBPO aqueous solution + N2.  
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Figure 3. Phase equilibrium data for 5 wt% TBAB + N2 semi-clathrate hydrate: ●, this work (isochoric 

equilibrium step-heating pressure-search method); □, ref 19 (the same method); △, ref 25 (the same 

method). The dashed line represents the best fit of the experimental data obtained in the present work. 
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Figure 4. Phase equilibrium data for 10 wt% TBAB + CH4 semi-clathrate hydrate: ●, this work (isochoric 

equilibrium step-heating pressure-search method); □, ref 17 (the same method); △, ref 21 (the same method); 

○, ref 22 (the same method).  
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Figure 5. Experimental phase equilibrium data for three systems: ■ (black), 26 wt% TBPO + N2; ● (red), 26 

wt% TBPO + CO2; ▲ (green), 26 wt% TBPO + CH4. 
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Figure 6. Comparison of experimental phase equilibrium data for various hydrate systems. 
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Figure 7. Experimental phase equilibrium data: ● (red), 26 wt% TBPO aqueous solution + CO2, this work; 

▲ (green), 26 wt% TBPO aqueous solution + CH4, this work; ○ (red), 25 wt% TBAB aqueous solution + 

CO2, ref 25. △ (green), 25 wt% TBAB aqueous solution + CH4, ref 25.  
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Figure 8. Semilogarithmic plot of semi-clathrate hydrate phase equilibrium pressure versus reciprocal phase 

equilibrium temperature: systems with 26 wt% TBPO aqueous solution + (a) N2, (c) CO2, and (e) CH4, in the 

present work; systems with 25 wt% TBAB aqueous solution + (b) N2, (d) CO2, and (f) CH4, from ref 25.  
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