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Flat band states: Disorder and nonlinearity
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We study the critical behavior of Anderson localized modes near intersecting flat and dispersive bands in the
quasi-one-dimensional diamond ladder with weak diagonal disorder W . The localization length ξ of the flat band
states scales with disorder as ξ ∼ W−γ , with γ ≈ 1.3, in contrast to the dispersive bands with γ = 2. A small
fraction of dispersive modes mixed with the flat band states is responsible for the unusual scaling. Anderson
localization is therefore controlled by two different length scales. Nonlinearity can produce qualitatively different
wave spreading regimes, from enhanced expansion to resonant tunneling and self-trapping.
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I. INTRODUCTION

Disorder suppresses propagation of waves, resulting in
the celebrated Anderson localization.1,2 Nonlinearity has a
profound effect on Anderson localized modes, creating chaos
and delocalization,3–5 self-trapping,6,7 or a combination of the
two.6 The mechanisms and details of these processes remain
inconclusive and the contradictions are hotly debated.8 Under-
standing the competition between disorder and interactions
promises a wealth of applications because in any realistic
system both are always present.

Unconventional Anderson localization is expected in sys-
tems containing dispersionless or flat bands.9–11 Weak disorder
lifts the degeneracy, and accounts for both hybridization and
disorder in a nonperturbative way. Energetically isolated flat
bands result in an “inverse” Anderson transition in three
dimensions (3D), where hybridization wins, and localized flat
band states (FBS) delocalize with increasing disorder.12,13 A
very specific situation arises when the flat band touches other
dispersive bands at a point of zero group velocity.14 Numerical
calculations in a two-dimensional (2D) lattice in the limit of
weak disorder revealed critical, multifractal FBS, reminiscent
of an Anderson transition. This is quite different from ordinary
one-dimensional (1D) and 2D lattices, which require long
range coupling for critical behavior to appear.15

These results highlight the unusual consequences of mixing
macroscopically degenerate FBS via disorder. They also show
that the mixing is sensitive to both the dimensionality of the
system and the inclusion of a small number of modes which
belong to dispersive bands. So far the most interesting case of
FBS fully immersed in a dispersive band structure has not been
studied. Rigorous analytic results are scarce, and numerical
studies in two or more dimensions are notoriously hard and
imprecise due to finite size effects. Also, all studies of such
systems to date have been limited to linear waves. How do
nonlinearity or interactions affect a disordered flat band?

In this paper we study wave localization and transport in a
quasi-1D system, the diamond ladder, which hosts intersecting
flat and dispersive bands. We show how disorder-induced
mixing between flat and dispersive band states (DBS) produces
Cauchy distributed disorder, heavy tailed statistics, multiple
localization length scales, and sparse, multipeaked modes
in the weak disorder limit. This has profound effects on

wave packet spreading in the presence of nonlinearities. A
huge advantage compared to higher dimensional lattices is
that here we obtain rigorous numerical results, free of finite
size effects. This relatively simple lattice model involving
only short-range couplings can be readily implemented in
a variety of systems, such as optical waveguide arrays,16–19

microwave resonators,20 exciton-polariton condensates,21 and
optical lattices for ultracold atomic gases.22,23

Our main finding is that even weak mixing between the
dispersive and flat bands completely changes the transport
properties of the system. The effective disorder potential for
FBS has heavy Cauchy tails and correlations. The localization
length ξ at the flat band center scales with disorder W as
ξ ∼ W−γ with exponent γ ≈ 1.3, while dispersive modes
yield the usual γ = 2 exponent.2 Therefore, the localization is
governed by different length scales. Flat band modes are highly
sparse, with multiple peaks, resulting in strong fluctuations
in transport properties. Introducing a gap m > W suppresses
mixing with the dispersive bands, and we find that FBS no
longer scale with disorder γ = 0, with compact profiles, and
small fluctuations resembling ordinary Anderson localization.
On the other hand, the nonlinear mixing has an opposite effect:
Mixing between FBS enhances fluctuations, while mixing
with DBS reduces them. Thus, qualitatively different wave
spreading regimes are tunable via the interaction strength.

Section II introduces our model and examines the properties
of the linear modes of the disordered system. In Sec. III we
explore the spreading of localized excitations as a function
of the nonlinearity strength. Section IV concludes the paper
with discussion of future directions and possible experimental
realizations of our model, and a summary of our results.

II. MODEL AND LINEAR MODES

The diamond ladder is shown in Fig. 1(a). Propagating
waves can travel along two possible paths, through either
the “a” or “c” sites. Destructive interference between these
two paths can be introduced in a variety of ways, for
example by applying a magnetic field24 or Rashba spin-orbit
coupling,25 which results in wave localization. Interesting
interacting phases have also been obtained in the correspond-
ing Hubbard23,26–28 and Ising models.29 Here we consider a
tight-binding model with mean-field interaction terms, which
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FIG. 1. (a) Lattice structure with a, b, c sublattices, unit cell
marked by dashed line. (b) Band structure. Disorder W smears out
the flat band to a width W (shaded region).

hosts intersecting dispersive and flat bands at the Brillouin
zone edge [Fig. 1(b)],

iȧn + (εa,n + β|an|2)an = −∇2bn+1, (1)

iḃn + (εb,n + β|bn|2)bn = −∇2(an + cn), (2)

iċn + (εc,n + β|cn|2)cn = −∇2bn+1, (3)

here ∇2fn = fn + fn−1 is the discrete Laplacian, β is the
nonlinearity coefficient, and εj,n is the disorder potential
j = a,b,c. The dot denotes derivative with respect to time
t or propagation length in optical waveguide arrays. We set the
conserved norm

∑
n(|an|2 + |bn|2 + |cn|2) to 1 without loss of

generality. We can also choose β > 0 (attractive nonlinearity),
as equivalent results for β < 0 may be obtained by applying
the staggering transform β → −β,εn → −εn,bn → −bn.

In the linear, disorder-free limit β = εj,n = 0, the mode
profiles ψn = {an,bn,cn} are found from Eqs. (1)–(3) using
{an(t),bn(t),cn(t)} = ψne

iEt . The linear spectrum E(k) =
0,±2

√
2 cos(k/2) in Fig. 1(b) is derived using plane wave

expansion ψn = ψeikn with wave number k. FBS take the
form

ψn = {1,0,−1}fn, (4)

where fn is an arbitrary function. For example, fn = δn,n0

gives a compact mode perfectly localized to a single unit
cell n0. The π phase difference between the a and c sites
causes destructive interference which effectively decouples
sublattices and prevents diffraction. DBS with E �= 0 are
infinitely extended, ψn = eikn{1,±√

2e−ik/2,1}/2. We note
that here the flat band is robust against direct coupling between
the a and c sublattices. The most important requirement is that
the next-nearest neighbor coupling (e.g.. between a sublattice
sites) should be small.

We consider diagonal disorder with uncorrelated, uni-
formly distributed random variables εj,n ∈ [−W/2,W/2]. The
spectrum is bounded by [−	,	], with spectral width 	 =
2
√

2 + W/2.
It is convenient to solve Eqs. (1), (3),

an = bn + bn+1

E − εa,n

, cn = bn + bn+1

E − εc,n

(5)

to obtain a single equation for a mode profile bn:

εnbn = Cnbn+1 + Cn−1bn−1, (6)

Cn = (εa,n − E)−1 + (εc,n − E)−1, (7)

εn = εb,n − E − Cn − Cn−1, (8)

which, at first glance, resembles an ordinary periodic 1D lattice
with both diagonal εn and coupling Cn disorder.2 In addition,
there are short range correlations between the two.

This effective disorder acquires specific structure with two
distinct energy regimes. For low energy |E| < W/2, the cou-
plings Cn can vanish or diverge, resulting in nonperturbative
behavior. The probability distribution function (PDF) in this
case, f (y) of y = (εj,n − E)−1, is nonzero only at the tails,
|1/y + E| � W/2, where it is given by f (y) = 1/(Wy2). It
is similar to the Cauchy distribution for large arguments, with
Cauchy-like “heavy tails” decaying slowly as 1/y2, such that
its variance diverges. The PDFs for Cn and εn also have
this heavy tail. Modes in this energy range are primarily
composed of FBS and the nonperturbative behavior is due
to their macroscopic degeneracy when W = 0. In contrast,
the dispersive bands provide the dominant contribution for
high energy |E| > W/2, with all couplings Cn finite, and all
relevant PDFs lacking the above Cauchy-like tails.

Numerically, we diagonalize Eqs. (1)–(3) for a disordered
chain of finite size N with periodic boundary conditions30 and
obtain the modes ψν,n = {aν,n,bν,n,cν,n}, ν = 1,2, . . . ,3N . We
characterize mode behavior as a function of E using the
following measures:31 The participation ratio

P = 1/
∑

n

(|aν,n|4 + |bν,n|4 + |cν,n|4) (9)

measures the number of strongly excited sites. The second
moment

m2 =
∑

n

[(Xν − n)2|bν,n|2

+ (Xν − n − 1/2)2(|aν,n|2 + |cν,n|2)] (10)

is sensitive to the distance between the tails of the eigenmode,
here Xν = ∑

n[n|bν,n|2 + (n + 1/2)(|aν,n|2 + |cν,n|2)] is the
mode’s center of mass. The compactness index

ζ = P 2/m2 (11)

reveals how uniformly the eigenstate excites the volume it
occupies. We calculate the mean values of P , m2, and ζ for
each value of W by taking a sample of ∼100 000 modes divided
into 100 energy bins.

We also obtain the localization length ξ (asymptotic decay
rate of the eigenmode tails, ψν,n ∼ e−n/ξ ) by applying

ξ−1(E) = lim
N→∞

1

N

〈 N∑
n=1

ln bn+1

bn

〉
, (12)

where 〈·〉 denotes averaging over different realizations of
disorder.32

Figure 2 shows the results for different disorder strengths.
Indeed, the boundary |E| = W/2 (marked by vertical bars)
separates modes with very different properties. For high energy
|E| > W/2, we obtain compact, weakly localized modes with
properties similar to those of an ordinary weakly disordered
1D chain.

When the energy is low, |E| < W/2, the modes display
remarkably different properties: ξ , P , and m2 are orders of
magnitude smaller, suggesting much stronger localization.
However, the compactness index ζ is also very small,
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FIG. 2. (Color online) Mode properties: (a) mean localization
length ξ , (b) participation ratio P , (c) second moment m2, and (d)
compactness index ζ as a function of energy E for different disorder
strengths W = 0.5 [(r)ed], 1 [(b)lue], 2 [(g)reen], 4 [(m)agenta].
Statistical errors do not exceed the spot size. Vertical bars indicate
the cutoff energy |E| = W/2.

indicating sparse modes consisting of well-separated peaks,
completely different from conventional Anderson localized
modes. We obtain the power law ξ (W ) ∼ W−γ [Fig. 3(a)],
with surprising scaling γ = 1.30 ± 0.01 at E = 0, in contrast
to the usual γ = 2 in the dispersive bands. We further note that
this is clearly different from the value γ = 1 which is expected
for a 1D chain with Cauchy-distributed on-site energies.33–35

If we move slightly away from the flat band energy E �= 0,
we observe this anomalous exponent as long as W � |E|,
i.e., E lies within the disorder-broadened flat band. As W is
decreased further, there is a rapid crossover to the conventional
γ = 2 scaling. The other measures P , m2, and ζ similarly
display anomalous scaling at E = 0: For example, P ≈ 7
does not change at all with W . Thus, some measures suggest
localized modes (finite P ), while others suggest extended
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FIG. 3. (Color online) (a) Localization length ξ (W ) for low
(E = 0) and high (E = √

2) energy modes, following the power laws
ξ ∼ W−1.3 and ξ ∼ W−2, respectively. The E = 0.1 curve shows the
crossover between these laws at W ∼ |E|. ξ (E = 0) remains finite in
the gapped cases m = 0.5 (lower green curve) and m = 0.05 (upper
green curve). (b) Mode profile of a sparse (ζ = 0.1) low energy mode
W = 0.5, and the effective coupling |Cn| defined by Eq. (6).

states (m2 diverges). Hence the FBS display criticality in the
weak disorder limit.

Plotting the typical profile of a low energy mode in Fig. 3(b),
we observe exponential localization combined with strong
fluctuations in the amplitudes on the a and c sublattices.
These strong fluctuations are a signature of the heavy-tailed
effective disorder,36 and occur when the coupling Cn in Eq. (7)
is small. Between these points, bn stays remarkably constant.
Thus, one can view the low energy modes as combinations of
highly localized flat band components (the a, c spikes) whose
coupling together is mediated by a small, weakly localized
dispersive band component.

This coupling is frozen if the flat and dispersive bands
are separated by a gap, because the dispersive states near
E = 0 become strongly localized.37 We create a gap by
introducing equal and opposite mass terms at the a and c

sublattices by shifting the on-site potentials εa,n → εa,n + m

and εc,n → εc,n − m. The modified spectrum at W = 0 is
E(k) = 0,±√

m2 + 1 + cos k, which preserves the flat band,
while creating gaps of size m with the dispersive bands. We
plot ξ (W ) with a mass term m = 0.5 and m = 0.05 at energy
E = 0 in Fig. 3(a). For W � m, ξ converges to a constant
value. The modes freeze their localization length and resemble
normal Anderson modes. The localization length at W → 0
depends on the gap size m, which controls the localization
of dispersive states at E = 0. P , m2, and ζ also converge to
constants. Thus at small W the random potential introduces
hybridization and disorder in a balanced way for gapped FBS.
In return, in the absence of a gap the mixing with the DBS takes
over the effective disorder and is responsible for the critical
behavior of the low energy modes.

III. DYNAMICS

The critical mode properties are essential in understanding
the linear and nonlinear transport properties of the system.
In the following we consider the expansion of a flat band
excitation [Eq. (4)] initially localized to a single unit cell in
a moderately disordered (W = 1) system. We quantify the
spreading by calculating P and m2 at t = 400, which is long
enough for initial transients to die out. Repeating for many
realizations of disorder, we obtain distributions, which we
characterize via their mean, standard deviation, and typical
values. Results as a function of nonlinearity strength β are
plotted in Figs. 4(a) and 4(b).

With weak nonlinearity, P and m2 present heavy-tailed
distributions: The mean values significantly exceed the typical
values and are comparable to the standard deviation. In other
words, the fluctuations in the wave packet spreading are
large. Hence, even with moderate disorder strength, a strong
signature of the critical behavior in the weak disorder limit
persists. Furthermore, weak nonlinearity tends to amplify the
heavy-tailed nature of the spreading, increasing the mean more
than the typical value.

To understand this behavior, it is instructive to study the
dynamics of individual realizations. Most of the time, an
ordinary, diffusive expansion to a size on the order of a
localization length occurs. However, if highly sparse modes
such as the one shown in Fig. 3(b) are strongly excited, much
larger expansion driven by tunneling to distant sites occurs,
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FIG. 4. (Color online) (a) Participation ratio of a flat band excita-
tion after evolution for t = 400 as a function of nonlinearity strength
β. For each point we obtain 500 realizations of disorder, and show
the mean 〈P 〉 [(b)lue], standard deviation [(r)ed], and typical value
exp(〈ln P 〉) [(g)reen]. Error bars indicate 95% confidence intervals
obtained via bootstrap method. (b) Same, but second moment instead.
(c) Intensity In = |an|2 + |bn|2 + |cn|2 during linear propagation
when sparse modes are strongly excited. (d) Same, but linear scale.
In all panels, W = 1.

including the oscillation of energy back and forth between
well separated peaks in Figs. 4(c) and 4(d). In contrast to
conventional 1D lattices,38 these sparse modes are statistically
significant. This is the origin of the heavy tail in the spreading
behavior.

Above a threshold interaction strength β ≈ W/2, the
expansion grows significantly, and typical values of P,m2

approach their means, indicating the emergence of more
normal statistics. Thus, weak nonlinearity enhances the critical
behavior, but stronger nonlinearity suppresses it. Increasing β

further still, the expansion reaches a maximum, then starts to
decrease.

To explain these different regimes of nonlinearity, we
consider Eqs. (1)–(3) in the basis of eigenmodes of the linear
system ψν,n,31

iφ̇ν = Eνφν + β
∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗
ν1

φν2φν3 , (13)

where φν(t) is the complex amplitude of mode ν and I is the
overlap integral

Iν,ν1,ν2,ν3 =
∑

n

∑
α=a,b,c

α∗
ν,nα

∗
ν1,n

αν2,nαν3,n, (14)

with the summation over all unit cells and sublattices. I

determines the effective strength of coupling between different
modes.31 In the disorder-free limit, I can be calculated explic-
itly for a chain of size N . The coupling between dispersive
band modes is subject to the selection rule k′ + k1 − k2 − k3 =
2πn, where n is an integer, while the overlap between flat band
states vanishes because they all occupy different lattice sites.
Furthermore, the coupling between flat band and dispersive

states also vanishes unless some dispersive band states are
already excited. Therefore, a pure excitation of the flat band
will not spread at all, even in the presence of nonlinearity.

When disorder is introduced, these selection rules are
broken, so the coupling can become stronger. Nonlinearity then
introduces an additional energy scale that competes with the
disorder, an energy shift δEν ≈ sβIν,ν,ν,ν ≈ sβ/

√
P , where

s = |φν |2 is the occupation of a given mode. High energy
modes have diverging P in the limit of weak disorder, leading
to small shifts. On the other hand, the low energy modes with
P ∼ 7 can experience significant energy shifts.

With weak nonlinearity sβ < W/2, the nonlinear frequency
shift does not exceed the width of the low energy subspace.
Strong resonant interactions can only occur between low
energy modes. The expansion due to resonant tunneling shown
in Figs. 4(c) and 4(d) can either be enhanced or suppressed.38

Thus, fluctuations become more pronounced.
In the intermediate regime sβ > W/2, the nonlinear energy

shift exceeds the width of the low energy subspace. Strong
resonant energy transfer from low to high energy modes
is responsible for the enhanced spreading and growth of
P,m2: The high energy modes are not strongly localized.
Additionally, each flat band mode can transfer energy into
many dispersive band modes. Thus, a kind of self-averaging
can occur, which is responsible for the more normal spreading
statistics. Since s decreases, at some point it will tune out of
strong interaction with the dispersive band, leaving a flat band
component which remains strongly localized for potentially
long times.

For very strong nonlinearity the energy shift δE can exceed
the total bandwidth, leading to self-trapping. Thus, P and m2

reach a maximum and then start to decrease.
We illustrate these different regimes by presenting exam-

ples of propagation in Fig. 5. Here a single-peaked FBS is
strongly excited. Under weak nonlinearity there is no resonant

0 200 400
0

0.5

1

200 400

200

500

800 -10

-5

0

0

(a)

(c) t

n

log(In)

400
0

0.25

0.5

2000

500

520

510

In

n

200 400

200

500

800 -10

-5

0

0

(b)

t

n

log(In)

(d)

IN/2

β=0

β=2

β=8

t                                                  t

FIG. 5. (Color online) Effect of nonlinearity on spreading of
a single site excitation W = 1. (a) Linear propagation β = 0.
(b) Intermediate nonlinearity β = 2. (c) Strong nonlinearity β = 8.
(d) The intensity at the initially excited unit cell in all three cases.
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interaction with the dispersive bands and the wave packet
expansion is similar to the linear case in Fig. 5(a). In the
intermediate regime in Fig. 5(b), the expansion is driven by
an initial transfer of energy to the dispersive bands and we see
stronger spreading. With strong nonlinearity in Fig. 5(c) we
observe the formation of a self-trapped state, which irregularly
meanders between two quasistable positions. Energy is lost
during this motion, and it eventually becomes trapped at a “b”
sublattice site. We plot the intensity at the initially excited cell
for these three cases in Fig. 5(d)—observe how nonlinearity
leads to a rapid transfer of energy away, leaving behind a small
self-trapped component which persists for long times.

IV. DISCUSSION AND CONCLUSIONS

Flat band systems such as the diamond ladder are attracting
growing interest as a means of realizing exotic strongly
interacting phases of matter.39 While we have considered
in this paper a relatively simple tight-binding model, we
have verified in a number of other quasi-1D cases37 that our
results should be generic to any system with intersecting flat
and dispersive bands. Similarly, the emergence of different
dynamical regimes due to the competition between disorder
and nonlinearity should be a generic feature of other types of
interaction terms, so it would be interesting to extend recent
results on interacting bosons and fermions in the ideal diamond
chain23,24,27,28 to disordered systems.

There are a variety of settings in which this type of tight-
binding model may be realized. Recently structured etching
of microcavities has been used to fabricate 2D kagome lattice
structures with a flat band for exciton-polariton condensates.21

The same technique can also be applied to generate quasi-1D
lattices such as the diamond ladder. Another approach is to
use optical waveguide arrays, where a 1D flat band could
be introduced by generalizing a single bound state in the
continuum40 to a large collection of degenerate bound states,
and 2D flat band lattices (e.g., kagome41 or Lieb42) are also
accessible. Similar techniques can be applied using optical
traps for cold atoms23,43 and microwave resonator lattices.20

Flat band-induced localization in 2D was also studied44

and observed in magnetic field-induced Aharonov-Bohm
cages in superconducting wire networks45 and AlGaAs-GaAs
heterojunctions.46 In this case, applying a magnetic field
provides an alternative way to introduce a gap between the
flat and dispersive bands.

To summarize, the diamond ladder presents a test bed
for exploring the interplay between macroscopic degeneracy,
disorder, and nonlinearity. We showed how the mixing between
macroscopically degenerate flat band modes and a small
number of weakly localized modes of intersecting dispersive
bands results in low energy modes with highly unusual
properties. Consequently, the spreading of low energy wave
packets becomes sensitive to nonlinearity or interactions.
Therefore, our results provide ideas for future studies in
higher lattice dimensions and they highlight the importance
of nonlinear interactions and many-body quantum dynamics
for weakly disordered flat band systems.
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