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Although arsenic (As) has been known since ancient times as
a powerful toxin, it was not before the end of the 20th century
that the occurrence of As originating from natural sources has been
reported in groundwater in different parts of the globe [1–8]. How-
ever, the problem did not receive much global attention until the
1980s when the biggest As calamity in the world was first reported
in the Bengal delta in Southeast Asia [9–11]. This was  the starting
point for an exponentially widespread scientific, policy and pub-
lic interest regarding environmental contamination by As. Until
now, it has been reported that there are over 70 countries around
the world where elevated As levels have impacted the ecosystem,
freshwater resources and human health [12–16]. The source of As,
affecting large areas throughout the globe, are predominantly of
geogenic origin, whereas anthropogenic As may be of local rele-
vance. Mining includes the influence from both components as As
is geogenic but released through anthropogenic activities affect-
ing water resources covering large areas. From the ingestion of
As-contaminated water alone, over 200 millions of people are esti-
mated to be at risk of As exposure.
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Understanding the ecotoxicological effects of As in the environ-
ment is primordial to mitigating its deleterious effects on ecological
and human health. Interaction of As with organisms is the precon-
dition of quantifying As risk exposure. In order to understand how
As might affect organisms at individual and population levels we
should admit that As does not act as an individual form but interacts
with other physical and biological stressors (e.g., trace metals and
organic contaminants). Therefore interactions of As with different
stressors are of significant interest.

This special section focuses on the ecotoxicology of As and
its interfacial processes between the geosphere, hydrosphere and
biosphere. It constitutes a multidisciplinary scientific endeavor
that is problem-driven and aiming to assist society by provid-
ing up-to-date knowledge and advance the understanding of the
adverse effects that As has on the environment. Through the wide
range of topics covered in this special section it provides a  holis-
tic approach for interpreting human exposures to groundwater
derived As. This includes pathways of predominantly geogenic As,
from its occurrence in rocks and mineral forms, subsequent release
due to biogeochemical processes – which are partly catalyzed by
microbial activities – into soil and aqueous environments such as
hydrosphere, pedosphere, and biosphere, and ultimately transfer
to humans through drinking and ingestion of rice and vegetables.

Section I of this special section has eight articles on the topic
“Arsenic and the Geo- and Hydro-sphere Interface”. These articles
discuss the primary source and occurrence of As in rocks and
minerals and mechanism of its release into ground- and surface-
water (and vice versa, i.e., sequestration of dissolved As by mineral
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phases), and processes that control mobility and speciation of
As in groundwater and soil environments. Arsenic release from
crystalline rocks is discussed by Pili et al. [17], whereas Basu
and Schreiber [18] dealt specifically with As mobilization from
arsenopyrite weathering. Banning et al. [19] addressed the impact
of changing redox conditions on As mobility. In the following arti-
cles, Bhowmick et al. [20] and Ormachea et al. [21] indicated how
different geogenic and anthropogenic activities, including min-
ing, can mobilize/sequester As in the groundwater environment
using examples from West Bengal (India) and Poopó basin (Bolivia),
respectively. Neidhart et al. [22] showcased their research results
on how groundwater extraction has impacted As concentration dis-
tributions in groundwater of West Bengal (India). The article by
Bundschuh et al. [23] addresses geochemical processes related to
geothermal activity which showed potential impacts on freshwa-
ter resources in Western Turkey. The last article of this section
by Alarcón-Herrera et al. [24] addresses the co-occurrence of As
and fluoride in semi-arid regions of Latin America and they pro-
vided a detailed assessment of genesis, mobility and remediation
options.

Section II “Geo/Hydrosphere – Organic Matter and Microbes
Interface” addresses the role of organic matter and microbial
assisted geochemical processes on the mobilization of As in the
aqueous environment. Al Lawati et al. [25] and Liu et al. [26] pre-
sented their research results on how organic matter influences As
mobility in a reduced coastal aquifer and mud  volcanoes, respec-
tively, both study areas are located in southwestern Taiwan. The
last two articles by Islam et al. [27] and Bahar et al. [28] showcased
research outcomes on biochemical behaviors of As through under-
standing of mineral–microbe interactions in soil and groundwater
environments.

Section III “Arsenic Exchange Processes at Geosphere-Biosphere
interface” comprises five articles dealing with bioavailability and
bioaccessibility of As from soil and water to plant species. Tou-
jaguez et al. [29] evaluated As bioaccessibility in mine tailings to
obtain an improved health risk estimate through utilization of min-
eralogical techniques. Karczewska et al. [30] examined As solubility
and its uptake by two grass species grown in strongly polluted soils
from Poland. Usman et al. [31] investigated heavy metal extractabil-
ity in As and Pb contaminated soils. Quazi et al. [32] showcased their
research results on As bioavailability and potential lifetime cancer
risk due to chronic As exposure in a greenhouse setting. The last
article of this section by Srivastava et al. [33] isolated and character-
ized As resistant bacteria from As contaminated soils and evaluated
the As phytoremediation potential of Indian mustard plant [Brassica
juncea (L.) Czern. Var. R-46].

Section IV “Arsenic in the Biosphere” comprises topics of As
exposure assessment, toxicity, metabolism, propagation in the food
chain and uptake by human through ingestion. Chakraborti et al.
[34] assessed the environmental (groundwater, soil and vegeta-
bles) and human biomarker As levels to determine health effects
in a community level where arsenicosis cases were previously
reported. Rahman et al. [35] determined the quantity of As and
other elements ingested through drinking water and vegetables
by adult members in Noakhali district, Bangladesh for exposure
assessments. Phan et al. [36] also examined As exposure through
estimation of daily intake and daily dose of inorganic As from food
consumption in three provinces in Mekong River basin of Cambo-
dia. O’Neill et al. [37] determined the level of dietary intake of As
through consumption of traditionally cooked rice by local popu-
lations in two villages of Cambodia. Chen et al. [38] developed
receptor-specific risk maps toward management of As contam-
inated regions in Taiwan. Bhattacharya et al. [39] carried out a
greenhouse pot experiment to investigate the uptake and distribu-
tion of As in different fractions of rice plant in West Bengal (India). Li
et al. [40] investigated the effects of arbuscular mycorrhizal fungi

(AMF) on the temporal variation of speciation and accumulation
of As in rice plants under different growth periods subjected to
flooded conditions. Schneider et al. [41] further studied AMF  in min-
ing impacted As contaminated areas in Brazil where they observed
an inverse relationship between As content in soils and the mycor-
rhizal colonization, density of spores and species richness. Chan
et al. [42] showcased their research results on the role of AMF  in
As uptake by upland rice and further reported the effect of AMF
on the yield. The last article of this section by Dave et al. [43]
examined the contrast in tolerance of rice genotypes exposed to
various levels of As(III) and As(V). They further examined some
contrasting As responsive genotypes for As accumulation, antioxi-
dant properties and amino acid response at different As exposure
levels.

Section V “Hydrosphere – Human Health” addresses the expo-
sure risks and toxic effects of As on human health. The article by Lin
et al. [44] highlighted the toxic effects of drinking As contaminated
water on mortality of liver cancer in Blackfoot disease endemic
areas and other areas in Taiwan. Wang et al. [45] compared multiple
stressors on bladder cancer risks to humans through hospital-
based case–control study in Taiwan. Zhang et al. [46] developed
a statistical model to predict locations of risk areas with As con-
centration above 50 mg L1 in Shanxi Province, Northern China.
Zhang et al. [47] studied the impact of long-term exposure to low-
level As in drinking water on blood pressure, pulse pressure and
mean arterial blood pressure in a study population in the Hetao
plain of Inner Mongolia. Liu et al. [48] investigated the health
status of a local population based on the analysis of biomarkers
to gain an insight of the effectiveness of the water intervention
over a longer time period upon chronic As exposure in Xinjiang,
PR China.

Section VI “Treatment” comprises of five articles that used
indigenous materials to remove As from drinking water. Majumder
et al. [49] explored the applicability of natural citrate sources from
tomato in order to efficiently remove As from drinking water fol-
lowing solar radiation technique that developed by a group of
researchers from ETH, Switzerland [50]. Maiti et al. [51] moni-
tored the performance of two household filters made of indigenous
locally available materials laterite (sometimes referred as ferralite,
see Bhattacharyya et al. [52]) for in situ removal of As. Labastida
et al. [53] identified the best indigenous limestone to create a  pas-
sive treatment system to efficiently treat As and heavy metals in
acidic leachates in Zimapán, Mexico. Lopes et al. [54] characterized
the red mud  and phosphogypsum collected from a mining site in
Brazil to improve As retention capacity. Bujňáková et al. [55] exam-
ined the improvement of As sorption behavior on changing surface
and structural properties of natural magnetite by mechanical acti-
vation.

Section VII “New Advances in Arsenic Research” includes
five articles. Parsons et al. [56] developed a field-portable sen-
sor to quantify As in soils. Liu and Cai [57] showcased their
research on testing SEC–UV–ICP-MS method capable of directly
determining DOM-bound As. Ruppert et al. [58] developed an
appropriate sampling technique to qualitatively identify and char-
acterize the volatile organoarsenical compounds released from the
soil–rabbitfoot grass (Polypogon monspeliensis)  system. Alava et al.
[59] tested HPLC-ICP-MS technique to monitor the determining fac-
tor on the metabolic potency of human gut microorganisms toward
As. The last article of this issue by Schneider et al. [60] investigated
As interactions in plant–soil systems using microscopic techniques.

We hope that these selected special section articles covering
wider subjects of ‘arsenic ecotoxicology’ would be useful to the
wider scientific community and provide up-to-date knowledge
and understanding towards mitigating the problem of As exposure
affecting millions of populations worldwide (especially in south-
east Asia).
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