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TURBULENT MEASUREMENTS IN A SMALL SUBTROPICAL ESTUARY 

WITH SEMI-DIURNAL TIDES 
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Abstract: Since predictions of scalar dispersion in small estuaries can rarely be predicted accurately, new 

field measurements were conducted continuously at relatively high frequency for up to 50 hours (per 

investigation) in a small subtropical estuary with semi-diurnal tides. The bulk flow parameters varied in time 

with periods comparable to tidal cycles and other large-scale processes. The turbulence properties depended 

upon the instantaneous local flow properties. They were little affected by the flow history, but their structure 

and temporal variability were influenced by a variety of parameters including the tidal conditions and 

bathymetry. A striking feature of the data sets was the large fluctuations in all turbulence characteristics 

during the tidal cycle, and basic differences between neap and spring tide turbulence. 
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INTRODUCTION 

In natural estuaries, turbulent mixing is critical to sediment transport, release of nutrient-rich wastewater into 

ecosystems and the water quality effects of storm-water runoff during flood events. Relatively little 

systematic research has been conducted on the turbulence characteristics in natural estuarine systems 

particulary in small systems. Past measurements were conducted typically for short-periods, or in bursts, 

sometimes at low frequency : e.g. SHIONO and WEST (1987), KAWANISI and YOKOSI (1994), HAM et 

al. (2001), VOULGARIS and MEYERS (2004). Herein the turbulence characteristics of a small subtropical 

estuary with semi-diurnal tides are examined with measurements being obtained continuously at relatively 

high frequency throughout a tidal cycle. The detailed results highlight the large fluctuations in all turbulence 

characteristics during the tidal cycle, and its temporal variability. 
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TURBULENCE MEASUREMENTS IN A SMALL SUBTROPICAL ESTUARY 

A series of detailed turbulence field measurements were conducted in a small estuary of Eastern Australia 

with a semi-diurnal tidal regime (Table 1). The estuarine zone was 3.8 km long, about 1 to 2 m deep mid-

stream (Fig. 1). With a narrow, elongated and meandering channel (CHANSON et al. 2005a), the estuary is a 

drowned river valley (coastal plain) type with a small, sporadic freshwater inflow, a cross-section which 

deepens and widens towards the mouth, and surrounded by extensive mud flats. Figure 1 includes some 

surveyed cross-sections, in which the vertical elevations are related to the Australian Height Datum (AHD). 

The mean sea level is also shown. Although the tides are semi-diurnal, the tidal cycles have slightly different 

periods and amplitudes indicating that a diurnal inequality exists. Table 1 summarises the seven field studies 

conducted between 2003 and 2006 during which a range of field conditions were tested: tidal conditions 

from neap tides (Studies E6 & E7) to spring tides (Studies E3 & E5), and different bathymetry from mid-

estuary (Studies E5 & E6) to upper estuary (Study E7). 

Turbulent velocities were measured with acoustic Doppler velocimetry : i.e., a Sontek™ UW ADV (10 

MHz) equipped with a 5 cm down-looking three-component sensor, and a Sontek™ micro-ADV (16 MHz) 

with a 5cm side looking two-component head (Table 1, column 4). The velocity measurements were 

performed continuously at high frequency for 8 to 50 hours during various tide conditions (Table 1, columns 

5 & 6). A thorough post-processing technique was developed and applied to remove electronic noise, 

physical disturbances and Doppler effects (CHANSON et al. 2005b). The field experience demonstrated that 

the gross ADV signals were unsuitable, and led often to inaccurate time-averaged flow properties. Herein 

only post-processed data are discussed. 

The post-processed data sets included the three instantaneous velocity components Vx, Vy and Vz where x is 

the longitudinal direction positive downstream, y is the transverse direction positive towards the left bank 

and z is the vertical direction positive upwards. The turbulent velocity fluctuation was defined : VVv   

where V was the instantaneous (measured) velocity component and V  was the variable-interval time 

average (VITA) velocity. A cut-off frequency was selected with an averaging time greater than the 

characteristic period of fluctuations, and smaller than the characteristic period for the time-evolution of the 

mean properties. The selection of the cut-off frequency was derived from a sensitivity analysis. Herein all 

turbulence data were processed using samples that contain 5,000 data points (200 s) and calculated every 10 

s along the entire data sets. The turbulence analysis yielded the first four statistical moments of each velocity 

component, the tensor of instantaneous Reynolds stresses, and the statistical moments of the tangential 

stresses. An auto-correlation analysis yielde the Eulerian dissipation and integral time scales, E and TE 

respectively, for each velocity component. Herein E was calculated using the method of HALLBACK et al. 

(1989) extended by FRANSSON et al. (2005). Turbulence statistics were not evaluated when more 20% of 

the 5,000 data points were corrupted/repaired during the ADV data post-processing. 
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TURBULENCE PROPERTIES IN A SMALL ESTUARY 

Bulk flow properties 

The bulk parameters including the water depth and time-average longitudinal velocity were time-dependant, 

varying with periods comparable to tidal cycles and other large-scale processes. This is illustrated in Figures 

2 and 3 showing the water depth, water conductivity and time-averaged longitudinal velocities xV  recorded 

mid-estuary. Figure 2 presents the water depth and conductivity data recorded mid-estuary during neap tide 

conditions. The results exhibit some tidal asymmetry during a 24 hours 50 minutes period with a smaller 

(minor) tidal cycle followed by a larger (major) tidal amplitude. The water conductivity variations were 

driven primarily by the ebb and flood tides. The moderate range of specific conductivity seen in Figure 2 was 

typical of neap tide conditions in the absence of freshwater runoff. 

Figure 3 presents xV  in the middle of the deepest channel during neap and spring tides. For all field studies 

at mid-estuary, the largest velocity magnitude occurred just before and after the low tide, with the flood 

velocities always larger than ebb velocities. KAWANISI and YOKOSI (1994) observed similarly maximum 

flood and ebb velocities around low tide and larger flood velocities, in an estuarine channel in Japan. Some 

multiple flow reversal events around high tides and some long-period velocity oscillations around mid-tide 

may be noted. Figure 3A shows an example of long-period velocity oscillations during the flood tide 

between t = 105,000 and 125,000 s where the time t is counted since midnight (00:00) on the first day of the 

study. Figure 3B presents an illustration of multiple flow reversals about high-tide between t = 50,000 and 

65,000 s. These low-frequency velocity oscillations were generated by some resonance caused by the tidal 

forcing interacting with the estuary topography and the outer bay system (TREVETHAN et al. 2006). These 

effects were more noticeable during neap tide conditions and seemed more pronounced in the upper estuary. 

 

Turbulence properties 

The field observations showed systematically large standard deviations of all velocity components at the 

beginning of the flood tide for all tidal cycles. Standard deviations of the longitudinal velocity vx' are shown 

in Figure 4 for two tidal cycles in spring and neap tides, presenting the magnitude of vx' from a low water 

(LW1) to the next low water (LW2). The data are presented in a circular plot where the radial co-ordinate the 

turbulent property (herein vx'), and the angular co-ordinate is the time relative to the next low water. From 

the first low water, the time variation of the data progress anticlockwise until the next low water. The high 

and low waters are indicated. 

The standard deviations of all velocity components were two to four times larger in spring tides than during 

neap tides (Fig. 4). vx' was systematically larger during the flood tide than during the ebb tide, while there 

were significant fluctuations in velocity standard deviations during the entire tidal cycle. KAWANISI and 

YOKOSI (1994) observed similarly larger measured velocity standard deviations during flood tide in a tidal 

channel in Japan. The horizontal turbulence ratio vy'/vx' was approximately equal to 1 for spring and neap 
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tide conditions and larger than laboratory observations in straight prismatic rectangular channels vy'/vx' = 0.5 

to 0.7 as reported in NEZU and NAKAGAWA (1993). The vertical turbulence ratio vz'/vx' was similar to the 

observations of SHIONO and WEST (1987) and KAWANISI and YOKOSI (1994) in estuaries, and of 

NEZU and NAKAGAWA (1993) and XIE (1998) in laboratory open channels. vz'/vx' was approximately 

half of the horizontal turbulence intensity vy'/vx', implying some turbulence anisotropy. 

The skewness and excess kurtosis, which gave some information on the temporal distribution of the turbulent 

velocity fluctuation around its mean value, of all velocity components varied with time significantly during 

each tidal cycle. The normalised third (skewness) and fourth (excess kurtosis) moments of the velocity 

fluctuations appeared to be within the range -0.6 to +0.6, and -1 to +2 respectively, close to the observations 

of SHIONO and WEST (1987) in an estuary where velocity skewness and excess kurtosis were observed 

within the range -0.5 to +0.5, and -4 to +4 respectively. They were also comparable with the LDV data of 

NIEDERSCHULTZE (1989) and TACHIE (2001) in developing turbulent boundary layers in laboratory 

channels. 

The tangential Reynolds shear stresses varied with the tide during all field works. Figure 5A illustrates the 

trend for two fields studies by showing the time-averaged Reynolds stress zx vv  as a function of xV . The 

turbulent stress zx vv  was predominantly positive during the flood tide and negative during the ebb tide 

(Fig. 5A). The present trend was consistent with the data of OSONPHASOP (1983), KAWANISI and 

YOKOSI (1994) and HAM et al. (2001) in tidal channels. The negative correlation between zx vv  and 

xV  was also consistent with traditional boundary layer results (XIE 1998, TACHIE 2001). The magnitudes 

of the time-averaged tangential Reynolds stresses were at least an order of magnitude larger during spring 

tides than those for neap tide conditions. The larger magnitude of Reynolds shear stresses derived from the 

increased tidal forcing. 

The standard deviations of the tangential Reynolds stresses increased with increasing xV . The magnitude of 

the standard deviations of all tangential Reynolds stresses were one order of magnitude greater in spring tides 

than those observed at neap tides (Fig. 5B). Figure 5B presents some data for a major tidal cycle, during the 

same field study data shown in Figure 5A. Lastly the results showed that the probability distribution 

functions of  vx vz were not Gaussian. 

 

Turbulence time scales 

The integral time scale of a velocity component is a measure of the longest connection in the turbulent 

behaviour of that velocity component. Some time-variations of longitudinal integral time scales TEx are 

shown in Figure 6A for a major tidal cycle during neap and spring tide conditions. In Figure 6A, the axes 

have a logarithmic scale and the units are milliseconds. The integral time scales of longitudinal velocity TEx 

were larger during the flood tide than during the ebb tide (Fig. 6A). For that data set, the horizontal integral 
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time scales were typically between 0.4 and 2 s at 0.2 m above the bed and between 0.06 and 1 s at 0.4 m 

above the bed. 

The dissipation time scale E is a measure of the most rapid changes that occur in the fluctuations of a 

velocity component and of the smaller eddies that are primary responsible for the dissipation of energy. 

Figure 6B shows some time-variations of longitudinal dissipation time scales Ex for a major tidal cycle 

during neap and spring tide conditions. Note that the axes have a logarithmic scale and the units are 

microseconds. The dissipation time scale data seemed independent of the tidal phase (Fig. 6B). They were 

typically about 0.002 to 0.02 s for all field studies, independent of the tidal conditions, vertical elevations 

and longitudinal sampling location. Such dissipation time scales were consistently smaller than the time 

between two consecutive samples: e.g., 1/Fscan = 0.04 s for Fscan = 25Hz. The findings showed that a high-

frequency sampling is required to capture a range of eddy time scales relevant to the dissipation processes, 

and that the sampling rates must be at least 20 to 50 Hz. 

The analysis of integral and dissipation time scales of all velocity components showed no obvious trend with 

tidal phase for both neap and spring tide conditions. During the present field studies, the dimensionless 

transverse and vertical integral time scales were respectively: TEy/TEx ~ 1 and TEz/TEx ~ 2 to 3. In a tidal 

channel in Southern Australia, OSONPHASOP (1983) observed TEy/TEx ~ 1.7 and TEz/TEx ~ 2.2.  

 

CONCLUSION 

The present field data were collected in a small subtropical estuary corresponding to a small drowned river 

valley (coastal plain) type with a limited, sporadic freshwater inflow and a cross-section which deepens and 

widens towards the mouth. The results illustrated the significant influence of tidal forcing for this type of 

small estuary. During spring tides, the turbulent velocity fluctuations and Reynolds stress fluctuations were 

much larger than during neap tide conditions with a more asymmetrical response. Some turbulent properties 

were similar to classical turbulent boundary layer results, including the vertical turbulence ratio vz'/vx', the 

skewness and excess kurtosis of the velocity components, and time-averaged tangential stress data. Other 

results differed from classical boundary layer properties, including the horizontal turbulence intensity vy'/vx', 

while the probability distribution functions the turbulent stresses were not Gaussian. Further multiple flow 

reversals were observed at high waters, most noticeably during neap tides and in the upper estuary. 

Continuous turbulent velocity sampling at relatively high-frequency allowed a characterisation of the 

turbulence field and its variations with time. A striking feature of the present data sets was the rapid and 

large fluctuations in all turbulence characteristics during the tidal cycle. This was rarely documented in 

previous studies, but an important characteristic of the present study is the continuous high frequency 

sampling over relatively long periods. The findings showed that the turbulence properties, and integral time 

and length scales should not be assumed constant in a small estuary. The present results show in particular a 

different response of small subtropical estuaries from that observed in larger estuaries. 
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Table 1 - Turbulence field measurements at Eprapah Creek QLD, Australia 

 

Ref. Dates Tidal 
range 
(m) 

ADV 
system(s) 

Sampling 
rate (Hz) 

Sampling 
duration 

Sampling volume 

(1) (2) (3) (4) (5) (6) (7) 
E1 4/04/03 1.84 10 MHz 25 9  25 

min 
AMTD 2.1 km, 14.2 m from left 
bank, 0.5 m below surface. 

E2 17/07/03 2.03 10 MHz 25 8 hours AMTD 2.0 km, 7.7 m from left 
bank, 0.5 m below surface. 

E3 24/11/03 2.53 10 MHz 25 7 hours AMTD 2.1 km, 10.7 m from left 
bank, 0.5 m below surface. 

E4 2/09/04 1.81 10 MHz 25 6 & 3 
hours 

AMTD 2.1 km, 10.7 m from left 
bank, 0.052 m above bed. 

E5 8-9/03/05 2.37 10 MHz 25 25 hours AMTD 2.1 km, 10.7 m from left 
bank, 0.095 m above bed. 

E6 16-
18/05/05 

1.36 10 MHz & 
16 MHz 

25 49 hours AMTD 2.1 km, 10.7 m from left 
bank, 0.2 & 0.4 m above bed. 

E7 5-7/06/06 1.58 10 MHz & 
16 MHz 

25 & 
50 

50 hours AMTD 3.1 km, 4.2 m from right 
bank, 0.2 & 0.4 m above bed. 

 

Note: AMTD: Adopted Middle Thread Distance measured upstream from the river mouth. 
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FIGURE CAPTIONS 

Fig. 1 - Sketch of Eprapah Creek estuarine zone and surveyed cross-sections 

 

Fig. 2 - Measured water depth and water conductivity during neap tide conditions (field work E6) 

 

Fig. 3 - Time-averaged longitudinal velocity Vx
—

 (positive downstream) and water depth as functions of time 

during a full tidal cycle - Legend: [—] time-averaged longitudinal velocity (cm/s); [—] water depth at site 

2B. 

(A) Time-averaged longitudinal velocity data collected at 0.1 m above the bed during spring tides (study E5) 

(B) Time-averaged longitudinal velocity data collected at 0.4 m above the bed during neap tides (study E6) 

 

Fig. 4 - Standard deviations of the longitudinal velocity vx' (cm/s) during a major tidal cycle in spring and 

neap tide conditions : [•] field study E5 (spring tide) ADV with sensor at 0.1 m above bed, and [•] field study 

E6 (neap tide) with ADV sensor at 0.4 m above bed 

 

Fig. 5 - Tangential Reynolds stress vx vz during spring and neap tide conditions (field works E5 and E6 

respectively) - Legend: [•] field work E5, [•] field work E6 

(A) Time-averaged Reynolds stress vx vz
——

 as a function of time-averaged longitudinal velocity 

(B) Standard deviations of tangential Reynolds stress ( vx vz)' (Pa) during a major tidal cycle 

 

Fig. 6 - Longitudinal turbulent time scales during a major tidal cycle for neap and spring tide conditions : [•] 

field study E5 (spring tide) ADV with sensor at 0.1 m above bed, and [•] field study E6 (neap tide) with 

ADV sensor at 0.4 m above bed - The axes have a logarithmic scale 

(A) Integral time scale TEx (units: ms) 

(B) Dissipation time scale Ex (units s) 
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Fig. 1 - Sketch of Eprapah Creek estuarine zone and surveyed cross-sections 
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Fig. 2 - Measured water depth and water conductivity during neap tide conditions (field work E6) 
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Fig. 3 - Time-averaged longitudinal velocity Vx
—

 (positive downstream) and water depth as functions of time 

during a full tidal cycle 

Legend: [—] time-averaged longitudinal velocity (cm/s); [—] water depth at site 2B. 

(A) Time-averaged longitudinal velocity data collected at 0.1 m above the bed during spring tides (study E5) 
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(B) Time-averaged longitudinal velocity data collected at 0.4 m above the bed during neap tides (study E6) 
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Fig. 4 - Standard deviations of the longitudinal velocity vx' (cm/s) during a major tidal cycle in spring and 

neap tide conditions : [•] field study E5 (spring tide) ADV with sensor at 0.1 m above bed, and [•] field study 

E6 (neap tide) with ADV sensor at 0.4 m above bed 
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Fig. 5 - Tangential Reynolds stress vx vz during spring and neap tide conditions (field works E5 and E6 

respectively) - Legend: [•] field work E5, [•] field work E6 

(A) Time-averaged Reynolds stress vx vz
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(B) Standard deviations of tangential Reynolds stress ( vx vz)' (Pa) during a major tidal cycle 
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Fig. 6 - Longitudinal turbulent time scales during a major tidal cycle for neap and spring tide conditions : [•] 

field study E5 (spring tide) ADV with sensor at 0.1 m above bed, and [•] field study E6 (neap tide) with 

ADV sensor at 0.4 m above bed - The axes have a logarithmic scale 

(A) Integral time scale TEx (units: ms) (B) Dissipation time scale Ex (units s) 
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