
1

Fast prototyping and deployment of Context-Aware
Smart Outdoor Environments

Pouyan Ziafati and Fulvio Mastrogiovanni and Antonio Sgorbissa

Abstract—The article describes a tool for the fast prototyping
and deployment of context-aware applications, in particular to
welcome visitors in urban areas.

The system has been conceived to guarantee continuous access
to everybody, everywhere, at any time, and therefore it does not
rely on any special device to connect visitors to the intelligent
environment. In fact, we assume that visitors are equipped with
low-end mobile phones embedded with bluetooth technology,
which provide approximate positioning information. In spite of
this, the system must be able to assess the current context
in terms of user location, preferences, current activity, and to
suggest city-tours and activities which meets the most the visitor’s
expectations.

The article shows how, basing on Google maps API and OWL-
DL ontologies, the rapid prototyping and rapid deployment of
outdoor context-aware applications based on bluetooth messaging
and positioning information can be achieved.

I. INTRODUCTION

Context-awareness is an important aspect of smart environ-
ments, enabling them to ubiquitously gather and use context
information to seamlessly provide the most relevant services to
users. Context-awareness increases the richness of communi-
cation in human-computer interaction and enables adaptability
according to the current state of the environment, hence
resulting in more usability and effectiveness of applications.
Specially in outdoor smart environments in which the user’s
context is changing rapidly, the automatic adaptation of the
system’s behaviour to the current context is highly desirable.
In the most cited definition in the literature [1] context is
defined as “any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between a user and
an application, including the user and applications themselves”
and context-awareness is defined as “using context to provide
relevant information and / or services to the user, where
relevancy depends on the user’s task”.

Context-awareness is an active area of research in pervasive
and mobile computing [10], [11], [12], [13], and several out-
door context-aware systems, specially in the domain of tourist
city guide, have been developed during the last few years.
However, most of these systems mainly focus on applications
rather than context-awareness technology aspects and utilize
context information in an ad-hoc manner. A survey of a
number of context-aware tourist guide systems [2] shows that

P.Ziafati and F. Mastrogiovanni and A. Sgorbissa are with the Department
of Communication, Computer and System Sciences (DIST), University of
Genova, Via Opera Pia 13, 16145, Genova, Italy; e-mail: pziafati@gmail.com,
{fulvio.mastrogiovanni, antonio.sgorbissa}@unige.it

these systems are weak with respect to standardization, re-
usability, extensibility and interoperability. Moreover they do
not provide a good support for: a) fully utilization of time
and history context data; b) combining context data to acquire
higher level context information; c) dynamic adaptation of
system functionalities; d) push based access to context data;
e) incorporating external context information.

The general advantages of advanced knowledge represen-
tation and reasoning techniques, such as Ontology-based and
rule-based approaches, in developing context-aware applica-
tions have been already recognized by the research community
[3], [14]. Formal specifications of these techniques such as
their knowledge representation expressiveness and reasoning
capabilities are well defined in theories. However, to fully
explore the applicability of these techniques for developing
context-aware applications, their advantages and limitations
should be evaluated against real world scenarios. Moreover,
aside from some issues such as scalability, we believe that
one important reason why such techniques are not widely used
for developing real world context-aware applications is the
big gap which exists between knowledge engineering experts
who develop context-aware applications and non-technical
domain experts who are deploying these systems in their
specific application domains. User-friendly tools are needed to
allow non-technical domain experts to configure and extend
the context-aware functionalities of the system and test its
behaviour in different situations before the actual deployment.
Bridging this gap by providing such tools would enable and
encourage a wider use of context-awareness techniques in a
wider area of application domains.

Another issue in developing context-aware smart outdoor
environments is a lack of suitable prototyping tools and simu-
lation frameworks to be used in the development phase, testing
and rapid prototyping of such systems. In many context-aware
smart outdoor environment systems, such as context-aware
outdoor tourist guides, application scenarios are considered in
a vast geographical areas, comprising embedded and mobile
sensors and actuators, as well as mobile users. Therefore the
design and development of software for such systems without
simulation and rapid prototyping tools are highly costly and
time consuming.

This paper addresses the above issues and provides design
methodologies and software tools for rapid prototyping and
development of context-aware smart outdoor environments.
The main contribution of our work is two-fold.

First we have designed and developed a Context Mod-
ule which represents context information in the OWL-DL

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/19488209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

ontology language1 and utilizes semantic web rule lan-
guage(SWRL)2 and Semantic Query-Enhanced Web Rule Lan-
guage(SQWRL) [4] for context reasoning and querying. OWL-
DL and its associated rule languages, SWRL and SQWRL,
have been used in developing other context-aware applications
before [5], [6], [7], [8], [9]. However, those systems do not
provide many details about using these technologies, and do
not discuss the related benefits and limitations that have been
faced during development. On the other hand, we will present
benefits and limitations of these technologies in more details,
by considering a complex scenario and discussing about dif-
ferent issues related to context modelling and reasoning using
these techniques.

Our second contribution is providing a tool for rapid pro-
totyping and development of context-aware smart outdoor
environments, most notably the development of an interactive
simulation software that can be used both for design and
simulation of such systems. To this end, we will show how
different existing technologies such as Google map API, and
Protégé ontology editor and API can be leveraged to enable
the rapid development and prototyping of powerful context-
aware smart outdoor environment applications with high-level
context representation and reasoning capabilities. As a case
study, we consider the design of an outdoor tourist guide and
present a proof of concept prototype application which is used
to explain and evaluate our approach.

The paper is organized as follows: Section II presents the
tourist guide case study. Section III describes the Context
Module. Section IV discusses about different challenges of
using OWL-DL and its corresponding rule languages for
developing context-aware systems. Section V presents the
simulator and the usability test of the system. Finally, Section
VI is devoted to conclusions.

II. CASE STUDY: A CONTEXT-AWARE OUTDOOR TOURIST

GUIDE

To describe and evaluate our approach, we consider a case
study which has been fully developed and tested in a simulated
environment, i.e., a context-aware outdoor tourist guide. The
system is aimed to provide context-aware information to
tourists in an urban area. We assume that tourists are equipped
with bluetooth-enabled mobile devices (e.g., mobile phones),
and that a number of bluetooth beacons are deployed in the
environment in order to recognize the presence of mobile
devices held by tourists and communicate with them within a
short range (≈ 10 meters). A bluetooth beacon, called agent
in our scenario, can be fixed in a location of interest or even
embedded in a mobile robot, and it is referred to as a beacon
or a robot accordingly.

The basic idea is to use short-range bluetooth communica-
tion between mobile phones and agents deployed in places of
interest (close to churches, museums, shops, road-junctions,
etc.) for two purposes.

• Localize tourists. GPS, even when available on mobile
phones, cannot be used in the narrow streets of old

1http://www.w3.org/TR/owl-guide
2http://www.w3.org/Submission/SWRL/

Fig. 1. Walking directions.

towns because of satellite occlusions. However, short-
range communication can be used for this purpose very
effectively: when a mobile phone is detected by an agent,
the tourist is necessarily in the neighbourhood of the
agent.

• Sending messages to tourists. When a tourist is within
communication range, the agent can send one or more
messages to the mobile phone, whose content can include
text and pictures and can vary depending on the context.

Then, the system provides the following services.

• Each agent provides location-aware and customized in-
formation about that place (e.g., the history of a church
or a square, nearby restaurants and night–clubs, etc.,
customized to a tourist language, age, etc.). Robots are
mobile and can present different locations over time.

• Each tourist can choose to follow a specific tour such as
an artistic tour, historic tour, mystery tour, shop tour, etc.
Each tour is defined as an ordered sequence of locations
(i.e., corresponding to agents). When following a tour,
in every location, the system provides the tourist with
walking directions towards the location to visit next.

• The system provides a context-aware advertisement ser-
vice, in which advertisements are delivered to the right
tourists in the right locations at the right times.

As an example, Figure 1 shows an hypothetical message
sent to a tourist which is walking along the mystery tour.
When the tourist is within a communication range, the agent
sends a message which includes a picture and some text.
Walking directions are given in a subjective perspective, which
is known to be more human-like and, hence, user-friendly than
standard top view maps. Notice also that, in this location,
the mystery tour intersects with the artistic tour, and this
information is made available to the tourist.

Before the visit, the user can explicitly declare her / his



3

own preferences, for example by registering on a web site
at home or in a tourist information centre (or even during the
visit itself, if the mobile phone is provided with functionalities
for wireless internet navigation). However, the key idea here
is that user preferences can be inferred by the system itself
by simply monitoring sequences of activities performed by
the user. By monitoring the time spent by every individual
tourist in different locations at different times of the day, as
well as the time spent while moving between one location and
the other (which can be simply detected through short-range
communication between agents and mobile device) the system
tries to guess the preferences of the user. Such preferences
are then included in the context of a tourist, and the system
customizes its behaviour accordingly to better suits the present
context of each tourist.

In the following we show an incomplete list of types of
context information provided by the Context Module of the
system.

• Tourist preference: language (e.g., Italian, English, etc.),
age (e.g. Child, Adult, etc.), storyTellingStyle (e.g., fun,
mystery, artistic), tourType (e.g. General, Art, Church,
Shop).

• Tourist location: locationType(e.g., Bar, Church, etc.),
individual locations (e.g. robot1, beacon3, etc.).

• Time of the day: Morning, LunchTime, Afternoon,
Evening, DinnerTime, Midnight, Morning&Evening (time
is Morning or Evening), DayTime (time is Morning or
LunchTime or Evening), NightTime (DinnerTime or Mid-

night)
• Tourist history: a sequence of location where a tourist has

been in a specific time of the day.
• Summary of tourist history: the amount of total time and

the number of times that a tourist has visited locations of
a specific type during a specific time of the day:

– spendTimeArt (the total amount of time a tourist has
spent in art locations, including churches, museums,
monuments), spendTimeBarMorningEvening (the to-
tal amount of time a tourist has spent in bar locations
during morning and evening), spendTime (the total
amount of time tourist has spent in all locations),
spendDistance (the total distance a tourist has walked
while visiting locations in the city)

– numberTimeArt (the number of art locations that
a tourist has visited, including churches, museums,
monuments), numberTimeBarMorningEvening (the
number of bar locations a tourist has visited during
morning and evening), numberTime (the total number
of locations that a tourist has ever visited), number-

Days (the number of days a user has spent in the
system)

• Tourist type: high level context information which the
system can infer about a tourist such as: ChurchLover,
ArtLover (the tourist is ChurchLover and / or Mon-

umentLover and / or MuseumLover), Restaurant-

Lover, AntiqueShopLover, ShopLover (the tourist is An-

tiqueShopLover and / or sexShopLover), SlowWalker,
FastWalker, etc.

Fig. 2. System Architecture.

Finally, to better clarify the concepts above, we present three
use cases to describe our approach to context assessment in
rest of the paper.

1) Classify a tourist as an ArtLover if tourist has spent
in overall more than 3 hours in art locations including
churches, monuments and museums or if the tourist has
spent more than 40% of her time visiting art places and
it is more than 1 hour that she is visiting places.

2) Classify a tourist as a BarLover if she has spent in
average more than 3 hours per day in bars or she
has spent in overall more than 90 min. in bars during
morning or evening times.

3) If the time is Evening, send barAdvertiseMessage2 to
tourists who are BarLovers and currently in Bar loca-
tions and whose preferred language is Italian.

III. CONTEXT MODULE

The Context module is responsible for acquiring, repre-
senting and storing context information, reasoning on high
level context information and providing context-aware func-
tionalities. The design of the Context Module follows the
general layered structure architecture, common in the majority
of context-aware systems [10], [11] which consists of the
following abstract components (Figure 2)

A. Context Capturing Interface

The Context Capturing Interface is responsible for acquiring
context data from logical and physical sensors, performing the
required sensor data pre-processing and representing them in
a suitable data structure to be stored in the context repository.
The reasonable architectural approach here is to separate
concerns between acquiring context data, and processing and
using them [12]. There are 3 main data acquisition models
[13]: Widgets, Network Services and Blackboard Architecture.
Our design follows the blackboard model which is the most
loosely coupled model and enables the complete decoupling of
the Context Module from the actual data acquisition method,
providing the most re-usability and extensibility of the Context
Module. The Blackboard architecture adopts a data-centric
rather than process-centric point of view in which processes



4

post messages to a common shared message board and sub-
scribe for relevant notifications.

B. Context Repository

The Context Repository is used to represent, manage and
store context information. The choice of a context modelling
approach determines the core design of the context-aware
system. State-of-the-art approaches to context modelling and
reasoning show that ontology-based approaches are the most
promising ones for context modelling and reasoning in perva-
sive computing [3], [14]. Ontologies support the representation
of complex relationships and dependencies among context
data which is suitable for recognition of high-level context
information. Besides, the availability of a set of development
tools and standards for ontologies increases re-usability and
ease of development. Specially, thanks to the Semantic Web,
standard ontology languages and development tools have
gained maturity over the past years.

In our system, context is modelled using Web Ontology
Language(OWL) and stored using Protégé OWL repository
which provides permanent storage of ontology in a database
backbone. Using Protease OWL editor we are able to graph-
ically present and edit the ontology. We also use the Protégé
OWL JAVA API to manipulate the ontology (context infor-
mation) in the application program. OWL is a W3C standard
language for defining ontologies. It is based on Description
Logics [17] which allows OWL to exploit the considerable
existing body of DL reasoning such as class consistency and
consumption. An OWL ontology may include descriptions of
classes, properties and their instances.

Figure 3 depicts a part of our outdoor tourist guide
ontology. The ontology contains more than 50 classes, 15
object properties and 30 datatype properties. In this ontology:
Agent, Tourist and Message classes represent the correspond-
ing concepts in the tourist guide scenario. Each tourist keeps
track of her history of visited places and of the received
messages using the hasHistoryUnit and the hasMessage object
properties. The PresentTourist class represents the tourists
that are currently present in the system, encoding information
about which user is currently near which Agent and since
when. The HistoryUnit class represents the history of tourists
visiting an Agent (i.e., a location) or passing from one Agent

to another Agent within the corresponding period of time. It
also stores other information about the visit, such as the type
of the locations visited and the time of the day (i.e., Morning,
Evening, etc). The MessageQueue class represents a set of
individuals, each encoding information about which Message

should be delivered to which Tourist by which Agent. The
LocationType class and its subclasses represent a hierarchy of
location types corresponding to individual Agents. A single
individual of each of the leaf nodes of the LocationType class
hierarchy is created and permanently stored in the repository.
The set of these individuals forms the range of admissible
values for the hasLocationType property. The Time class and
its subclasses represent a hierarchy of the timing periods.
Nodes of this hierarchy correspond to specific periods of time,
such as Morning which is from 6 am to 11 am. A single

individual of each of the leaf nodes of Time class hierarchy
is created and permanently stored in the repository. The set
of these individuals forms the range of admissible values for
the hasTimeOfTheDay property. There is also an individual
named currentTime which encodes information about the
current timing period of the day: the Context Module sets
its class type according to the current time (e.g. if the time
is 7am which corresponds to Morning time, the currentTime

individual is defined as an individual of the Morning class).
Finally, there are a number of classes (e.g. BarLover, ArtLover,
etc.) representing different tourist types. When the system
infers that a tourist individual has a type, it will add the
corresponding tourist type class to the asserted types of the
tourist.

C. Context Reasoning and Querying

The Context Reasoning and Querying component is respon-
sible for inferring new context based on the current contextual
information in the context repository and the new contextual
data acquired through the context capturing interface. We
utilize SWRL and SQWRL for performing reasoning and
querying on context information. We use Protégé editor for
writing SWRL and SQWRL rules and utilize JESS3 as our
rule engine.

SWRL is an expressive OWL-based rule language which
allows writing rules that can be expressed in terms of OWL
classes, properties, individuals, and data values. It extends the
set of OWL axioms to include Horn-like rules to provide more
powerful deductive reasoning capabilities than OWL alone.
SWRL offers, through built-ins, a number of mathematical,
time related and comparison functions that are necessary for
reasoning. It also offers support for composite relationships on
instance level. SQWRL is a SWRL-based language for query-
ing OWL ontologies. In addition to providing a core language
which uses a SWRL rule antecedent as a pattern specification
and replaces the rule consequent by selection and formatting
operators, SQWRL provides a selection of collection operators
that provide advanced grouping and aggregation functionality,
and limited forms of negation as failure, and disjunction.

D. Context API

The context API: provides an interface for context-aware
applications to actually utilize contextual information.

E. Context Module Work Flow

Considering the outdoor tourist guide scenario, the cyclic
work flow of the Context Module is as follows: a) new
context information provided by sensors is acquired (e.g.,
which Tourist is currently in proximity of which Agent); b)
according to the new sensor data and the current time of
the system, different segments of context information are
updated including the class type of the currentTime individual,
PresentTourist and HistoryUnit individuals; c) the previously
inferred information describing tourist types are deleted, and
a set of SQWRL are performed to query tourist histories and

3http://www.jessrules.com/



5

Fig. 3. Tourist Guide Ontology, depicted using Ontoviz

update the repository with corresponding information; d) A set
of SWRL rules are performed which: infer tourist types based
on the information obtained from querying tourists histories,
infer which Messages should be sent to which Tourists by
which Agents, generating a set of MessageQueue individuals
encoding these information e) Context API are accessed to
notify the corresponding Agents to deliver the messages to the
Tourists.

IV. CHALLENGES AND SOLUTIONS

In this section we consider the case study described in
Section 2 and discuss about different challenges of OWL-DL
based context representation and reasoning.

A. Utilizing time

In many cases such as in use case 1, we need to reason
upon the tourist history, which involves performing algebraic
operations and comparisons on temporal data.

Ontology languages such as OWL typically provide minimal
support for modelling the complex temporal information.
OWL, for example, provides no temporal support beyond
allowing data values to be typed as basic XML Schema dates,
times or duration4. SWRL includes operators for manipulating
these values, but its operators work at a very low level.
There are no standard high-level mechanisms to consistently
represent and reason with temporal information in OWL.
To deal with this issue, We use a methodology and a set
of tools introduced in [15] for representing and querying
temporal information in OWL ontologies. The approach uses a
lightweight temporal model to encode the temporal dimension
of data. It also defines a library of SWRL built-ins to perform
temporal operations on information described using this on-
tology. Using this temporal ontology, we are able to represent
temporal information such as a time instance or a time period
and perform different temporal operation such as computing
duration of a time period, adding time periods, compare time
instances or durations, etc.

B. Reasoning on Conjunction of atoms

In many cases, we need to perform reasoning on conjunction
of atoms which is not supported by SWRL. For example,
in use case 1, we want to write a query on the tourist
history which sums up the time she has spent in art-related
locations(i.e., Church or Museum or Monument locations). To
get around this issue, we presents location types in a class
hierarchy and create a single and permanent individual of each
LocationType class in the repository. In the tourist history of
visited places, location types of these places are encoded using
the hasLocationType property whose value can be a generic
individual of one of the classes derived by LocationType. This
way of encoding location information allows for reasoning
on conjunction of location types through subsumption, as an
individual of a class is also an individual of the corresponding
parent class.

C. Open world assumption and monotonicity

OWL-DL makes the open world assumption, which means
that the truth-value of a statement is independent of whether
or not it is known. It is the opposite of the closed world
assumption, which states that any statement that is not known
to be true is assumed to be false. Closely related to the
open world assumption, OWL and SWRL supports monotonic
inference only which means adding new information never

4http://www.w3.org/XML/Schema



6

falsifies a previous conclusion. These OWL and SWRL char-
acteristics impose different concerns and issues when working
with context information, some of which are described below.

Context information which changes in time: due to the
monotonicity assumption of OWL-DL, the property values can
not be overwritten. Therefore when assigning a new value to
a property, the new value is added to the set of values for that
property rather than overwrite them. The intuitive approach to
treat a context information that changes in time is to add a
time stamp to every of its value. In this way we are able to
represent the values of a property as they evolve in time, and
to reason about its actual value at a specific time. However,
in some cases, we want for example to reason about the most
recent value of the property, but the problem is that operators
such as Min or Max are not available to be used in the body of
SWRL or SQWRL rules. A possible solution for this problem
is to treat such context information manually outside of the
ontology, by overwriting old values with new ones. However
to keep the consistency of the ontology, all the facts that have
been inferred from the deleted facts should be also deleted.
Such retraction might be sometimes difficult if not impossible!

Reasoning on the results of queries: in some cases such as in
use case 1, we want to perform some queries and then reason
on the results of such queries. But there is no way to do that in
SQWRL, as query operators in SQWRL should always appear
in the head of the rule. Moreover, SQWRL provides no way
of accessing the information that it temporarily accumulates
while executing a rule, and therefore the corresponding query
results cannot be written back to the ontology. There is no
way, for example, to insert the result of a computed aggregate
count back into the ontology, since such a mechanism could
invalidate OWL-DL’s open world assumption and lead to non-
monotonicity. To address this issue, we use an engineering
solution at the implementation level by providing a mechanism
to store the results of SQWRL rules back to the ontology.
Although this approach is against OWL-DL semantic, it is safe
when used in the controlled way in which a non-monotonic
assumption is applied to a specific property, ensuring that
it can have only one value and any new value rewrites the
previous one. We have developed an ontology and a Java
library to perform this operation in an automatic and safe
way. The ontology is used to encode information about which
property values should be updated based on the results of
which queries. The Java library provides a function which
reads this ontology, performs corresponding queries and write
their results back to the ontology. Following this approach, the
Context Module provides different context information about
the summary of tourists history as explained in section 2.

Negation as a failure: A further consequence of SWRL’s
monotonicity is that negation as a failure is not supported.
For example in use case 4 we want to reason on the context
information and send appropriate messages to tourists, but
avoid sending repeated messages. To do this, we store the
history of sent messages. But it is impossible to write a rule
which says: “send a message to a tourist if the message does
not exist in the set of sent messages stored for that tourist”.
To get around this issue, we have defined the hasRepeat

datatype property for the MessageQueue class and defined a

rule which assign the yes value to this property, if the tourist
has the same message in her sent message history. The Context
API examine this value and only deliver messages of the
MessageQueue individuals which do not have the yes value
for their hasRepeat properties. It should be noted that in our
approach, by writing rules to create and add MessageQueue

individuals to the repository, we violate the safety condition
of SWRL by using unbound variables in the head of the rules.
Also, by writing the rule which assigns the yes value to the
hasRepeat property of MessageQueue individuals we violate
again the monotonicity assumption as before.

V. RAPID DEVELOPMENT AND PROTOTYPING

This Section presents a simulation tool and discusses about
rapid prototyping and development of context-aware outdoor
tourist guides using this simulator and the Context Module. To
evaluate our approach, we have conducted a usability test for
performing the following tasks: a) designing a tourist guide
and testing it using the simulator, b) extending context-aware
services of the Context Module, and c) extending the context
recognition functionalities of the Context Module. Users have
been provided with a 15 pages user guide of the system,
explaining, in an easy to understand language for non technical
users, how to perform the above tasks. Then they were asked to
perform different assignments related to the above tasks, and
finally they were asked to answer 32 questions, to evaluate the
usability of the system. In the following, the simulator and the
assigned tasks are first described, and then usability test results
are presented and discussed.

A. Simulation tool

Figure 4 shows a snapshot of the simulator. It is a web-
based tool, utilizing Google Map API to present and simulate
the tourist environment. Using AJAX technology, it exchanges
information with the Context Module in an asynchronous
way and provides a user friendly GUI for the following
functionalities.

• Adding and removing Agents, Tours and Tourists on and
from the map.

• Starting and pausing the simulator.
• Changing the simulation time and the simulation duration

time.
• Providing draggable tourist icons to simulate and test the

context-aware functionalities of the Context-Module

The first item deserves a discussion. By clicking on the
Agent or Tourist icon on the top left side and then clicking
on the map, a corresponding OWL-DL individual is created
inside the context repository and also shown on the map.
While creating these entities, a pop up window appears which
allows the user to enter the corresponding information such
as Language, age, storyTellingStyle and preferred tourType

for the Tourist. Right-clicking on an entity will delete it. A
tour can be defined by clicking on the corresponding icon,
entering the tour name in the window which will pop-up and
then clicking on a sequence of Agents (i.e., locations) and at
the end clicking on the tour icon again. When creating a tour,
the simulator creates necessary OWL-DL individuals and rules



7

Fig. 4. Simulator window showing the historic centre of Genova.

to provide the tour guide functionality described in Section 2.
This includes: encoding the tour information using individuals
of a class named TourUnit (each representing a path segment
from an Agent to another Agent), creating Messages (with text
and pictures) containing walking directions, and a SWRL rule
for sending these messages to the proper tourists.

B. Extending context-aware services of the system

This subsection describes how to write SWRL rules to
utilize the available context information in the Context Module
in order to provide the context-aware messaging service for
tourists. Although in the tourist guide scenario messages
are considered as multimedia information to be presented to
tourists, in general, they can be seen as encoded information
which can be interpreted by the context API to produce
different context-aware functionalities and services for the
applications.

Rule1 shows a SWRL rule which results in sending Mes-

sage1 to every tourist, present in the system, and can be
interpreted as: ‘send Message1 to each present tourist pt which
corresponds to tourist t and is near agent a’. In fact, this rule
generates proper MessageQueue individuals encoding such
information which are later interpreted by the Context API
to perform the actual delivery of messages.

Rule1 : PresentTourist(?pt)∧hasTourist(?pt,?t)∧
hasAgent(?pt,?a)∧Message(?m)∧
sameAs(?m,Message1)∧
swrlx : createOWLT hing(?mq,?m)∧
→ MessageQueue(?mq)∧hasMessage(?mq,?m)∧
hasTourist(?mq,?t)∧hasAgent(?mq,?a)

The following describes how Rule1 can be easily extended,
while fast-prototyping a tourist-guide system, to reason about
different context information available in the Context Module.

• Sending a different Message than Message1: obviously
to send a different message, for example Message2,
Message1 in the template Rule1 should be changed to
name of the new message.

• Reason on tourist preferences: to reason on tourists
who have the language L, its enough to add . . . ∧

language(?t,?x1) ∧ swrl : equal(?x1,”L”) ∧ . . . to the
Rule1 template, which can then be read as ‘send Mes-

sage1 to each present tourist pt which corresponds to
tourist t, who speaks the language x1 which is equal
to L’. Writing rules for reasoning on tourist’ age, sto-

ryTellingStyle and tourType is done in a similar way.
• Time: to reason on the current timing period of the

day, we can reason on the class type of the current-

Time individual. For example, to send a message to the
present tourists if the current time is morning, we add
. . .∧Morning(currentTime)∧ . . . to the body of Rule1.

• To reason on the type of a tourist, we should check the
class type of the tourist in the body of the rule. For
example to send the message to all artLover tourists, we
add . . .∧ hasTouristType(?t,?tt)∧ArtLover(?tt)∧ . . . to
the body of Rule1, which can be read as ‘send Message1

to every tourist t who has a type tt which belongs to the
class artLover’.

Rule2 shows an example of combining the above context
information, by sending a message3 to all present tourists
whose language is English and are AntiqueShopLovers and
slowWalker, if they are close to an AntiqueShop location and
the time is Evening.

Rule2 : PresentTourist(?pt)∧hasTourist(?pt,?t)∧
hasAgent(?pt,?a)∧Message(?m)∧
sameAs(?m,Message3)∧ language(?t,?l)∧
swrl : equal(?l,”English”)∧AntiqueShopLover(?t)∧
SlowWalker(?t)∧hasLocationType(?a,?la)∧
AntiqueShop(?la)∧Evening(currentTime)∧
swrlx : createOWLT hing(?mq,?m)∧
→ MessageQueue(?mq)∧hasMessage(?mq,?m)∧
hasTourist(?mq,?t)∧hasAgent(?mq,?a)

C. Providing more context recognition functionalities

As a complex context recognition use case, we consider
the use case of inferring the tourist type based on the history
of a tourist. The context information provided by the Context
Module about the history of tourists in the system has been
described in section 2. SWRL built-ins such as swrlb : add,
swrlb : divide and swrlb : lessT hanOrEqual can be used
to perform the necessary mathematical operations on these
information to reason about the tourists types. For example
Rule3 and Rule4 classify a BarLover tourist as defined in
section 2.

Rule3 : Tourist(?t)∧
spendTimeBarMorningEvening(?t,?stbme)∧
swrlb : greaterT han(?stb,90)→ BarLover(?t)

Rule4 : Tourist(?t)∧ spendTimeBar(?t,?stb)∧
spendDays(?t,?sd)∧ swrlb : divide(?astb,?stb,?sd)∧
swrlb : greaterT han(?astb,180)→ BarLover(?t)



8

D. Usability Test

The usability test has been conducted on 4 users, 2 of them
having the knowledge of software development and 2 of them
just having basic familiarity with using computers. None of
the users had previous familiarity with context-aware systems.
The purpose of the system and the requested tasks were clear
for all users.

The software developers could perform all tasks using the
tutorial. The other two could easily use the simulator but for
the tasks of extending the systems functionalities and services
needed more help. The simulator was ranked very user friendly
by all users. All users considered the context information
provided by the system for reasoning about tourist types, as
well as the corresponding messaging service, highly useful.
Learning how to extend context recognition functionalities and
messaging service was easy for the software developers and
relatively easy for the others.

Due to the lack of time, the usability test was conducted on
a small number of users. Moreover it would have been more
interesting to have the system tested by experts in the tourist
domain, which has not been possible up to now. However the
initial results clearly show the advantages and usability of the
system.

VI. CONCLUSION

This paper has shown how different available technologies
can be leveraged to enable the rapid prototyping and de-
velopment of context-aware smart outdoor environments. We
presented the Context Module and the simulation software
we have developed for an outdoor tourist guide case study.
The conducted usability test has shown the usefulness of the
provided tools in enabling even non-technical users to design
a context-aware outdoor tourist guide, to test its behaviour,
and to extend its context-aware and context recognition func-
tionalities.

Moreover the case study has shown how OWL-DL, SWRL
and SQWRL can be used for context modelling, reasoning and
querying to provide complex context-aware functionalities.
Several issues related to the development of context-aware
applications using these technologies have been discussed. The
Context Module extensively uses the time and history context
information to reason about high level context information.
Thanks to the blackboard model of data acquisition and the
ontology-based context modelling, the Context Module can be
easily extended to utilize external context information such as
the weather context made available by some Web Services.
Moreover the Context Module enables push-based accessing
to context information, in which the Context Module itself
can revoke the proper context-aware functionalities when new
context information is inferred.

An important issue which we did not address in the paper
is the scalability of the system. One scalability concern is the
amount of tourist history data, which can become large and
should be handled properly. The second and the most impor-
tant scalability concern is the performance issue of SWRL
and SQWRL in reasoning on a big amount of context data
[16]. In the presented scenario, there are no context individuals

involving more than one tourist at the same time, which makes
it easy to distribute the reasoning load over a number of
Context Modules, each handling a limited number of tourists.
But if the social context is considered, e.g., by integrating
context data from different tourists, scalability poses a serious
issue and using advanced distributed and cascade reasoning
approaches will be inevitable.

REFERENCES

[1] Dey, A.K. and Abowd, G.D., ‘Towards a better understanding of context
and context-awareness’, Proceedings of the CHI 2000 Workshop on the
What, Who, Where, When, and How of Context-Awareness (2000).

[2] Schwinger, W., GrÃijn, C., PrÃűll, B., Retschitzegger, W. (2008)
‘Context-awareness in Mobile Tourism Guides’, Handbook of Research
in Mobile Multimedia, 2nd edition, Khalil-Ibrahim Ismail (ed.), Chapter
XXXVII, IGI Global, USA, September 2008, pp. 534-552.

[3] Strang, T. and Linnhoff-Popien, C., ‘A Context Modeling Survey’, First
International Workshop on Advanced Context Modelling, Reasoning and
Management, UbiComp, 2004.

[4] OâĂŹConnor, M. J. and Das, A. K., ‘SQWRL: A Query Language for
OWL’. In Proc. of 6th OWL: Experiences and Directions Workshop
(OWLED2009), 2009.

[5] Liu, C.-H. Chang, K.L. Jason, J.Y. Hung, S.C., ‘Ontology-Based Context
Representation and Reasoning Using OWL and SWRL’, 8th Annual
Communication Networks and Services Research Conference, Montreal,
Quebec, Canada, 2010.

[6] Lee, K. C. Kim, J. H. and Lee, J. H., ‘Implementation of Ontology
Based Context-Awareness Framework for Ubiquitous Environment’, Int.
Conference on Multimedia and Ubiquitous Engineering, pp. 278 - 282,
April 2007.

[7] De, S., Moessner, K., ‘Ontology-based Context Inference and Query for
Mobile Devices’. IEEE 19th International Symposium on Personal, Indoor
and Mobile Radio Communications, PIMRC 2008, pp. 1 - 5, 2008.

[8] Ricquebourg, V. Durand, D. Menga, D. Marhic, B. Delahoche, L. LogÃl’,
C. JollyDesodt, A.M., ‘Context inferring in the Smart Home: An SWRL
approach’, Proceedings of the 21st International Conference on Advanced
Information Networking and Applications Workshops, AINAW ’07, Ni-
agara Falls, Canada, May 21-23, 2007.

[9] Chaari, T., Ejigu, D., Laforest, F., Scuturici, V., ‘A comprehensive
approach to model and use context for adapting applications in pervasive
environments, The Journal of Systems and Software, v. 80, pp. 1973-
1992, 2007.

[10] Baldauf, M. Dustdar, S. Rosenberg, F. (2007) ‘A Survey On Context-
Aware Systems’, International Journal of Ad Hoc and Ubiquitous Com-
puting, 2(4), 63-277, Inderscience Publishers, 2007.

[11] Schmohl, R. and Baumgarten, U., ‘Context-aware computing: a survey
preparing a generalized approach’. In IMECS, Proceedings of the Inter-
national MultiConference of Engineers and Computer Scientists 2008.
International Association of Engineers, 2008.

[12] Dey, A.K., ‘Providing Architectural Support for Building Context-Aware
Applications’, PhD Thesis, Georgia Institute of Technology, Georgia
Institute of Technology, USA, 2000.

[13] Winograd, T., ’Architectures for context’, Human-Computer Interaction
(HCI) Journal, Vol. 16, No. 2, pp.401-419, L. Erlbaum Associates Inc.,
2001.

[14] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D.,
Ranganathan, A., and Riboni, D., A survey of context modelling and
reasoning techniques, Pervasive and Mobile Computing, Volume 6, Issue
2, April 2010, Pages 161-180, Elsevier.

[15] O’Connor, M. J. DasA, A. K., ‘Method for Representing and Querying
Temporal Information in OWL’, Biomedical Engineering Systems and
Technologies (Selected Papers), Springer-Verlag, Communications in
Computer and Information Science 127, pp. 97-110, 2011.

[16] Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K., ‘Ontology Based Context
Modeling and Reasoning using OWL’. In Workshop Proceedings of the
2nd IEEE Conference on Pervasive Computing and Communications
(PerCom2004), pp.18-22, Orlando, FL, USA, March 2004.

[17] Description Logic Handbook, edited by F. Baader, D. Calvanese, D.L.
McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University Press,
2002.


