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Abstract We explore the closed form of the correlation
function of four spin operators (including one closed string
Ramond–Ramond (RR) and two open string fermions) and
one current in ten dimensions, to be able to find the com-
plete and the closed form of the amplitude of one closed
string Ramond–Ramond, one gauge field and two fermionic
strings (with the same chirality) to all orders in α′ in IIB
superstring theory. In particular we use a special gauge fix-
ing to the amplitude and apply fermions’ equations of motion
to 〈VC VAVψ̄Vψ 〉 correlator. The string amplitude implicated
that neither there should be any u-channel gauge poles for
p = n+2 case nor there are couplings between two fermions
and two gauge fields for p = n case in the field theory of
type IIB. All infinite u-channel scalar poles and t, s-channel
fermion poles of the string amplitude are useful in discover-
ing new couplings of type IIB. More specifically, by making
use of the SYM couplings of one scalar, one gauge and two
fermions and their all order α′ higher derivative corrections,
we are able to exactly produce all infinite (s + t +u)-channel
scalar poles of 〈VC VAVψ̄Vψ 〉.

1 Introduction

D-branes [1–4] are fundamental non-perturbative objects in
string theory. They play a key role in diverse subjects as
well as in superstring theories. To be able to talk about
the derivation of Ads/CFT one has to deal with these fun-
damental objects. Let us point out one of their dynamical
aspects. In order to be able to describe the different transi-
tions of open/closed strings, we consider [5] an interesting
paper.

For completeness, to get familiar with string dualities and
to observe various dual descriptions, we introduce [6] to the
interested reader. As an example one may talk about a particu-
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lar configuration such as the D0/D4 system where its impor-
tance as well as its applications/explanations are addressed
in [7].

To be more specific, one can see the presence of world vol-
ume theory from a supergravity point of view [8]. Basically,
in [8], we have just employed a new version of ADM reduc-
tion and it is applied to type IIB superstring theory. Indeed this
kind of ADM reduction has to be deduced to five dimensional
hyperboloidal space. In this particular formalism we could
understand the appearance of either an AdS or dS space.

One has to apply suitable boundary conditions [9,10], to
be able to observe that Dp-branes must be seen as some
hypersurfaces in decompactification space (ten dimensions
of flat space time) where p is interpreted as spatial dimen-
sion of a Dp-brane. IIA (IIB) does include BPS Dp-branes
with even (odd) p and indeed supersymmetry is guaranteed.
BPS branes also carry RR(C-field) charge. What can we say
about the dynamical aspects of branes? In order to deal with
dynamical aspects of Dp-branes we need to discover the gen-
eral form of the effective actions. Basically we might work
with either bosonic effective actions or their supersymmetric
versions and these bosonic effective actions for diverse brane
configurations have already been found in [11].

One should argue that the supersymmetrized versions of
the bosonic actions [11] have not been entirely explored yet,
nevertheless we point out to an interesting and pioneering
work [12]. Let us just highlight the most important refer-
ences. In order to talk about the effective action of just a
single bosonic Dp-brane [13] must be taken into account. To
work with the supersymmetric action of a Dp-brane, we refer
to [14–18].

It is worth mentioning that Myers terms, and the Chern–
Simons, Wess–Zumino (WZ), and Born–Infeld actions are
completely derived in [19–22]. More importantly, we have
explained how to look for all the standard effective field
theory methods of Myers terms, Taylor, and pull-back tech-
niques where their all order α′ corrections are found in [23].
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However, we discussed in [22] that certainly the presence of
some other methods apart from those three standard ways
is needed. In fact in order to obtain all the infinite higher
derivative corrections in string theory one should go further
and construct new methods for both BPS [22,24] and non-
BPS branes [25–29].

Open strings have provided various features and their
importance can be extracted by dealing with some formal
aspects of scattering amplitude arguments. For instance we
point out to two different conjectures on taking quantum
effects of the BPS strings [30] and a given prescription of all
order α′ higher derivative corrections to BPS and non-BPS
branes [31] for which the first conjecture shows the effects
on the curvature of the host branes.

We have been following several motivations for our con-
tinuous works [22], so let us emphasize some of them once
more. Several important results appeared in [32–34] and we
want to explore the entire form of the effective actions to
describe dynamical aspects of branes. One of the goals of
this paper is to actually prepare more information on the
general structure of all order Chern–Simons and Born–Infeld
effective actions in superstring theory. For completeness we
highlight [35–43] and consider some of the papers which
are related to either scattering of BPS branes or related to the
formal applications of the BPS and non-BPS branes [44–48].

It is important to have some tools to be able to work with
higher point functions of the superstring theory, given the fact
that the derivation of AdS/CFT correspondence is unknown.
Because we know that by going through them and inside
the Ads/CFT there exists a very straightforward relation of a
closed and an open string. So by working with mixture open-
closed amplitudes one might hope to shed light in understand-
ings all order α′ corrections and to the other future works.
For instance, we have recently derived various recent WZ
effective couplings with their all order α′ higher derivative
corrections and just showed that those corrections must be
taken into account to clarify the N 3 entropy of M5 brane,
where for further explanations we just refer the reader to [7].

In fact α′ corrections come from all the infinite couplings
of the branes with lower dimensions with RR field. Thus one
understands the dissolution of soliton objects or lower dimen-
sional branes [7] within branes with higher dimensions. One
might talk about a particular application to Myers terms as
follows. In the system of D(−1)/D3, one employs higher
order α′ Myers terms to be able to explore this configuration
carries N 2 entropy relation. To observe several applications
to some of the recent α′ corrections, to WZ couplings in flux
vacua and M-theory, Refs. [49–51] are worth considering.

If we try to work out some of the recent works on
Myers terms and new kind of WZ effective actions [21,27–
29,31,52,53] then we will be able to find some of the cor-
rections in string theory [54]. Basically in order to produce
all infinite scalar poles of the amplitude of 〈VC VAVψ̄Vψ 〉, an

infinite number of α′ corrections to two fermion–one scalar–
one gauge field couplings are needed. The other important
point is as follows. Unlike 〈VC VφVψ̄Vψ 〉 correlators, the
closed form of the 〈VC VAVψ̄Vψ 〉 amplitude includes just
infinite u-channel scalar poles in its final form and the direct
computations of this paper show that there is not even one
single u-channel gauge field pole left over.

Direct computations of this paper show that there are no
corrections to two fermions and two gauge field couplings
of type IIB for p = n case where n is the rank of RR field
strength (H). This fact is in favor of carrying out direct con-
formal field theory techniques, instead of doing a T-duality
transformation to 〈VC VφVψ̄Vψ 〉 amplitude, see [22] for more

promising reasons.1

If we find the infinite corrections to one scalar, one gauge,
and two fermion fields, then we are able to find all infinite
scalar (t+s+u)-channel poles of the string theory for p+2 =
n case. Hence by comparing all infinite scalar poles of the
string theory amplitude in (t+s+u)-channel with field theory
vertices we obtain an infinite corrections of two fermions, one
on-shell gauge and one off-shell scalar field. It is important to
highlight the fact that these all order corrections of type IIB
cannot be used in type IIA and may have diverse application
to either M-theory [7,50,51] or F-theory [55].

Therefore this paper among other things clearly indicates
that SYM vertex operators, including one on-shell gauge,
one off-shell scalar field, and two fermion fields will give
rise exactly to all the same infinite scalar poles that appeared
in the string amplitude of 〈VC VAVψ̄Vψ 〉 as well.

Here is the outline of this paper.
In the second section we carry out direct conformal field

theory techniques to be able to find the entire form of the
amplitude of a closed string RR, one gauge field, and two
fermion fields 〈VC VAVψ̄Vψ 〉. Note that in this paper both
fermions carry the same chirality, hence the calculations of
this paper work just for IIB and the corrections that we are
getting to make derivations in IIB theory cannot be applied
to IIA.

We also expand our S-matrix to be able to derive all infinite
extensions to the unknown vertices. In particular we explic-
itly show that there are just infinite scalar u-channel massless
poles for the p + 2 = n case. Indeed all infinite gauge poles
that appeared in 〈VC VφVψ̄Vψ 〉, for the p = n case, have
disappeared in the closed form of 〈VC VAVψ̄Vψ 〉 and this is
an interesting fact in favor of carrying out direct computa-
tions. Then we try to produce all infinite scalar poles of the
amplitude in (t + s + u)-channel poles. We also explicitly
write down all the desired couplings of two fermions and
two gauge fields and show that they do not match with string
theory amplitude. This clearly confirms that there are no cor-

1 As is seen, the entire result of 〈VC VφVAVA〉 cannot be derived by
applying a T-duality transformation to 〈VC VAVAVA〉 of [21].
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rections to two fermion–two gauge field couplings of type
IIB. We also produce all infinite t, s-channel fermion poles
involving their extensions to new couplings.

Eventually we conclude and point out a fascinating rela-
tion between open and closed string amplitudes. One might
look at Appendices A and B of [23,53] to get used to standard
notations and for some other details.

It is worth mentioning that this paper may shed light in
understanding the universal behavior of all order α′ higher
derivative corrections of the string theory [31]. Having used
the results of this paper, we are able to judge that the universal
conjecture given in [31] does apply even to fermionic S-
matrices. This conjecture may also be applied to obtain all
the infinite singularities of five and six point BPS functions
without any knowledge of world sheet integrals.

2 Complete form of RR Aψ̄ψ amplitude in type IIB

To obtain the entire and closed form of the S-matrix ele-
ments of one closed string RR (C-field), one gauge field and
two fermions with the same chirality (which makes sense
in the world volume of type IIB), one has to deal with the
direct CFT techniques. It is worth addressing several impor-
tant references on superstring theory [56–58], higher point
BPS functions [21,31,53,59–65] and non-BPS [23,26] tree
level calculations.

For completeness we point out the relevant vertex opera-
tors for our computations as follows:

V (0)
A (x) = ξa

(
∂Xa(x)+ α′ik·ψψa(x)

)
eα

′ik·X (x),

V (−2)
A (y) = e−2φ(y)V (0)

A (y),

V (−1/2)
�̄

(x) = ū Ae−φ(x)/2SA(x) eα
′iq.X (x)

V (−1/2)
� (x) = u Be−φ(x)/2SB(x) eα

′iq.X (x)

V
(− 1

2 ,− 1
2 )

C (z, z̄) = (P− H/ (n)Mp)
αβe−φ(z)/2Sα(z)e

i α
′

2 p·X (z)

× e−φ(z̄)/2Sβ(z̄)e
i α

′
2 p·D·X (z̄),

(1)

the Majorana–Weyl wave function u A is also introduced in
ten dimensions. The on-shell condition for RR, fermion, and
scalar fields is p2 = q2 = k2 = 0. For the other notations
on charge conjugation, the definition of the traces and field
strength of RR in IIB, reference [24] should be considered.
Note also that in order to work with holomorphic propagators,
doubling tricks were used [23], however, let us point out the
standard correlators

〈Xμ(z)Xν(w)〉 = −α
′

2
ημν log(z − w),

〈ψμ(z)ψν(w)〉 = −α
′

2
ημν(z − w)−1,

〈φ(z)φ(w)〉 = − log(z − w).

(2)

The one gauge field and two fermions amplitude
〈VAVψ̄Vψ 〉 is computed in [66]. If we normalize its S-matrix

with the (iTp21/2πα′) coefficient, then one can show that the
S-matrix should be produced by extracting the kinetic term
of the fermion fields and taking into account the commutator
in Daψ as follows:

(2πα′Tp)Tr (ψ̄γ a Daψ), Daψ = ∂aψ − i[Aa, ψ].
The closed form of our amplitude is given by taking the

closed form of the following correlator:

〈V (0)
A (x1)V

(−1/2)
ψ̄

(x2)V
(−1/2)
ψ (x3)V

(− 1
2 ,− 1

2 )

R R (z, z̄)〉. (3)

Notice that the complete result of our calculations should
not be used for IIA as here we are considering both fermions
with the same chirality, thus all order corrections in this paper
cannot be used for IIA.

The amplitude has two different parts, for the first part we
need to have the correlation function of four spin operators
in ten dimensions [67,68]:

I1γ δαβ = 〈Sγ (x2)Sδ(x3)Sα(x4)Sβ(x5)〉
=
[
(γ μC)αβ(γμC)γ δx25x34

−(γ μC)γβ(γμC)αδx23x45

]

× 1

2(x23x24x25x34x35x45)3/4

with xi j = xi − x j , x4 = z = x + iy, x5 = z̄ = x − iy.
Having replaced I1γ δαβ in the first part of the amplitude, we
obtain

AC Aψ̄ψ
1 ∼

∫
dx1dx2dx3dx4dx5 (P− H/ (n)Mp)

αβξ1aūγ1 uδ2

×(x23x24x25x34x35x45)
−1/4 I1γ δαβ I2 I a

3 Tr (λ1λ2λ3),

(4)

with

I2 = |x12|α′2k1.k2 |x13|α′2k1.k3 |x14x15| α
′2
2 k1.p|x23|α′2k2.k3 |

×x24x25| α
′2
2 k2.p|x34x35| α

′2
2 k3.p|x45| α

′2
4 p.D.p,

I a
3 = ika

2

(
x42

x14x12
+ x52

x15x12

)
+ ika

3

(
x43

x14x13
+ x53

x15x13

)
.

Now we can obviously see that the amplitude has the SL(2,R)
invariance property. We shall use the very specific gauge
fixing (x1 = 0, x2 = 1, x3 = ∞) and in particular we are
going to employ the following definitions for the Mandelstam
variables:

s = −α
′

2
(k1 + k3)

2, t = −α
′

2
(k1 + k2)

2,

u = −α
′

2
(k3 + k2)

2.
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Thus having gauge fixed it, one can find the complete form
of the first part of the amplitude as follows:

AC Aψ̄ψ
1 ∼ (P− H/ (n)Mp)

αβξ1aūγ1 uδ2

(−1

2

)

×
∫ ∫

dzdz̄|z|2t+2s |1 − z|2t+2u−2(z − z̄)−2(t+s+u)−1,

×
[
(γ μC)γ δ(γμC)αβ(1− z̄)+ (z − z̄)(γ μC)γβ(γμC)αδ

]

×
(

2ika
2 − (z + z̄)(ika

2 + ika
3 )

|z|2
)

Tr (λ1λ2λ3). (5)

In order to find the complete result of the amplitude to all
orders in α′ one has to take integrations on the location of
closed string RR where all details of these integrals can be
partially found in [69] and they can be completely found in
Appendix B of [23]. Therefore the complete form of the first
part of the amplitude appears as

AC Aψ̄ψ
1 ∼ (P− H/ (n)Mp)

αβξ1aūγ1 uδ2

(−1

2

){
(γ μC)γ δ(γμC)αβ

×
[

ika
2 (usL1 − 2sL2)− ika

3 (ut L1 − 2t L2)

]

+(γ μC)γβ(γμC)αδ(2ika
2 us − 2ika

3 ut)L1

}
Tr (λ1λ2λ3), (6)

with

L1 = (2)−2(t+s+u)

×π �(−u)�(−s)�(−t)�(−t − s − u + 1
2 )

�(−u − t + 1)�(−t − s + 1)�(−s − u + 1)
,

L2 = (2)−2(t+s+u)−1

×π �(−u + 1
2 )�(−s + 1

2 )�(−t + 1
2 )�(−t−s−u)

�(−u − t + 1)�(−t − s + 1)�(−s − u + 1)
.

(7)

Unlike the first part of Cφψ̄ψ amplitude, this part does not
seem to have any u-channel gauge nor scalar poles. Let us
talk about the second part of the C Aψ̄ψ amplitude. For this
part one needs to have the closed form of the correlation
function of four spin operators (with the same chirality) and
one current. The details for deriving this correlator have been
given in section 2 of [24], however, for completeness here we
are going to write down the complete form of that correlator
as follows:

〈: ψbψa(x1) : Sα(x2) : Sβ(x3) : Sγ (x4) : Sδ(x5) :〉 = I ba
αβγ δ,

with

I ba
αβγ δ = (x23x24x25x34x35x45)

−3/4

4(x12x13x14x15)

×
[(
(γ bC)γβ(γ

aC)αδ − (γ bC)αδ(γ
aC)γβ

)

×(x12x14x35 − x15x13x24)

×x23x45−
(
(γ bC)αβ(γ

aC)γ δ+(γ bC)γ δ(γ
aC)αβ

)

×x25x34(x15x13x24 + x14x12x35)

+(�baλC)αβ(γλC)γ δx23x25x34(x14x15)

+(�baλC)γ δ(γλC)αβx25x34x45(x12x13)

−(�baλC)αδ(γλC)γβx23x25x45(x14x13)

+(�baλC)γβ(γλC)αδx23x34x45(x12x15)

]
. (8)

By substituting the second part of the gauge field’s vertex
operator (in zero picture) and taking the above correlator into
the amplitude we find

AC Aψ̄ψ
2 ∼

∫
dx1dx2dx3dx4dx5 (P− H/ (n)Mp)

γ δξ1a(2ik1b)

×ūα1 uβ2 (x23x24x25x34x35x45)
−1/4 I2 I ba

αβγ δ. (9)

Concerning the above gauge fixing and evaluating the inte-
grals on the closed string position, the closed form of the
second part of our S-matrix is given by

AC Aψ̄ψ
2

∼
(

A21 + A22 + A23 + A24 + A25 + A26

)
Tr (λ1λ2λ3),

meanwhile

A21 = 1

4
(P− H/ (n)Mp)

γ δξ1a(2ik1b)ū
α
1 uβ2 (�

baλC)αβ(γλC)γ δ

×
[

L2 + u

2
(t + s)L1

]

A22 = −1

4
(P− H/ (n)Mp)

γ δξ1a(2ik1b)ū
α
1 uβ2 (�

baλC)γ δ(γλC)αβ

×
[

L1(st)+ 1

2
L3

]

A23 = −1

4
(P− H/ (n)Mp)

γ δξ1a(2ik1b)ū
α
1 uβ2 (�

baλC)αδ(γλC)γβ

×
[

− L1(su)+ 1

2
L3

]

A24 = 1

4
(P− H/ (n)Mp)

γ δξ1a(2ik1b)ū
α
1 uβ2 (�

baλC)γβ(γλC)αδ

×
[

L1(tu)− 1

2
L3

]

A25 = 1

4
(P− H/ (n)Mp)

γ δξ1a(2ik1b)ū
α
1 uβ2

[
u(s + t)L1 + L3

]

×
(
(γ bC)γβ(γ

aC)αδ − (γ bC)αδ(γ
aC)γβ

)

A26 = −1

4
(P− H/ (n)Mp)

γ δξ1a(2ik1b)ū
α
1 uβ2

×
[

− 1

2
u(s − t)L1 + (−t + s)L2

]

×
(

− (γ aC)γ δ(γ
bC)αβ + (γ aC)αβ(γ

bC)γ δ

)
, (10)
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with L3 as follows:

L3 = (2)−2(t+s+u)+1π

×�(−u + 1
2 )�(−s + 1

2 )�(−t + 1
2 )�(−t − s − u + 1)

�(−u − t + 1)�(−t − s + 1)�(−s − u + 1)
.

(11)

Note that L3 does not include any singularities as the
expansion is a low energy expansion and all the gamma func-
tions appearing in L3 have no singularities. It is seen that the
amplitude involves infinite s, t , u, and (t + s + u)-channel
poles and once we are dealing with all massless strings, the
expansion is just a low energy expansion in which by send-
ing α′ to zero we should be able to get to the desired poles
in field theory side (t + s + u = −pa pa).

To be more clearly one of the ideas for deriving the exact
form of the amplitude is to be able to discover all the infinite
higher derivative corrections to the SYM couplings and also
to fix the coefficients of these couplings by producing the S-
matrix element. Notice that our amplitude is antisymmetric
under interchanging the fermions. Now we try to produce all
the infinite poles by exploring new SYM couplings as well
as their all order α′ higher derivative corrections.

3 Infinite u-channel singularities and their contact
interactions for p = n case

Unlike the 〈VC VφVψ̄Vψ 〉, the closed form of the
〈VC VAVψ̄Vψ 〉 correlators just gives us infinite u-channel
massless scalar poles. The st L1 expansion is

st L1 = −π3/2
[ ∞∑

n=−1

bn

(
1

u
(t + s)n+1

)

+
∞∑

p,n,m=0

ep,n,mu p(st)n(s + t)m
]
, (12)

with

b−1 = 1, b0 = 0, b1 = 1

6
π2, b2 = 2ζ(3),

e0,1,0 = 2ζ(3), e1,0,0 = 1

6
π2, e0,0,1 = 1

3
π2;

the bn coefficients do have a universal structure [21]. Let us
consider the first term of A22 which has infinite u-channel
poles. One may think γ λ in�baλ can have both world volume
(λ = a) and transverse components (λ = i) and accordingly
there can be both u-channel gauge and scalar pole (sounds
ambiguity), however, since the integrations for the Chern–
Simons action should be taken on the world volume (the sum
of the world volume direction should be p + 1) and there is
no coupling between one RR, (p − 3) form field (C p−3) and
one gauge field and two fermions (even though

(2πα′)2μp

2!(p − 2)!
∫

dp+1σTr (C(p−3) ∧ F ∧ F)

is allowed), we conclude that λ cannot have a component in
the world volume direction. Thus all u-channel scalar poles
for the p = n case in string theory should be written as

μp

(p)! (ε
v)a0···ap−2ba Hi

a0···ap−2
2πξ1a(2ik1b)ū

α
1 (γi )αβuβ2

×
∞∑

n=−1

bn

(
1

u
(t + s)n+1

)
Tr (λ1λ2λ3),

where we have normalized the amplitude by a factor of μp

2π1/2 .
In the above the trace is replaced as

Tr (P− H/ (n)Mp�
bai ) = 32

2(p)! (ε
v)a0···ap−2ba Hi

a0···ap−2
. (13)

The first u-channel pole (for n = −1) can be produced by
taking its Feynman rule on the field theory side as below:

A = V i
α(C p−1, A1, φ)G

i j
αβ(φ)V

j
β (φ, �̄1, �2). (14)

Let us just mention that to deal with the field theory of RR
and scalar fields, we need to work out either Wess–Zumino
(WZ) terms [11] or a pull-back or Taylor expansion (for
extensive discussions [23] is suggested).

By applying a Taylor expansion,

i
λ2μp

(p)!
∫

dp+1σTr
(
∂i C(p−1) ∧ Fφi

)
, (15)

one can obtain the vertex of V a
α (C p−1, A1, φ) where λ =

2πα′ so that

V i
α(C p−1, A1, φ)

= i
λ2μp

(p)! Hi
a0···ap−2

k1ap−1ξ1ap (ε
v)a0···ap Tr

(
λ1λ

α
)
, (16)

the scalar propagator has been derived by taking into
account the kinetic term of scalar fields in the DBI action(

− Tp
(2πα′)2

2 Tr (Daφ
i Daφi )

)
as follows:

Gi j
αβ(φ) = −iδαβδi j

Tp(2πα′)2k2 = −iδαβδi j

Tp(2πα′)2u
. (17)

In particular V j
β (φ, �̄1, �2) should be derived by consid-

ering the fixed kinetic term of fermion fields(
− Tp(2πα′)Tr (−�̄γ a Da�)

)
as well as extracting the

covariant derivative of fermion field such that

V β
j (�̄1, �2, φ)

= Tp(2πα
′)ū A

1 γ
j

ABu B
2

(
Tr (λ2λ3λ

β)− Tr (λ3λ2λ
β)
)
.

(18)

Having substituted (16), (17) and (18) in the field the-
ory amplitude of (14), we are able to precisely produce the
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first simple massless scalar u-channel pole, however, as is
obvious from the st L1 expansion, our S-matrix does involve
infinite u-channel poles. These infinite singularities can be
found by postulating an infinite number of higher derivative
corrections to the vertex of V i

α(C p−1, A1, φ) (note that the
scalar propagator and all kinetic terms will not receive any
corrections [21,23,53] as they have already been fixed in the
DBI action; see [24]) as below:

i
λ2μp

p!
∫

dp+1σ

∞∑
n=−1

bn(α
′)n+1

×Tr
(
∂i C(p−1) ∧ Da0 · · · Dan F Da0 · · · Danφ

i
)
. (19)

Notice that all commutator terms in the definitions of
covariant derivatives in (19) should be neglected. Now the
infinite extension of the corrected vertex operator to all orders
in α′ is given by

V i
α(C p−1, A1, φ) = i

λ2μp

p! Hi
a0···ap−2

k1ap−1ξ1ap (ε
v)a0···ap

×
∞∑

n=−1

bn(α
′k1.k)

n+1Tr
(
λ1λ

α
)
, (20)

where

α′k1.k = t + s, (k1 + k2 + k3 + p)a = 0,

pa(εv)a0···ap−1a = 0,

and we have employed the following standard kinetic terms
in superstring theory:

−Tp(2πα
′)Tr

(
(2πα′)

2
Daφ

i Daφi

− (2πα
′)

4
Fab Fba − �̄γ a Da�

)
. (21)

Momentum conservation in world volume direction as well
as the constraint for RR are also used. Now (20) is the so
called all order α′ extension of (15). By replacing (20) into
(14), keeping the fixed scalar propagator and V j

β (φ, �̄1, �2),
we can exactly derive all infinite u-channel scalar poles of
C Aψ̄ψ . Therefore the RR (p−1)-form field has just induced
an infinite number of higher derivative corrections to an on-
shell gauge and one off-shell scalar field. This is a property
of closed string RR which proposes all order extensions to
all kinds of BPS [21,24,31,53] and non-BPS open strings
[23] where we have called it the universal property of all
order higher derivative corrections. Let us end this section
by constructing a new coupling and fixing its coefficient
by comparing it with all contact interactions in the st L1

expansion. First consider the following coupling:

(2πα′)2μp

(p)!
∫

dp+1σTr (C(p−1) ∧ Fψ̄γ i Diψ). (22)

In order to be able to produce all contact interactions in the
st L1 expansion (the second terms inside (12)), one can gen-
eralize (22) to all orders in α′ as follows:

∞∑
p,n,m=0

ep,n,m(α
′)2n+m−2

(
α′

2

)p
(2πα′)2μp

π(p)!

×
∫

dp+1σTr (C(p−1) ∧ Da1 · · · Dan Dan+1 · · · Da2n

×Da1 · · · Dam F(Da Da)
p Da1 · · · Dam

×(Da1 · · · Dan ψ̄γ
i Dan+1 · · · Da2n Diψ)). (23)

3.1 An infinite number of scalar poles for p + 2 = n case

In this section, in order to match an infinite number of mass-
less poles of the string theory amplitude of C p+1 A�̄� with
field theory poles, we need to obtain an infinite number of
higher derivative corrections to two fermions (with the same
chirality), one scalar, and one gauge field in type IIB.

More importantly we would like to show that the universal
conjecture for all orderα′ corrections [31] holds for the string
amplitudes including fermionic strings as well.

The needed terms for these poles are related to the second
and the fourth terms of A1; thus, by extracting the traces, we
are able to write down singular terms in the string amplitude
as

A = −2iα′π−1/2μp

(p + 1)! (εv)a0···ap−1 Hi
a0···ap−1

ūγ1 (γ
i )γ δu

δ
2

×
[

− 2k2.ξ1s + 2k3.ξ1t

]
L2Tr (λ1λ2λ3) . (24)

Notice that since in 〈VC VAVψ̄Vψ 〉 we do not have an external
scalar field, we reveal that these two fermions (with the same
chirality), one gauge, and one scalar couplings must be found
just by comparing them with the string theory amplitude.

The L2 expansion is

L2 = −π
5/2

2

( ∞∑
n=0

cn(s+ t+ u)n +
∑∞

n,m=0 cn,m[sntm + smtn]
(t+s+u)

+
∞∑

p,n,m=0

f p,n,m(s + t + u)p[(s + t)n(st)m]
⎞
⎠ , (25)

which clearly shows that it involves an infinite number of
(t + s + u)-channel massless scalar poles. In [24] we have
derived the vertex of one off-shell scalar and one R R−(p+1)
form field as well as a scalar propagator as below:

Gi j
αβ(φ) = −iδαβδi j

Tp(2πα′)2k2 = −iδαβδi j

Tp(2πα′)2(t + s + u)
,

V i
α(C p+1, φ) = i(2πα′)μp

1

(p+1)! (ε
v)a0···ap Hi

a0···ap
Tr (λα).

(26)
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The following rule should be considered to be able to produce
an infinite number of scalar (t + s + u)-channel poles:

A = V i
α(C p+1, φ)G

i j
αβ(φ)V

j
β (φ, �̄,�, A). (27)

Moreover, if we take the following couplings:

Tp(2πα′)3

4

[
�̄γ i Db�Daφi Fab + �̄γ i Db�Fab Daφi

]
, (28)

overlook the commutator terms inside all the covariant
derivative terms, take into account Tr (λ2λ3λβλ1) ordering to
the first coupling in (28), and also apply Tr (λ2λ3λ1λβ) order-
ing to the second coupling in (28) (λβ holds for Abelian scalar
field), then one can easily find the following vertex operator:

V j
β (φ, �̄,�, A) = −i

Tp(2πα′)3

2
ūγ (γ j )γ δu

δ

×
(

− t

2
k3.ξ1 + s

2
k2.ξ1

)
Tr (λ1λ2λ3λβ), (29)

where momentum conservation is also used.
By replacing (29) into (27), keeping the second term of

the expansion of L2 for n = m = 0 (appearing in (25)) inside
(27), and comparing it with the string amplitude, we are able
to clarify that just the first simple (t + s + u)-channel scalar
pole in (24) can be precisely produced.

But our string amplitude has infinite (t + s + u)-channel
scalar poles, so keeping fixed the simple propagator and
V i
α(C p+1, φ) (there are no corrections to them), one imme-

diately explores that all infinite massless scalar poles should
be derived by making use of all order corrections to two on-
shell fermions, one on-shell gauge, and one off-shell scalar
field of type IIB as follows:

Ln,m = π3α′n+m+3Tp

(
an,mTr

[
Dnm

(
�̄γ i Db�Daφi Fab

)

+Dnm

(
�̄γ i Db�Fab Daφi

)
+ h.c.

]

+ibn,mTr

[
D′

nm

(
�̄γ i Db�Daφi Fab

)

+D′
nm

(
�̄γ i Db�Fab Daφi

)
+ h.c.

])
, (30)

where the following definitions for the higher derivative oper-
ators of Dnm,D′

nm should be taken as well:

Dnm(E FG H) ≡ Db1 · · · Dbm Da1 · · · Dan E F Da1

· · · Dan G Db1 · · · Dbm H

D′
nm(E FG H) ≡ Db1 · · · Dbm Da1 · · · Dan E Da1

· · · Dan FG Db1 · · · Dbm H.

First, let us deal with the terms carrying an,m coefficients. If
we consider the first and the second term of (30) as well as
their hermitian conjugate (with the suitable ordering, men-
tioned earlier on), we obtain

V j
β (φ, �̄,�, A) = −i

Tp(2πα′)3

4
ūγ (γ j )γ δu

δ(tmsn +tnsm)

×Tr (λ1λ2λ3λβ)an,m

(
− t

2
k3.ξ1 + s

2
k2.ξ1

)
. (31)

Now if we would substitute (31) into (27) and would keep
the second term of the expansion of L2 for general n,m inside
(27), we would be able to show that all infinite (t + s +
u)-channel scalar poles of string amplitude (24) are exactly
produced in field theory as well.

If we use the same standard field theory techniques (with
the above ordering) for the terms carrying the coefficients of
bn,m then we derive the following vertex to all orders of α′:

V j
β (φ, �̄,�, A)=−i

Tp(2πα′)3

4
ūγ (γ j )γ δu

δ(tmun +smun)

×Tr (λ1λ2λ3λβ)bn,m

(
− t

2
k3.ξ1 + s

2
k2.ξ1

)
. (32)

Now by applying the on-shell condition (t + s + u = 0) at
each order ofα′ to the above vertex, one can easily see that the
common coefficient in both string and field theory amplitudes
is precisely re-constructed. It means that all order α′ correc-
tions for the terms including bn,m coefficients are exact.

On the other hand, one can show that all order α′ correc-
tions to two fermions and two scalar fields of type IIB are
given by

Ln,m = π3α′n+m+3Tp

(
an,mTr

[
Dnm

(
�̄γ a Db�Daφi Dbφi

)

+Dnm

(
Daφi Dbφi �̄γ

a Db�
)

+ h.c.

]

+ibn,mTr

[
D′

nm

(
�̄γ a Db�Daφi Dbφi

)

+D′
nm

(
Daφi Dbφi �̄γ

a Db�
)

+ h.c.

])
. (33)

It is worth trying to point out some comments on two
fermion–two gauge couplings which carry three momenta in
world volume directions. Consider the following coupling:

�̄γ a Da�Fbc Fbc. (34)

If we take all possible orderings Tr (λ2λ3λ1λβ) and Tr (λ2λ3

λβλ1) where λβ is related to the Abelian gauge field, then
we obtain the vertex of two on-shell fermion fields and one
on-shell/one off-shell gauge field on the field theory side as

v
β
b (�̄2, �3, A1, A) = ūγ au(−ik3a)

×
[
(t + s)ξb + 2kb

1(−k2.ξ1 − k3.ξ1)

]
Tr (λ1λ2λ3λβ).

(35)

However, if we apply the on-shell equation for the fermion
fields to (35) then we understand that the above coupling
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(34) does not have any contribution to the field theory ampli-
tude. By the same analysis, one can explicitly show that
�̄γ a Db�Fbc Fac produces some extra terms which do not
appear in the string theory amplitude of C A�̄� of type IIB.
Therefore we conclude that there are no α′ corrections to two
fermion–two gauge field couplings of type IIB. One may try
to find out this S-matrix in type IIA to see whether or not
there are α′ corrections to IIA theory [70,71].

4 An infinite number of t, s-channel fermion poles

If we consider the fact that the exchanged strings must have
just a non-zero fermion number, then we believe neither
gauge/scalar nor any other strings (except fermions) can
be propagated. Therefore to be able to find all infinite t, s-
channel poles, fermions with the same chirality should be
propagated. If we would simplify all the terms appearing in
our S-matrix and make use of various identities then we could
find that both all infinite t- and s-channel poles make sense
just for the p = n case and at the end of the day they do come
from A26 as follows:

A = α′μpπξ1a(2ik1b)

(p)! ū A
1 (γ

b)ABu B
2

∞∑
n=−1

bn
1

t
(u + s)n+1

×(εv)a0···ap−1a Ha0···ap−1 Tr (λ1λ2λ3). (36)

Note that in the above we have also all infinite s-channel
poles, however, as we know, the amplitude is antisymmetric
with respect to (s ↔ t). Thus we just produce all t-channel
poles.

The Feynman rule for producing all infinite fermionic t-
channel poles is

A = Vα(C p−1, �3, �̄)Gαβ(�)Vβ(�, �̄2, A1). (37)

To produce the fermionic propagator, one needs to make use
of the last term of (21). Note that in order to be able to read
off Vβ(�, �̄2, A1), one must extract the covariant derivative
of fermion inside its kinetic term (Daψ = ∂aψ − i[Aa, ψ])
and in particular take into account all the desired orderings
of the fermions and the scalars, such that

Vβ(�, �̄2, A1) = −iTp(2πα
′)ū A

1 γ
a
Aξ1a

(
Tr (λ1λ2λ

β)

−Tr (λ2λ1λ
β)
)

Gαβ(ψ) = −iδαβ
Tp(2πα′)k/

= −iδαβγ a(k1 + k2)a

Tp(2πα′)t
. (38)

Now if we take the following coupling of one on-shell RR
(p − 1)-form field, an on-shell/an off-shell fermion, then
Vα(C p−1, �̄,�) can be explored as

i
(2πα′)μp

(p)! Tr
(

Ca0···ap−2�̄γ
b∂b�

)
(εv)a0···ap−2 , (39)

where one has to keep in mind the equations of motion for
fermions (k/ 2aū = k/ 3au = 0) as well.

One can now apply some field theory methods to the above
coupling (39) to be able to discover the vertex of one RR
(p − 1)-form field and an on-shell/an off-shell fermion as

Vα(C p−1, �3, �̄)

= i
(2πα′)μp

(p)! (εv)a0···ap−2 Hb
a0···ap−2

γ bu2Tr
(
λ3λ

α
)
. (40)

If we substitute (38) and (40) to the Feynman rule in (37)
then the field theory amplitude will give rise just to the first
massless t-channel fermion pole of the string amplitude (for
n = −1 in (36)).

However, as we can see the string amplitude has infinite
t, s-channel fermion poles. To be able to obtain all t-channel
fermion poles, we need to propose all the infinite exten-
sions of the higher derivative corrections to (39). Indeed the
same idea held here as well, namely the kinetic term of the
fermion fields is already fixed in the effective action so it
will not receive any correction, likewise the simple fermion
pole has no correction. Thus we need to work out an infi-
nite number of higher derivative corrections to the vertex of
Vα(C p−1, �3, �̄) as

i
(2πα′)μp

(p)!
∞∑

n=−1

bn(α
′)n+1Tr

×
(

Ca0···ap−2 Da0 · · · Dan �̄γ b Da0 · · · Dan∂b�
)

×(εv)a0···ap−2 . (41)

By making use of (41), we are able to define all infinite
extensions of Vα(C p−1, �3, �̄) to all orders in α′ as follows:

Vα(C p−1, �3, �̄) = i
(2πα′)μp

(p)! (εv)a0···ap−2 Hb
a0···ap−2

γ bu2

×Tr
(
λ3λ

α
) ∞∑

n=−1

bn(α
′k3.k)

n+1. (42)

Two remarks are in order. Basically one has to overlook all the
connections inside the definitions of the covariant derivatives
and the equations of motion should have been applied to
the field theory amplitude to be able to obtain the infinite
t-channel fermion poles of the string amplitude.

If we substitute (42) into (37) then we observe that all
the infinite fermion poles, either t- or s-channel, of (36) are
precisely reproduced.

Hence we have seen that not only the RR (p−1)-form field
proposed all infinite α′ corrections to two fermions but also
it imposed all order α′ corrections to one on-shell gauge and
an off-shell scalar field in the world volume of BPS branes
in type IIB.

Therefore we conclude that this phenomenon seems to be
universal and indeed is useful to determine all the massless
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poles of the higher point functions in type IIB superstring
theory.

Finally it would be nice to observe whether there are
α′ higher derivative corrections to four fermions or to two
fermion–two gauge field couplings of type IIA [70]; more
significantly, to see whether or not this universal conjecture
on all order α′ corrections of type IIB holds for type IIA.

5 Conclusions

In this paper we have carried out the conformal field theory
calculations and obtained the entire 〈VC Vψ̄VψVA〉 amplitude
in IIB superstring theory. Unlike the 〈VC Vψ̄VψVφ〉 correla-
tor, here we just found an infinite number of scalar poles for
the p = n case. All infinite t, s-channel fermion poles are
also discovered.

We have seen that V α
i (C p+1, φ) and simple poles do not

receive any corrections. Thus infinite (t + s + u)-channel
massless scalar poles help us in exploring all order α′ cor-
rections to one off-shell scalar, one on-shell gauge field, and
two on-shell fermion fields of type IIB. In particular the com-
putations of this paper showed that there are noα′ corrections
to two fermion–two gauge field couplings of type IIB super-
string theory.

As we have clarified, inside the RR vertex operator wind-
ing modes are not included in a non-compact space. Hence
we come to the fact that one should not apply T-duality to the
previous results. For instance in the 〈VC Vψ̄VψVφ〉 ampli-
tude in type IIB, we derived all infinite corrections to two
fermion–two scalar couplings while in this paper using direct
computations we have shown that there are no corrections to
two gauge–two fermion fields and more importantly there is
not even one single u-channel gauge pole either. Therefore
one must apply direct calculations and should follow some
prescriptions to the S-matrices in superstring theory.

Our computations are done in such a way that all the prop-
agators have been found by the conformal field theory for-
malism and we used the doubling trick, however, RR has two
sectors with (αn, α̃n) oscillators. It is not clear to us how to
deal with α̃n . Just for completeness, we refer to [72] for fur-
ther information. Basically one has to use an analytic contin-
uation, which means that the closed string must be regarded
just as a composite state of the open strings.

Therefore background fields in the DBI effective action
must be some functions of SYM fields. One has to consider
all background fields as composite states and eventually all
background fields should include Taylor expansions as has
been discussed in [11].
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