
 
Fig.1(a) HEVC Coding Structure 

 

 
Fig.1(b) Illustration of ME Process 
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Abstract—Video compression is required in applications like 

video network communications, video conference, broadcasting, 

live streaming and video storage. H.265/HEVC is the latest video 

compression standard, jointly developed by JCT-VC that 

provides the highest compression efficiency without significant 

loss in original video source quality. Among all the tools in 

HEVC encoder, Motion Estimation (ME) is one of the most 

complex tasks. The present paper analyses the ME algorithm 

present in HEVC standard reference software and proposes two 

improvements to the algorithm. Our results show a decrease on 

the computational complexity by almost 30% with negligible loss 

in the video quality. 
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I.  INTRODUCTION 

HEVC is the latest video coding standard currently under 
joint development by ISO/IEC MPEG and ITU-T VCEG. The 
MPEG and VCEG have established JCT-VC (Joint 
Collaborative Team on Video Coding) [1]. The main goal of 
HEVC is to increase compression performance compared to 
existing standard H.264/AVC in a range of 50% reduction in 
bitrate without affecting output video quality [2]. For doing 
this, many new coding tools were implemented and upgraded 
from H.264/AVC standard. One of them is the quad-tree based 
coding structure. The HEVC coding structure is more 
generalized into quad-tree based coding units (CUs), as shown 
in Fig.1 (a). Each CU is recursively sub-divided into quad-tree 
based prediction units (PUs), of either intra-type or inter-type 
or skip type or merge type. Each PU is further sub-divided into 
quad-tree based transform units (TUs). 

For compressing a video, the encoder typically exploits 
spatial redundancy (inside a frame) and temporal redundancy 
(between frames). To exploit temporal redundancy, the video 
encoder uses predictive encoding. In this process, each block in 
a video frame searches for best matched block in past/future 
frame ROI (Region of Interest, technically termed as search 
window), and only the motion vector (which denotes the shift 
of entire block in past/future frame) is encoded instead of 
encoding the entire block. This process is called Motion 
Estimation (ME) and reduces the bitrate of entire video to a 
huge extent, at the cost of huge increase in computational 
complexity. So, reducing the computational complexity of ME 

process, without affecting rate-distortion performance is a 
challenging task. The process of ME is shown in Fig.1 (b).  

As shown in Fig.1(b), the task of ME is to search best 
matched block of current frame in the search window. The best 
matched block is the block which has minimum cost value, 
defined in Eq.1. 

 )(. PMVMVRDJ MotionMV −+= λ  (1) 

where J is the lagrangian cost, D is the distortion between 

current and reference block, λ denotes lagrangian multiplier, 
PMV denotes the predicted motion vector, MV denotes the 
estimated motion vector and R represents bitrate or bits 
required to encode the motion vector difference “PMV-MV”. 
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Fig.2.Illustration of ME Tools in (a) Typical Fast ME 

Algorithm (b) TZS ME Algorithm 
 

The distortion is measured by using the matching criteria like 
SAD (Sum of Absolute Difference) or SSD (Sum of Squared 
Difference) or MSE (Mean Square Error). The most commonly 
used and simplest matching function is SAD defined in Eq.2. 
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where C represents the current block and R denotes reference 
block and MxN is the size of the current block.  

If the ME algorithm searches every block in search 
window, then it is called full search ME algorithm. If the 
algorithm, skips some of the blocks, that are less likely to be 
the best matched block, then it is classified as fast search ME 
algorithm. The present paper provides an improvement to 
existing fast ME algorithm present in HEVC encoder of 
reference software HM [3]. Section II provides detailed 
explanation of ME algorithm and its tasks. Section III explains 
the proposed improvements. Section IV shows the simulation 
results and finally section V summarizes with concluding 
remarks. 

II. MOTION ESTIMATION TOOLS AND ALGORITHMS  

There are numerously many fast ME algorithms, that were 
developed for fast video encoding. The MPEG based standards 
including MPEG-2, H.264/AVC and HEVC use hybrid fast 
ME algorithms to estimate the best Motion Vector (MV). All 
these fast ME algorithms have four common tools to find the 
minimum cost block, as explained in the following section.  

A. Fast ME Coding Tools 

The most common tools for fast ME algorithms are 1) 
Initial Search point Prediction (ISP) Algorithm 2) Global 
Search Pattern (GSP) 3) Early Termination (ET) Algorithm 4) 

Fine Refinement Algorithm. The ISP algorithm aims at 
predicting the starting point of the ME process, by using the 
MVs of previously coded neighboring blocks. The GSP 
algorithm searches a global estimate of the motion vector by 
using grid patterns and reduces the possibility of the MV in 
getting trapped to local minima. The ET algorithm terminates 
the ME algorithm to save the computation time, if the current 
cost of MV falls below a predefined threshold (fixed or 
adaptive threshold). Finally, if the ET condition is not satisfied, 
the fine refinement algorithm converges to local minima, using 
fixed search patterns. The coding tools for a typical fast ME 
algorithm is shown in Fig.2 (a). 

B. Fast ME Algorithms 

The H.264/AVC introduces 3 fast ME algorithms - EPZS 
(Enhanced Predictive Zonal Search), UMHexS 
(Unsymmetrical-cross Multi-Hexagonal grid Search), and 
SUMHexS (Simple UMHexS) algorithms [4-5]. The EPZS 
algorithm uses four prediction algorithms for ISP stage and 
finds the best starting point. It does not use any global search 
pattern. The UMHexS and SUMHexS algorithms use basic 
prediction algorithms for ISP stage but focus more on global 
search patterns. They use two patterns – unsymmetrical cross 
pattern and multi-hexagonal grid patterns for finding the global 
minima. The HEVC uses TZS (Test Zone Search) algorithm 
for ME [6-7]. It has two global search patterns – exponential 
diamond grid patterns and search window sub-sampled pattern. 
The detailed flow of TZS ME algorithm is shown in Fig.2 (b).  

C. The TZS ME Algorithm 

As shown in flowchart of Fig.2 (b), in the initial step, the 
TZS ME algorithm uses spatial up, left, up-right, median 
predictors to predict initial search point. After ISP stage, the 
TZS algorithm uses diamond grid pattern and sub-sampled 
search window pattern to find the global minimal cost search 
point, as shown in Fig. 3(a), and Fig.4(a). The grid pattern, 
shown in Fig.3 (a) is an exponentially increasing grid pattern. 
The initial diamond close to starting search point (center point) 
has a stride-length (distance between center point and vertices 
of pattern) of 1. The stride-length continues to increase from 
starting point by a factor of 2 until the search range, i.e. 
2,4,8,16,32 and so on. The sub-sampled search window 
samples the entire search window uniformly, and finds the 
minimum cost MV. Then the minimum cost point in both the 
search patterns is taken as the global minimal point. In the fine 
refinement stage, the TZS algorithm performs diamond grid 
pattern search with the new minimal point as search center. 
The refinement process continues, until the new search is the 
center point of the diamond grid pattern. 

III. PROPOSED IMPROVEMENTS TO HEVC FAST ME 

ALGORITHM 

The present paper proposes two improvements to the TZS 
fast ME algorithm present in the HEVC reference software. 
The first improvement is at global search pattern stage, and the 
second improvement is at fine refinement stage. Each of these 
improvements is explained in the following sub-sections. 



 RND 2log85 +=  (3) 

 RNH 2log65 +=  (4) 

A. Rotating Hexagon Pattern For Global Search 

As seen in Fig.3 (a), the diamond grid pattern has 8 search 
points per each grid. If we replace the diamond pattern with 
hexagonal pattern as shown in Fig 3 (b), then each grid has 
only 6 points. For a search range of 64, there will be 6 grids in 
diamond or hexagonal patterns, and hence there will be 53 
points (8x6+4+1) for diamond and 41 points (6x6+4+1) for 
hexagonal pattern. The number of search points for diamond 
(ND) and hexagonal (NH) pattern, for a given search range ‘R’ 
are shown in Eq.3 and Eq.4. Hence, there will be 

computational complexity reduction of around 20% for each 
current block. However, the horizontal hexagon shown in 
Fig.3(b) is the most appropriate for estimating horizontal 
motion and less appropriate for estimating horizontal motion 
since it has more horizontal search points than vertical points, 
and for estimating vertical motion the horizontal hexagons 
performs more loops in fine refinement stage. On the other 
hand, the vertical hexagons shown in Fig.3(c) are good for 
vertical motion and lose performance for estimating horizontal 
motion. Hence the present paper proposes a rotating hexagonal 
pattern as shown in Fig.3 (d) for balancing the motion 
estimation in both horizontal and vertical directions. 

B. Hexagonal Based Fine Refinement 

The TZS ME algorithm uses the same diamond grid pattern 
for performing the fine refinement of MV. Once the global 
minimum point is estimated, it is most likely that the optimal 
point lies in the vicinity of the global MV and the distortion 

function in the local refinement stage is a monotonically 
decreasing function. Hence a gradient descent based algorithm 
using hexagonal pattern is implemented for refining the MV.  
The algorithmic steps are shown in Fig.4 (b). In the first step, 
the refinement algorithm forms a small hexagon with 6 search 
points, around the global minimum point. The minimal point in 
the hexagon is taken as the new center point to form a new 
hexagon. The search continues until the minimum point in the 
hexagon is the center point. Then the algorithm checks for the 
remaining unchecked 10 points around the center point, as 
shown in Fig.4 (b). 

IV. SIMULATION RESULTS 

The simulations have been carried out on HEVC reference 
software HM 9.0 [3]. Table 1 shows the comparison results for 
ME time and number of ME search points. TZSD and TZSRH 
indicate the results for TZS algorithm with diamond and 
rotating hexagonal pattern. TZSRHFR denotes the results for 
rotating hexagonal pattern with hexagonal fine refinement. 
Fig.4 shows the RD (Rate Distortion - bitrate vs. PSNR) curves 
for all the three patterns TZSD, TZSRH, TZSRHFR with QPs 
(Quantization Parameters) 22, 27, 32 and 37. The PSNR 
represents the video quality and is measured using the Eq.5. 
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where MSE represents mean square error and 255 is the 
maximum value of a 8-bit pixel (luminance component). 

The simulation results show that the rotating hexagonal 
pattern gains 15% of ME speed or 16% reduction of total 
number of search points, compared to diamond pattern. 
Further, modification of fine refinement stage gains 30% of 
ME complexity which means that the total number of search 
points is reduced by 30%. The RD curves in Fig.4 and the 
Bjontegaard-delta [8] results in Table 2 also show that there is 
negligible loss in rate-distortion performance. 

V. CONCLUSION 

The fast ME algorithm present in HEVC reference software 
is analyzed and improved. Simulation results show that 
computational complexity was reduced by 30% without 
affecting rate-distortion performance. The algorithm can be 
further improved by adding more initial search point prediction 
algorithms. 
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Fig.3. Grid Search Patterns for Motion Estimation with Stride Length 8. 
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Table 1. ME Time Comparison Results between Diamond and Rotating Hexagon Patterns 

Sequence QP 

ME Time (sec)    ∆ ∆ ∆ ∆ ME Time (%)    No. of Search Points ‘N’ ( x 109)    ∆∆∆∆N (%)    

TZSD TZSRH TZSRHFR 
TZSD vs.  

TZSRH 

TZSD vs.  

TZSRHFR 
TZSD TZSRH TZSRHFR 

TZSD vs.  

TZSRH 

TZSD vs.  

TZSRHFR 

BasketballPass 

(416x240 @ 50fps) 

22 71 58 44 18.31 38.03 0.676 0.549 0.437 18.76 35.31 

27 60 50 41 16.67 31.67 0.558 0.453 0.364 18.76 34.79 

32 50 41 34 18.00 32.00 0.433 0.353 0.289 18.41 33.29 

37 42 34 27 19.05 35.71 0.333 0.272 0.225 18.49 32.40 

RaceHorses (416x240 

@ 30fps) 

22 130 118 92 9.23 29.23 1.297 1.141 0.918 12.02 29.18 

27 119 105 85 11.76 28.57 1.133 0.990 0.795 12.59 29.83 

32 101 91 72 9.90 28.71 0.915 0.784 0.633 14.31 30.82 

37 84 73 59 13.10 29.76 0.688 0.583 0.474 15.28 31.14 

BQMall (832x480 @ 

60fps) 

22 284 246 198 13.38 30.28 2.734 2.370 1.929 13.31 29.44 

27 252 218 176 13.49 30.16 2.315 1.985 1.621 14.25 29.96 

32 217 185 148 14.75 31.80 1.856 1.566 1.295 15.64 30.23 

37 180 154 129 14.44 28.33 1.458 1.227 1.021 15.81 29.95 

PartyScene (832x480 

@ 50fps) 

22 245 210 174 14.29 28.98 2.401 2.058 1.703 14.30 29.09 

27 224 187 157 16.52 29.91 2.093 1.776 1.471 15.14 29.74 

32 195 160 137 17.95 29.74 1.717 1.433 1.197 16.52 30.29 

37 163 133 115 18.40 29.45 1.353 1.114 0.939 17.70 30.62 

FourPeople 

(1280x720 @ 60fps) 

22 176 145 120 17.61 31.82 1.642 1.367 1.184 16.75 27.90 

27 161 130 110 19.25 31.68 1.469 1.223 1.079 16.77 26.60 

32 147 120 102 18.37 30.61 1.328 1.095 0.987 17.48 25.67 

37 134 112 97 16.42 27.61 1.209 0.990 0.911 18.14 24.68 

Average 15.54 30.70  16.02 30.05 

 

   

  

Table 2. Bjontegaard Delta Results. 

Sequence 

BD-PSNR-Y (dB) BD-BitRate (%) 

TZSD 

vs.  

TZSRH 

TZSD vs.  

TZSRHFR 

TZSD 

vs.  

TZSRH 

TZSD vs.  

TZSRHFR 

BasketballPass -0.011 -0.014 0.208 0.296 

RaceHorses -0.027 -0.045 0.561 0.933 

BQMall -0.004 -0.045 0.104 0.564 

PartyScene -0.007 -0.011 0.153 0.257 

FourPeople -0.006 -0.011 0.234 0.382 

Average -0.011 -0.025 0.252 0.487 
 

Fig.4. RD Curves for Video Sequences with QP=37,32,27,22. 

 


