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Resumo 
 

 

A resistência bacteriana é um ponto importante de estudo em investigação 
relacionado com o ambiente e a saúde pública, devido à ineficiência dos 
antibióticos, que resulta de uma subpopulação de células bacterianas que 
entram num chamado estado dormente. Diversos estudos indicam que os 
sistemas toxina-antitoxina estão envolvidos nessa persistência bacteriana. Um 
exemplo de um sistema toxina-antitoxina é o complexo HipAB, em que a HipA 
e a sua respetiva antitoxina estão intimamente relacionadas. HipB é muito 
instável e propenso à degradação por proteases (por exemplo: Lon protease), 
deixando a HipA a exercer o seu efeito tóxico nas células, Para estudar as 
conformações e interações da HipAB na Shewanella oneidensis, foi necessário 
sob expressar e purificar as proteínas e promover as reações de cross linking 
que foram analisadas por espectrometria de massa. A reações de cross linking 
foram realizadas usando o BS3 (Bis[sulfosuccinimidyl] suberate), um cross 
linker in solution, testado a diferentes concentrações  (0.5mM, 1mM, 2mM) 
para encontrar as condições de reação mais eficientes.  Pelas análises de 
SDS-PAGE foi possível concluir que a melhor concentração de cross linker foi 
a mais alta testada. Para além disso, foram feitas algumas previsões de 
possíveis sítios de ligação, intra- ou intermolecular, no entanto só foi possível 
identificar uma das interações entre a HipA(143) com a HipA(264). 
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Abstract 

 
Bacterial resistance is a major issue in research related to environmental and 
public health, due to the ineffectiveness of antibiotics, resulting from a 
subpopulation of bacterial cells entering a dormant state. Multiple studies 
revealed that toxin-antitoxin systems are involved in such bacterial persistence. 
An example of such a toxin-antitoxin system is the HipAB complex, where 
HipA, and its cognate antitoxin are intimately related. HipB is very unstable and 
it is prone to degradation by proteases (e.g. Lon protease), leaving HipA 
exerting its toxic effect on cells. To study the conformations and interactions 
from HipAB in Shewanella oneidensis, it was necessary to overexpress and 
purify the proteins and to perform cross linking reactions which were analysed 
by mass spectrometry. The cross linking reactions were performed with BS3 
(Bis[sulfosuccinimidyl] suberate), an in solution cross linker, tested at different 
concentrations (0.5mM, 1mM, 2mM) to find more efficient reaction conditions. 
By SDS-PAGE analysis it was possible to conclude that the best cross linker 
concentration is the highest tested. Furthermore, some predictions from 
possible intra- and intermolecular binding sites were made, unfortunately it was 
only possible to identify an interaction between HipA(143) and HipA(264). 
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1. Introduction 

Bacterial antibiotic resistance and tolerance play an important role in bacterial survival upon 

antibacterial treatment being a major issue in research related to public health. One mechanism 

by which bacteria defend themselves against antibiotics is a transition towards a dormant state 

called persistence, by which, cellular metabolism and growth are slowed. Recent studies led to 

the concept that toxin-antitoxin (TA) complexes are one of the systems involved in the 

regulation of bacterial persistence (Schumacher et al., 2009). In Escherichia coli, a HipA gene 

encodes a toxin protein of approximately 433 amino acid residues (Schumacher et al., 2009). 

HipA is a high persistence toxin that is neutralized by its cognate antitoxin, HipB. Release of HipB 

leads to activation of HipA that negatively regulates protein translation. Curiously, during a 

transposon mutagenesis screen for proteins involved in biofilm formation, a HipA homologue in 

the metal reducing organism Shewanella oneidensis MR-1 was observed (Theunissen et al., 

2010). This study aimed to analyse the interactions of this HipA homologue with its antitoxin 

and make a structural comparison with the E. coli complex.   

 

1.1. Biofilms formation in bacterial persistence  

In their natural environment the majority of bacteria exist as a complex and organized 

ecosystem, called biofilm, rather than as individual planktonic cells. Biofilms are formed when 

bacterial cells attach themselves to a biotic or abiotic surface (Costerton et al., 1999). The 

bacterial cells have specific mechanisms to attach to a surface, and to develop the biofilm 

structure, as well for decoupling from the biofilm. It is suggested that biofilm is a single entity 

that has control over the individual member to yield the activities that are necessary for colony 

survival (Wolcott et al., 2008).  

A biofilm has a “mushroom-like” shape that usually consists of several microcolonies of cells 

which are separated from each other by a network of water channels (Stoodley et al., 2002). 

The water channels allow the uptake of nutrients and the removal of metabolites, but are also 

used for intercellular communication by means of signalling molecules that are secreted. The 
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cells form a matrix and produce an extracellular polymeric substance (EPS) that gives the biofilm 

strength and protection (Stoodley et al., 2002). Therefore, a biofilm is not a homogeneous 

structure and the actual structure will depend on many parameters, such as the microbial 

community composition, the nutrient stock and the physicochemical properties of the 

environment.  

 

1.2. Persister Cells 

Antibiotics play a major role in the treatment of infectious diseases, but their effectiveness is 

highly compromised by the rise of antibacterial resistance. An antibacterial agent can kill 

bacteria by inducing the formation of corrupted products which lead to cell death (Figure 1) 

(Lewis, 2010). However, this can be prevented by antibiotic resistance or tolerance from the 

bacteria to the antibacterial agent. Within a population, particularly in a biofilm, it has been 

demonstrated that a subgroup of cells, called persister cells, tend to survive antibiotic 

treatment. When a bacterial population is treated with a single antibiotic, only regular cells die, 

whereas persisters can survive. Persister cells are not mutant cells but dormant cells that are 

formed stochastically (Yamaguchi et al., 2011). The antibiotic tolerance results from a change in 

sensitivity to elicitors (Ayres and Schneider, 2012), meaning that the antibiotic has no longer 

effect on the cells. Being antibiotic tolerant is quite different from being antibiotic resistant. 

Antibiotic resistance results from a random or stress-related mutation in the bacterial genome 

or it can result from horizontal gene transfer, and is permanent or hereditary, since this change 

occurs at the gene level. When exposed to antibiotics, the mutant bacteria are able to survive.  
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Figure 1 - Antibiotic resistance and antibiotic persistence scheme (image adapted from Lewis, 2010). 

 

This phenomenon is more pronounced in a biofilm environment (Yamaguchi et al., 2011). 

Regular cells within a biofilm are likely to be killed, but the matrix protects the persister cells. 

When the concentration of antibiotic decreases, the persisters repopulate the biofilm (Figure 2).  

 

 

Figure 2 - Biofilm formation on a surface including persister cells and regular cells. High doses of antibiotic applied 

kill the regular cells. The matrix from the biofilm protects the persister cells and cause the relapse of the infection 

(Lewis, 2010). 
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1.3. Toxin-Antitoxin Systems 

The development of persistence is partially controlled by so-called toxin-antitoxin systems. It is 

thought that toxins may promote cellular adaptation by slowing down cell growth, inhibiting or 

leading to cell death as a result of physical and chemical stress (Van Melderen, 2010, Van 

Melderen and De Bast, 2009). A toxin-antitoxin system generally consists of two components: a 

stable toxin and a labile antitoxin (Van Melderen, 2010). The antitoxin can be translated into an 

mRNA or a protein, which is mainly what defines the toxin-antitoxin type systems. The antitoxin 

instability is typically due to the less ordered structure which makes it more susceptible to 

degradation.  

 

1.3.1. Toxin-Antitoxin system Types 

Toxin-antitoxin (TA) systems can be classified into three different types (type I, II and III), 

depending on the antitoxin nature and/or mode of action. Antitoxins can be either RNA 

molecules (type I and III) or proteins (type II). RNA antitoxins interfere with the toxin function by 

forming an RNA-protein complex (Yamaguchi et al., 2011). On the other hand, the protein 

antitoxin interacts with its toxin, neutralizing its toxic effect. Type I and II systems were 

discovered on plasmids in the 80s (Jaffe et al., 1985, Ogura and Hiraga, 1983) and in 

chromosomes in the 90s (Masuda et al., 1993). In this work, we will focus on type II systems. 

Typically, they are organized in an operon that consists of a gene encoding for a small toxin, 

with an approximated size of 400 amino acid residues that is preceded by a gene encoding for 

its antitoxin (Figure 3). 

 

Figure 3 - Typical TA system loci organization, with the antitoxin preceding the toxin, their sizes and distance 

profiling are schematically represented (image from Sevin and Barloy-Hubler, 2007). 
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1.3.1.1. Type II toxin-antitoxin system types 

Type II TA systems have been the most studied systems (Van Melderen, 2010). It is shown that: 

(a) TA systems are organized in operons with the antitoxin gene being upstream of the toxin 

gene, which are usually overlapping by a few bases (Figure 3) (Yamaguchi and Inouye, 2009, 

Sevin and Barloy-Hubler, 2007); (b) the toxin and its antitoxin form a stable TA complex to block 

the function of the toxin; (c) the antitoxin is more labile than the toxin so in order to block the 

toxic effect from the toxin it needs to be continuously produced; (d) antitoxins are degraded by 

stress-induced proteases releasing toxins from the TA complexes in the cell, which leads to 

growth inhibition or cell death (Christensen et al., 2004). The toxin and antitoxin have different 

lifetimes. The toxin is highly resistant to proteases, whereas the antitoxin can be degraded by a 

specific protease belonging to the Lon family of ATP-dependent proteases (Figure 4) (Yamaguchi 

et al., 2011). 

 

Figure 4 - Toxin-antitoxin system scheme. The antitoxin neutralizes the toxin. However, the antitoxin is very labile 

and unstable and can be degraded in the presence of proteases allowing the toxin to have its toxic effect in its 

different cellular targets (image from (Williams and Hergenrother, 2012). 

 

1.3.2. Toxin-Antitoxin systems in chromosomes 

Type II systems are quite common in bacterial chromosomes and are often found in multiple 

copies with the genome (Makarova et al., 2009). Chromosome-encoded TA systems are thought 
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to confer an evolutionary advantage on the bacterial population as they enter in the regulatory 

network of the host cell. There are no systematic studies on how chromosomal TA systems 

appeared however, for type II TA systems is quite clear that they have entered host cells by 

horizontal gene transfer (Pandey and Gerdes, 2005). Latest studies have shown that 

chromosomal type II TA systems have some similarities to the plasmid-encoded TA systems, as 

they can be involved in the stabilization of genomic fragments or in integrative processes of 

conjugative elements (Leplae et al., 2011).  

 

1.3.3. HipAB and persistence in Escherichia coli 

The HipAB operon is constituted of 2 genes, HipB and HipA (Figure 4). HipAB is a typical type II 

TA system. The operon encodes for two proteins with 10kDa and 51kDa, HipB and HipA 

respectively (Schumacher et al., 2009) playing an important role in persistence formation. The 

persistence formation occurs when HipA is overexpressed (Falla and Chopra, 1998). However, 

HipA can be neutralized by HipB, acting as a neutralizer and a transcriptional repressor of HipAB 

operon (Shanbhag et al., 1994). 

The HipA gene is associated to different phenotypes, such as the toxic wild-type HipA and the 

high persistent or cold sensitivity of HipA7. The HipA7 mutant contains a higher frequency 

ability of 10-2 persistent cells when compared to the wild-type. It was shown that HipA7 is 

nontoxic, and that it is the result of a double mutation (G22S and D291A) (Korch et al., 2003). In 

addition, in the absence of HipB, it was shown that HipA7 expression ensures a high persistence 

phenotype, leading to the conclusion that HipB is not essential for this phenotype. Persistence 

and toxicity might, therefore, be independent: the HipA7 mutant seems to be less efficient in 

inhibiting macromolecule synthesis as compared to the wild-type HipA. The HipA7 allele is 

possibly responsible for the tolerance to several antibiotics and other stressful situations (Korch 

et al., 2003, Van Melderen and De Bast, 2009).  
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1.3.3.1. HipB  

Neutralization of the HipA toxin by the HipB antitoxin differs from other TA systems. HipB has 

no known homology with other TA systems antitoxins. Normally, protein antitoxins have a C-

terminal extension which will only bind to its cognate toxin (Hansen et al., 2012). HipB encodes 

for a small DNA-binding protein with a helix-turn-helix DNA-binding motif functioning as a 

regulator of the HipAB operon by binding to a consensus sequence TATCCN8GGATA (being N any 

nucleotide) (Hansen et al., 2012, Korch et al., 2003).  

 

1.3.3.2. HipA 

HipA is a serine/threonine kinase that phosphorylates its targets, being a member of the 

superfamily of phosphatidylinositol 3/4-kinases (Correia et al., 2006, Schumacher et al., 2012, 

Schumacher et al., 2009). E. coli HipA has structural homology with CDK2/cyclin A kinase 

(Schumacher et al., 2009). The structural homology between HipA and CDK2 is highest in the C-

terminal region that contains CDK2 catalytic residues, suggesting that HipA functions as a 

protein kinase, as reported (Correia et al., 2006). A key element in the function of this protein is 

the autophosphorylation of serine 150 by ATP, which plays a major role in the regulatory 

mechanism of HipA (Schumacher et al., 2012). The finding of the autophosphorylation position 

was possible using a mutated HipA in Asp309→Gln309 (D309Q), to compare the ATP binding 

affinity with HipA (Schumacher et al., 2009). Indeed, the D309Q mutation abolishes persistence, 

suggesting that the kinase function of HipA is a key element, resulting in the phosphorylation of 

one or more target proteins. In E. coli, the target of HipA appears to be EF-Tu, the Elongation 

Factor Thermo unstable (Correia et al., 2006).   

 

1.3.3.3. EF-Tu 

HipA acts on the EF-Tu activity by phosphorylation of Thr382. EF-Tu is a prokaryotic elongation 

factor, which, in its non-phosphorylated form, catalyses the formation of a tertiary complex 

with aminoacyl-tRNA and GTP, and is a key mediator in the translation process. EF-Tu belongs to 

the superfamily of guanosine trifosfatases (GTPases) (Van Melderen and De Bast, 2009). EF-Tu is 
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an essential GTP-binding elongation factor that mediates the delivery and entry of charged tRNA 

molecules to the ribosomal A site (Hayes and Van Melderen, 2011). In the Thr382 

phosphorylated state, the GDP-bound conformation favours the elimination of the aminoacyl-

tRNA bound. This bond elimination occurs due to a conformational change to an open form, 

which does not allow the binding to the ribosome obstructing translation (Schumacher et al., 

2009).  

 

1.4. Shewanella oneidensis Metal Reducing 1 

The species Shewanella oneidensis Metal Reducing 1 belongs to the phylum Proteobacteria, 

class γ-Proteobacteria, order Alteromonadales and the family Shewanellaceae. S. oneidensis 

MR-1 stands for "metal reducing", meaning that it can use metals as a terminal electron 

acceptor, a special feature of this bacterium (Bagge et al., 2001). The Shewanellaceae family 

encloses approximately 30 Shewanella species, which can be found in soil and in sediment 

environments; it has also been described as a pathogen in humans and animals (Venkateswaran 

et al., 1999). Shewanella species are gram-negative, capable of surviving and proliferating in 

both aerobic and anaerobic conditions, and exhibit a strong flagellar motility (Theunissen et al., 

2010). This organism has a high ability to spread and form biofilms, which can make it highly 

persistent in the environment. Theunissen et al. (2010) found during a transposon mutagenesis 

screen for proteins involved in biofilm formation a HipA homologue in the metal reducing 

organism S. oneidensis MR-1. HipA (Figure 5) and HipB (Figure 6) show respectively 29.9% and 

20% sequence identity with the E. coli proteins. However, the number of amino acid residues 

differs from E. coli to S. oneidensis, with HipA shorter and HipB longer in S. oneidensis.  

  

http://en.wikipedia.org/wiki/Oxygen
http://en.wiktionary.org/wiki/anaerobic
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Figure 5 - Sequence alignment from HipA in E. coli with HipA in S. oneidensis. The signs : and . under the sequences 

note the different amino acids in the sequences, * stands for the same amino acids. 

 

Figure 6 - Sequence alignment from HipB in E. coli with HipB in S. oneidensis MR-1. The signs : and . under the 

sequences note the different amino acids in the sequences, * stands for the same amino acids. 
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Cross-linking studies have shown that, in solution, HipB forms a dimer (Shanbhag et al., 1994). 

As referred before, HipB binds to HipA and is also a DNA-binding protein. Structural studies 

revealed that HipB in its dimer form interacts with DNA through major groove contacts as well 

as with two HipA molecules. HipA-HipB bound to DNA causes it to bend at an angle of 70˚ which 

is induced by HipB (Figure 7). This deflection ensures that the N-terminal region of HipA can 

bind to HipB subunit and that the C-terminal region of HipA is capable of binding to a different 

HipB subunit (Schumacher et al., 2009). HipB makes use of noncontiguous residues to bind to 

HipA well-ordered domains and not to loops. When HipA is bound to HipB it is neutralized and 

cannot exert its toxic effect, by phosphorylating EF-Tu and interrupting translation of proteins. 

HipA’s interaction with HipB happens in normal conditions; however, the toxic effect can be 

activated due to the presence of certain proteases, able to degrade HipB. Therefore, if HipA 

disengages from the DNA-bound tetramer structure it can exert its toxic effect.  

 

 

Figure 7 - HipA-HipB-DNA complex. (A) HipA-HipB-DNA operator complex, two HipA are represented in blue and 

HipB dimer is in yellow and orange, the DNA is represented in sticks (Schumacher et al., 2009). 
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1.5. Experimental approaches 

A typical workflow for the study of proteins and their interactions usually involves several steps, 

beginning with the overexpression of proteins, additional analyses of the proteins’ profile 

through mass spectrometry (MS) followed by the protein purification by chromatographic 

separation (Figure 8). This study made use of three proteins: HipA, HipB and mutant HipA. The 

mutant HipA, Asp306→Gln306 (D306Q) was selected as this abolishes the activity in E. coli, 

allowing to compare the different behaviours from a persistent and non-persistent bacteria. 

 

 

Figure 8 - Workflow used for the analysis of HipA, HipB and HipA (D306Q). 

 

1.5.1. Protein overexpression and purification techniques 

- Immobilized metal affinity chromatography (IMAC) 

Immobilized metal affinity chromatography allows purifying a protein by its affinity to the resin. 

Often, when cloned, proteins are tagged with histidine. Histidine displays a high affinity to 
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metals. Nickel-nitrilotriacetic acid (Ni-NTA) resin has a high affinity to the 6-histidine-tagged 

proteins, allowing the specific purification of His-tagged proteins.  

 

- Size-exclusion Chromatography 

Size-exclusion chromatography (SEC) allows the purification of proteins according to their 

hydrodynamic volume, which is for globular proteins related to their size. The first compounds 

to be eluted are larger molecules. The Superdex 200 is a separation resin based on highly cross-

linked agarose beads covalently to which dextran molecules are bound. The gel filtration 

properties of the Superdex matrix are led mainly by the dextran chains. 

 

1.5.2. LC-MS analysis 

- High Performance Liquid Chromatography (HPLC) 

Liquid chromatography (LC) is a separation technique based on the distribution of the 

components of a mixture between the mobile phase (a flowing liquid) and a stationary phase 

(sorbents packed inside a column). In HPLC, typically the stationary phase consists of silica 

particles of a smaller size than the ones used in medium pressure chromatography, leading to 

increased resolution, but requiring the use of high pressure systems. HPLC is characterised by its 

high capacity, efficiency, selectivity, and resolution and can be easily automated. 

To optimize the separation of different compounds, recent studies often couple LC with 

detection by mass spectrometry.  

 

1.5.2.1. Mass Spectrometry 

Mass spectrometry (MS) was the main method used for the analysis and monitoring the HipA 

and HipB in these studies.  

A mass spectrometer, in general, is based on four main components: a sample injector, an ion 

source, an analyser and a detector (Figure 9); data obtained are processed using an electronic 
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support, with mass spectra as an output. In more detail, in the ion source the molecules of the 

sample are ionized becoming positively or negatively charged. The ions are then separated by its 

mass/charge (m/z) ratio in the analyser and are detected by the detection system.  

In a mass spectrum, the x axis stands for the m/z, value of the ion and in the y axis is the relative 

abundance represented, using the main abundant ion intensity for normalization.  

 

 

Figure 9 - Mass spectrometer components scheme. 

 

In this study the main ion sources used were the electrospray ionization (ESI) and matrix-

assisted laser desorption ionization (MALDI).  

 

1.5.2.2. Ionization sources used in this project 

- Electrospray Ionization (ESI) 

For electrospray ionisation, the sample is solubilised in a solvent, which is normally more polar 

than the analyte. Thereafter, the solution is injected to the source with a needle which is 

inserted in a metallic capillary with a continuous flux. To make the solution flow out of the 

capillary a potential difference is applied, leading to the formation of a Taylor’s cone. From his 
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cone, charged droplets are released containing a number of dissolved analyte molecules. The 

released droplets are dried with a non-charged gas, like nitrogen, which induces solvent 

evaporation and leads to a decrease on particle size (Figure 10). As the particles get smaller, 

they explode due to charge repulsions, originating in smaller droplets. This process occurs 

several times until there is no solvent present in the solution and only the analyte ions remain 

(El-Aneed et al., 2009). ESI has been widely used in the analysis of biomolecules; its great 

success in the analysis of proteins is due to its ability of producing multiple charges allowing the 

analysis of compounds with a higher molecular weight with a standard mass spectrometer.  

 

 

Figure 10 - Schematic representation of ionization by ESI (image from www.magnet.fsu.edu/). 

 

- Matrix-assisted laser desorption ionization (MALDI) 

In MALDI, ions are desorbed from a solid phase. A sample is first dissolved in a suitable solvent 

and afterwards an excessive amount of an appropriate matrix is added to the sample. In this 

study, the matrix used was α-cyano-4-hydroxycinnamic (α-cyano). After on MALDI plate and 

drying, the plate is loaded into the mass spectrometer and irradiated with a laser beam. Energy 

is absorbed by the crystals and dissipated, with the result that protonated or deprotonated 

sample molecules and the matrix pass to the gas phase, resulting mainly in mono-charged 

molecules (Figure 9) (El-Aneed et al., 2009). 
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Figure 11 - Schematic representation of ionization by MALDI (image fromwww.magnet.fsu.edu/). 

 

The ions that are produced are usually analysed by TOF analysers, and more recently by TOF-

TOF geometry allowing tandem mass experiments and providing additional structural 

information, with high resolution and accuracy. 

 

1.5.2.3. Mass Analysers used in this project 

- Linear Ion Trap 

A linear ion trap results from the application of a specific electric field on a quadrupole which 

traps the ions produced by the ionization source. At the end of the quadrupole, a voltage 

gradient is applied so that the ions can leave the ion trap by an increasing m/z value.  

 

- Time of flight (TOF) analyser 

The TOF analyser determines the time that the ions take to reach the detector. Therefore, ions 

are accelerated by an electric field. When the ions are accelerated their velocities are inversely 
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proportional to the square root of their mass, so the lighter ions reach higher speeds and arrive 

at the detector before the ions with higher mass.  

 

- Fourier transform ion cyclotron resonance (FT-ICR) 

The Fourier transform ion cyclotron resonance is based on the determination of the cyclotron 

frequency of the ions in a fixed magnetic field. The ions are injected into the cell perpendicular 

to the magnetic field (Marshall et al., 1998). The applied magnetic field causes the ions to 

oscillate in the z direction of the magnetic field, causing the cyclotron motion. The ion 

movement has a frequency associated to the ion m/z.  It is determined by a set of electrodes 

through which a current is formed by the ion movement in the magnet. The resulting signal is 

called free induction decay (FID), that consists of a superposition of sine waves. Data is 

processed by a Fourier transform enabling to determine the m/z of the ions (Marshall et al., 

1998). Among other mass spectrometry analysers, FT-ICR has the best resolving power and 

mass measurement accuracy (Marshall et al., 1998).   

 

- Tandem mass spectrometry 

Tandem mass spectrometry allows generating a specific ion fragments from the analyte. It 

consists of selecting and isolating a specific m/z value (precursor ion) that is submitted to 

dissociation. Consequently, ion fragments originating from the “parent” ion are produced. In 

order to achieve this specific fragmentation, several analysers are coupled in series, so that the 

ion isolation is performed by the first analyser, followed by fragmentation in the collision cell 

and the fragmented ions are separated based on their m/z value by the last analyser. However, 

some instruments (linear ion trap and FT-ICR) that have only one analyser are also able to 

perform multiple MS (MSn), making these efficient instruments in the structural identification of 

several molecules including peptides. The linear ion trap allows the study of different ion 

fragmentations. It allows to retain the ion fragments to study in the ion trap and doing an MSn 

(with n>2, representing the number of generations of ions to be analysed) denominated tandem 

mass spectrometry (El-Aneed et al., 2009). 

http://en.wikipedia.org/wiki/Free_induction_decay
http://en.wikipedia.org/wiki/Sine_waves
http://en.wikipedia.org/wiki/Fourier_transform
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Tandem mass spectrometry has an increased relevance when it is necessary to know more 

information about the biomolecule under study. Using this technology it is possible to generate 

information about the structure of the molecules. 

 

1.5.3. Protein cross linking techniques 

Different molecules can have different affinities to each other and can establish covalent or 

ionic bonds. There are different cross linkers that can be added to promote the reaction 

between different compounds. When choosing the cross linker it is important to know whether 

the protein is soluble or not and what sort of linking reactions will be promoted. The most 

common cross linkers are DSS (Disuccinimidyl suberate) and BS3 (Bis[sulfosuccinimidyl] 

suberate). The BS3 reacts with primary amino groups (-NH2) to form stable amide bonds 

releasing N-hydroxysuccinimide. HipA and HipB proteins have several primary amine groups in 

the side chain of lysine (K) residues and in the N-terminal of each peptide or protein. A common 

technique used to study cross linking is by LC-MS, where the ionization source is ESI and the 

analyser is a FT-ICR. The cross linker will add to a peptide or protein 158Da, resultant from the 

cross linking reaction. We aimed to use the study of the HipAB interactions using cross linking 

techniques to compare the complex formed in S. oneidensis with the known structure from E. 

coli.  

 

1.5.4. Phosphorylation studies 

In cells, phosphorylation is mainly mediated by ATP (Schumacher et al., 2009). HipA is a toxin 

whose effects depend on its phosphorylation level; it is also responsible for the phosphorylation 

of other molecules, such as EF-Tu, as it was explained in section 1.3.3.3. So it became important 

to understand what happens to phosphorylated and non-phosphorylated HipA. To 

phosphorylate HipA in vitro, similarly to phosphorylation in vivo, ATP and the cofactor Mg2+ 

were added. On the other hand, to obtain the non-phosphorylated HipA in vitro, a phosphatase 

is added to the protein in order to remove all the phosphate groups binding HipA. The 
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availability of phosphorylated and non-phosphorylated HipA are important to study the 

mechanism of persistence and the conformational alterations. 
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2. Aim of the research project 

The overall objective of this study is to understand the difference between structure and 

function of S. oneidensis MR-1 HipA, HipB and HipA(D306Q) compared to the known E. coli TA 

structure. In order to achieve this objective, several specific tasks will be carried out: 

- Overexpression of the three proteins: HipA, HipB and HipA (D306Q).  

- Purification of the overexpressed proteins;  

- Analysis of the protein interactions. In order to study protein interactions, a cross linking 

experiment was performed followed by the analysis by SDS-PAGE, digestion, extraction and  

analysis by LC-MS. The cross linker used, BS3, has an average reaction time of 30 to 45 minutes 

and the aim was to optimize the reaction conditions and to find the ideal final concentration of 

BS3, in order to identify some of the different molecules formed after the cross linking reactions, 

for the phosphorylated and non-phosphorylated HipA, HipB and for the complex HipAB. 

Overall, it is the intention of this study to understand the mechanisms of action of the toxin-

antitoxin system in S. oneidensis.   
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3. Results and discussion 

 

3.1. Protein Overexpression 

A E. coli strain containing a pET15b vector for  overexpression of HipA and HipB was available. 

The cloned genes, HipA and HipB, were fused with an N-terminal His-tag (Figure 12). Due to the 

high affinity of histidine to immobilized metals, such as nickel, the N-terminal His-tag is often 

used for protein affinity purification. For HipA, HipB and HipA(D306Q) protein expression, cells 

were cultured in 1L LB medium supplemented with 250mg/mL carbenicillin and incubated at 37 

°C shaking at 200 rpm until the optical density (O.D.)(λ=600nm) = 0.6 was reached. The 

antibiotic used to select the bacteria was carbenicillin since the vector used contains a 

resistance marker to this antibiotic (Figure 12). During the incubation time the O. D. at 600nm 

was monitored. When the bacterial cells growth was maximum, IPTG was added to induce 

protein overexpression. After the addition of IPTG, an increase in optical density measured at 

600 nm (Friedrich et al., 1995) was observed. 

The ability of IPTG to mimic allolactose makes it important for use in overexpression 

experiments. Allolactose is a disaccharide similar to lactose. Lactose acts as an inducer of the 

Lac operon which will cause the cell to produce β-galactosidase and consume the lactose. After 

the addition of the IPTG, the Lac repressor will not bind anymore to the Lac operon, and the 

RNA polymerase is transcribed. Once the T7 RNA polymerase protein is expressed, it binds to 

the T7 promoter sequence upstream of the gene of interest on the plasmid insert and 

transcribes it (Clark et al. 2012). 3 hours after adding the IPTG, the protein of interest will be 

overexpressed in the cell, therefore it can be extracted for further studies. Expression was 

monitored every 60 minutes by collection of a 1 mL aliquot to be later analyzed by SDS-PAGE. 
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Figure 12 – Schematic representation of the pET-15b vector. The pET-15b vector carries an N-terminal His-Tag 

sequence (362-380) followed by a thrombin site and three cloning sites. Unique sites are shown on the circle map. 

Note that the sequence is numbered by the pBR322 convention, so the T7 e expression region is reversed on the 

circular map. The cloning/expression region of the coding strand transcribed by T7 RNA polymerase is shown 

below. Cb (4643-5500) is referent to the carbenicillin vector resistance gene. Cb is a 

bacteriolytic antibiotic belonging to the carboxypenicillin subgroup of the penicillins (image from 

www.aidsreagent.org/pdfs/pet15b.pdf). 

 

3.1.1. HipA, HipB and HipA(D306Q) overexpression – analysis by SDS-PAGE  

Each sample withdrawn before and after the addiction of IPTG was analyzed by SDS-PAGE 

(Figure 13).  

 

 

http://en.wikipedia.org/wiki/Antibiotic
http://en.wikipedia.org/wiki/Carboxypenicillin
http://en.wikipedia.org/wiki/Penicillin
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Figure 13 - SDS-PAGE showing the overexpression of HipB, HipA and HipA(D306Q). Under each protein name are 

the numbered lanes. Lane 1 represents the aliquot collected before the IPTG addition; lane 2 represents the aliquot 

collected 1h after the IPTG addition; lane 3 represents the aliquot collected 2h after the IPTG addition; lane 4 

represents the aliquot collected 3h after the IPTG addition. The red rectangles highlight the overexpressed protein 

bands selected for MALDI-TOF identification. The bands were subjected to in gel, where the proteins were digested 

and the peptides extracted for analyse. 

 

The bands that indicated (Figure 13) were cut and in gel digestion was performed using trypsin, 

a proteolytic enzyme commonly used. Trypsin cleaves the peptide chain mainly at the carboxyl 

side of the amino acids: lysine (K) and arginine (R), except when either is followed by proline (P). 

Trypsin is a robust enzyme and produces peptides with advantageous properties like length, 

charge and fragmentation behavior. The resulting peptides were analyzed using MALDI-TOF. 

From the MALDI-TOF spectrum (Figure 14), a Mascot database MS search for protein 

identification was performed. Protein identification was based on MS data by matching at least 

five peptide masses and/or MS/MS data, identifying no less than two unique peptides, 

respectively.  

HipB was not detected, most probably due to low concentration. HipB is a relatively small 13 

kDa and unstable protein, which could explain that it was not possible to find the protein 
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neither in the SDS-PAGE nor in the MALDI-TOF analyses. Another possibility to explain the non-

detection of HipB can be due to the detection methods, the Coomassie blue G-250 (~30ng) is 

not sensitive enough to detect the HipB bands. One solution to improve could be to use a more 

sensitive detection method, for example the Silver staining (~5-10ng) this is less compatible with 

the MS analysis. 

 

 

Figure 14 - MALDI-TOF peptide mass fingerprint from a tryptic digest of the 50kDa band displayed in Figure 13, 

HipA samples. The green circles indicate peaks of which the m/z value corresponds to tryptic fragments of HipA. 

 

The 50kDa band corresponds to HipA. There were 13 matched peptides (table 1) which 

corresponds to a protein sequence coverage of 36%. For the mutant HipA(D306Q), 16 peaks 

matched HipA(D306Q) tryptic peptides. As shown in Figure 15, the mutated amino acid appears 

in the peptide with 2356Da. The change from protein HipA wild type to the mutant 

HipA(D306Q), results in an increase of 13Da as expected, since the molecular weight (Mw) of 

the aspartic acid residue is 115.09Da and the Mw of glutamine residue it is 128.13Da. The peak 

resultant from this mutation is highlighted in Figure 15, which is the spectrum referent to the 

HipA(D306Q) sample analysis. 
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Table 1 - HipA matched peptides with the starting and ending position, the observed molecular relative mass (Mr), 

the expected Mr, the calculated Mr and the peptide sequence. The peptide sequence with the amino acid that was 

after mutated is highlighted. 

 

Start – End 

(Peptide 

sequence) 

Observed 

(Mr) 

Expected 

(Mr) 

Calculated 

(Mr) 
Peptide Sequence 

6 – 36 3440.8450 3439.8377 3439.6680 K.TLTLEMHLGDLMIGELSFDATADTFAVHYTK.D 

129 – 145 2102.1235 2100.1163 2099.9808 R.IEDPTMWPMWPMEIWDGKPR.L 

129 – 145 2133.1152 2132.1080 2131.9707 
R.IEDPTMWPMEIWDGKPR.L + 2 Oxidation 

(M) 

179 - 194 2093.2007 2092.1934 2092.0564 K.FEKYHHLVINEFITMR.L + Oxidation (M) 

182 – 194 1672.9846 1671.9773 1671.8555 K.YHHLVINEFITMR.L 

182 – 194 1688.9480 1687.9407 1687.8504 K.YHHLVINEFITMR.L + Oxidation (M) 

198 – 213 1741.0435 1740.0362 1739.9141 K.VLGMNVANVDIVHFGR.Y 

275 – 283 1008.5783 1007.5710 1007.5586 R.LFSLAAKCR.N 

290 – 310 2343.2776 2342.2703 2342.1447 K.QDMLQWALFNLLTGNADAHGK.N 

372 – 380 1043.6876 1042.6803 1042.6135 R.NLLISNLTR.I 

372 - 384 1539.8794 1538.8721 1538.9368 R.NLLISNLTRIARR.I 

284 – 411 3165.8252 3164.8179 3164.6580 R.RIPQAIAEVILMLPPLDEDEASFVAHYK.T 

421 - 429 1097.6497 1096.6424 1096.5553 R.YLGFVDEVR.D 
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Figure 15 - MALDI-TOF peptide mass fingerprint from a tryptic digest of the 50kDa band displayed in Figure 13, 

HipA(D306Q) samples. The green circle indicate peaks of which the m/z value corresponds to tryptic fragments of 

HipA. 

 

3.1.2. HipA, HipB and HipA(D306Q) purification analyses 

In order to understand the mechanism and function of a specific protein, this proteins need to 

be purified. Similarly to studies made with in E. coli (Hansen et al., 2012) TA system, for further 

studies of S. oneidensis TA system, HipA, HipB and HipA(D306Q) were overexpressed and  

purified. As mentioned in section 4.4.1, the proteins for these studies were engineered with a 

His-tag, therefore the immobilized metal affinity chromatography was performed in order to 

separate the His-tagged proteins (Gräslund et al., 2008).  

 

3.1.2.1. HipA purification analyses – IMAC 

The Ni-NTA columns can be used to separate the His-tagged proteins but can also bind proteins 

that contain histidine clusters. In these cases applying a small amount of imidazole during the 
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purification before applying the imidazole gradient can help to control off-target binding 

(Gräslund et al., 2008).  

 

 

Figure 16 - HipA purification using the Ni-NTA column by IMAC. The protein is eluted when an imidazole gradient is 

applied. The green line represents the concentration of imidazole in the buffer, the blue line represents the sample 

absorption at 280 nm, and the red lines are referent to the collected fractions. 

 

3.1.2.2. HipA purification analyses - SEC 

To complement the IMAC separation, a SEC purification was performed. The SEC purification 

allows a more specific purification since separates mainly by the size of the proteins. The 

purified protein from the IMAC was concentrated to a final volume of 2 mL using Vivaspin 

ultracentrifugation. SEC resolution can increase if the volume of injected protein is smaller, 

being important to concentrate the protein to a smaller volume. If the injection volume is 
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greater than 2mL generally the peak width will be bigger reducing the separation resolution 

(Hong et al., 2012). 

 

 

Figure 17 - HipA purification using the SD200 column by SEC. The protein is eluted at approximately 75mL. The blue 

line is the absorbance at 280nm, the red lines are the collected fractions. 

 

After injection of 2mL of protein, a sharp peak in SEC purification was obtained (Figure 17), 

resulting in a good resolution chromatogram which allows a clear view of the protein from the 

main fractions collected and analyzed by SDS-PAGE. In order to confirm the purity of HipA, an 

SDS-PAGE was performed using the fractions 22-24 (Figure 18), which are corresponding to the 

highest absorbance from the SEC purification.  
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Figure 18 - HipA purification fraction analysis by SDS-PAGE.  

 

3.1.2.3. Generation of phosphorylated HipA (pHipA) 

HipA is a toxin whose effects depend on its phosphorylation level, being also responsible for the 

phosphorylation of other molecules, such as EF-Tu studied in E. coli (Schumacher et al., 2009), 

as explained in section 1.3.3.3. For that reason it became important to study the 

phosphorylated and non-phosphorylated HipA. Similar studies were performed in E. coli, mainly 

to understand the role of autophosphorylation in HipA (Hansen et al., 2012). So, after purifying 

HipA with Ni-NTA, the protein was separated in two aliquots. One aliquot was treated with ATP-

Mg2+ and the other aliquot was used for SEC purification, this allowed us to obtain the 

phosphorylated HipA (Figure 19) and HipA. The addition of ATP-Mg2+ will result in complete 

phosphorylation of HipA (Schumacher et al., 2009). Proteins are biomolecules that differ greatly 

in size from salts and other small molecules, so high molecular substances are excluded from 
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the medium and elute first. The HipA will phosphorylate forming the higher molecular 

substance from the medium and thus eluting first, being separated from other phosphate salts. 

The smaller molecules with lower molecular weight enter the pores from the medium 

Sephadex, eluting later from the Hiprep 26/10 desalting column.  

 

 

Figure 19 - pHipA desalting separation after treatment with ATP and Mg2+ using a Hiprep 26/10 desalting column. 

The blue line is the absorbance at 280nm. 

 

The phosphorylated HipA was used for cross linking studies, to understand the alterations in the 

protein conformation and the protein-protein interactions after cross linking. 
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3.1.2.4. Generation of non-phosphorylated HipA (npHipA) 

One aliquot of pure protein was used to perform the non-phosphorylated studies. In the 

aliquot, phosphatase was added which will cleave any phosphate groups bound to HipA. 

Similarly to the phosphorylated HipA, the non-phosphorylated HipA was also separated with a 

Hiprep 26/10 desalting column, to separate the protein from the phosphate salts and other 

smaller molecules (Figure 20). 

 

 

Figure 20 - npHipA desalting separation after treatment with phosphatase using a Hiprep 26/10 desalting column. 

The blue line is the absorbance at 280nm. 
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3.1.2.5. HipB purification – IMAC and SEC 

 

 

Figure 21 - HipB purification using the Ni-NTA column by the IMAC principles. The protein is eluted when a 

imidazole gradient is applied. The green line represents the concentration of imidazole in the buffer; the blue line 

represents the sample absorption at 280nm. 

 

The HipB protein is more stable as a dimer, having two binding sites, one for HipA and one for 

DNA (Schumacher et al., 2009). However, for the binding to HipA which occurs at the N-

terminal, the His-tag needs to be cleaved. The His-tag can be cleaved with thrombin (Gräslund 

et al., 2008). To study the interactions of HipB as a dimer and as a complex with HipA, after 

IMAC purification thrombin was added and the cleavage was performed overnight. After the 

cleavage HipB was separated by SEC (Figure 22).  
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Figure 22 - HipB purification using the SD200 column by the SEC principles. The protein is eluted around 85mL. The 

blue line is the absorbance at 280nm. 
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3.1.2.6. HipA(D306Q) purification analyses 

 

 

Figure 23 - HipA(D306Q) purification using the Ni-NTA column by IMAC. The protein is eluted when an imidazole 

gradient is applied. The green line represents the concentration of imidazole in the buffer; the blue line represents 

the sample absorption at 280 nm, and the red lines are referent to the collected fractions. 

 

As studied in E. coli the mutant HipA(D309Q) is not high persistent, in contrast to the wild type 

HipA. The HipA and the HipA(D396Q) allow the study and comparison from the ATP binding, 

using isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR) (Schumacher et 

al., 2009). So the same procedures were adopted for HipA(D306Q) purification, was purified by 

SEC (Figure 24). However, further studies were carried on with the HipA(D306Q) by the PhD 

student Yurong Wen. 
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Figure 24 - HipA(D306Q) purification using the SD200 column by SEC. The protein is eluted around 75mL. The blue 

line is the absorbance at 280nm. 

 

3.2. Cross linking studies  

Bis[sulfosuccinimidyl] suberate (BS3) is a homobifunctional N-hydroxysuccinimide ester (NHS 

ester) and is water soluble. BS3 reacts with primary amino groups (-NH2) to form stable amide 

bonds releasing N-hydroxysuccinimide, at a pH range from 7 to 9. HipA and HipB proteins have 

several primary amine groups in the side chain of lysine (K) residues and in the N-terminal of 

each peptide. The BS3 cross linker has to be prepared immediately before use and is soluble only 

up to 100mM.  

In E. coli the main studies focused in the study and characterization of HipA, HipB and its 

interaction, no further studies as cross linking studies are known for HipAB. However, structural 

analysis helped to understand how HipA interacts with HipB, in E. coli, which was then found 

out recently to be similar in S. oneidensis by Yurong Wen. Another major finding in E. coli 
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studies is the autophosphorylation of HipA which was also carried on by PhD Yurong Wen in S. 

oneidensis, being again similar.   

Cross linking studies were performed to further find out which were the interactions between 

proteins, the phosphorylated and non-phosphorylated, HipA and HipB. Validation experiments 

were performed to understand which was the best cross linker concentration. 

 

 

Figure 25 - SDS-PAGE showing the four controls of HipB, HipAB, pHipA and npHipA.  

 

Analysing the SDS-PAGE control gel (Figure 25) shows that the 50kDa bands corresponding to 

HipA, a 51kDa protein. However, as previously explained in section 3.1.1, HipB is difficult to find 

in SDS-PAGE analysis and again was not found. Therefore, for further studies a MS analysis 

should be performed to allow to detect the presence of certain proteins.  
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Figure 26 - SDS-PAGE showing the cross linking reactions of HipB and HipAB. Under each protein name are the 

cross linker, BS3, concentrations used. The bands numbered S1-S4 were further analysed by MS. 

 

We performed a cross linking experiment with HipB. However, analysis of the SDS-PAGE pattern 

(Figure 26) did not allow to conclude about HipB multimerization. This lack of reaction can be 

related with the small size of the protein without the His-tag, around 10kDa or the used 

protease inhibitor may not be efficient in HipB case. The protease inhibitor may be critical to 

maintaining yield, structure and function.  

The HipAB cross linking reaction, using different BS3 concentrations, different products could be 

observed (Figure 26). The more HipA that reacts, the more effective the cross linker will be, 

leading to the conclusion that the 2mM cross linker is more efficient that the other two cross 

linker concentrations, 0.5mM and 1mM. 
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Figure 27 - SDS-PAGE showing the cross linking reactions of HipB and HipAB. Under each protein name are the 

cross linker, BS3, concentrations used. The cut bands are numbered S5-S15. 

 

The HipA and HipB have 24 and 7 lysine residues, respectively.  The cross link reactions the 

bounding between the lysine residues, intermolecular or intramolecular. Where the cross linker 

binds there will be an increase of 158Da. There were some predictions carried using PyMOL, to 

analyse some possible cross linked insights on HipB (Figure 28), HipA (Figure 29) and HipAB 

(Figure 30).  
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Figure 28 - HipB dimer with some predicted intramolecular cross linking bonds. Dashed black lines indicate the 

calculated distance (Ȧ) between the two Cα Lysines. 

 

Within HipB 7 predicted binding Lysines are at a distance smaller than 30Ȧ, so it is possible that 

the cross linking reaction occurs, since the calculated distances range from 6.1-22.6Ȧ. 
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Figure 29 - HipA with some predicted intramolecular cross linking bonds. Dashed black lines indicate the calculated 

distance (Ȧ) between the two Cα Lysines. The black dashed line refers to one predicted bond which has fewer 

possibilities to occur because it is bigger than 30Ȧ, the maximum distance to have a bond between different Cα 

Lysine residues. 

 

Within HipA 3 predicted binding Lysines are at a distance smaller than 30Ȧ, so it is possible that 

the cross linking reaction occurs, since the calculated distances range from 12.4-30Ȧ.  
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Figure 30 - HipA with some predicted intramolecular cross linking bonds. Dashed black lines indicate the calculated 

distance (Ȧ) between the two Cα Lysines. The black dashed line refers to one predicted bond which has fewer 

possibilities to occur because it is bigger than 30Ȧ, the maximum distance to have a bond between different Cα 

Lysine residues. 

 

Within HipAB 5 predicted binding Lysines are at a distance smaller than 30Ȧ, so it is possible 

that the cross linking reaction occurs, since the calculated distances range from 20.6-28.9Ȧ.  

The SDS-PAGE pattern (Figures 26 and 27) shows some evidence for cross linking reactions from 

the HipAB, pHipA and npHipA bands. We observed that the band corresponding to HipA was still 

present. However, as the cross linker concentration was increasing these bands became less 

intense, leading to the conclusion that the higher cross linker concentration allows efficient 

cross linking. There was a strong evidence of cross linking in the different samples, as 

determined by the SDS-PAGE analysis. After the in gel digestion and LC-MS analysis it was 

possible to detect evidence of toxin-antitoxin in the samples as well as other proteins. However, 

in some bands we observed some E. coli proteins, indicating that the proteins purifications were 

not complete. 
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3.2.1. pLink Search 

To understand which intermolecular and intramolecular interactions exist in the proteins, 

pHipA, npHipA and HipAB, we used software package for data analysis of cross linked proteins 

coupled with mass-spectrometry analysis, pLink. pLink is a software that uses MS/MS data and 

the protein sequences as input (table 2) and outputs the spectra with the best score (Figure 31), 

identifying the cross linked peptides as well as the peptides with the cross linker. pLink is 

associated with a pBuild software which gives the report identification. In the report 

identification it is specified which is the proteins interact and which are the lysine positions.  

 

Table 2 – Proteins identified by Mascot Daemon search in NCBI databases. pLink input information was the name of 

the protein and FASTA sequence. Table describes which is the organism referent to each protein and in which 

samples the protein was present (Figures 25 and 26). 

Protein Organism Sample Bands FASTA Sequence 

HipA 
Shewanella 

oneidensis 

S1, S2, S3,S4, S5, 

S13, S14,S15 

MSTAKTLTLEMHLGDLMIGELSFDATADTFAVHYTKDWQQSGFPLSPT

IPLDGTGTSNQISMFLVLLPENKGLDYLIESLGVSKGNTFALIRAIGLDTA

GAIAFVPKGALLPETQLRPIKAEEVIQRIEDPTMWPMEIWDGKPRLSVA

GVQPKLNLFYNGKEFAFAEGTLSSTHIVKFEKYHHLVINEFITMRLAKVL

GMNVANVDIVHFGRYKALCVERFDRRNIPGEQRVLRRHIVDSCQALGF

SVSKKYERNFGTGRDVKDIREGVSFNRLFSLAAKCRNPVAAKQDMLQ

WALFNLLTGNADAHGKNYSFFMTPSGMEPTPWYDLVSVDMYEDFEQ

QLAMAIDDEFDPNSIYAYQLAAFMDGLGLPRNLLISNLTRIARRIPQAIA

EVILMLPPLDEDEASFVAHYKTQLLARCERYLGFVDEVRDVEV 

HipB 
Shewanella 

oneidensis 
S1, S2, S3,S4 

MNGTDIKAKVYEDTLLETIMASPLNQQSLGLLIKERRKSAALTQDVAAM

LCGVTKKTLIRVEKGEDVYISTVFKILDGLGIDIVSAQTSDTETNGWY 

Galactitol-1-

phosphate 

dehydrogenase 

Escherichia 

coli 
S5 

MKSVVNDTDGIVRVAESVIPEIKHQDEVRVKIASSGLCGSDLPRIFKNGA

HYYPITLGHEFSGYIDAVGSGVDDLHPGDAVACVPLLPCFTCPECLKGFY

SQCAKYDFIGSRRDGGFAEYIVVKRKNVFALPTDMPIEDGAFIEPITVGL

HAFHLAQGCENKNVIIIGAGTIGLLAIQCAVALGAKSVTAIDISSEKLALA

KSFGAMQTFNSSEMSAPQMQSVLRELRFNQLILETAGVPQTVELAVEI

AGPHAQLALVGTLHQDLHLTSATFGKILRKELTVIGSWMNYSSPWPGQ

EWETASRLLTERKLSLEPLIAHRGSFESFAQAVRDIARNAMPGKVLLIP 

Trehalose-6-

phosphate 
Escherichia S6, S8, S11, S12 

MTNLPHWWQNGVIYQIYPKSFQDTTGSGTGDLRGVIQRLDYLHKLGV

DAIWLTPFYISPQVDNGYDVANYTAIDPIYGTLDDFDELVTQAKSRGIRII

LDMVFNHTSTQHAWFREALNKESPYRQFYIWRDGEPETPPNNWRSK
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hydrolase coli FGGSAWRWHAESEQYYLHLFAPEQADLNWENPAVRAELKKVCEFWA

DRGVDGLRLDVVNLISKDPRFPEDLDGDGRRFYTDGPRAHEFLHEMN

RDVFTPRGLMTVGEMSSTSLEHCQRYAALTGSELSMTFNFHHLKVDYP

GGEKWTLAKPDFVALKTLFRHWQQGMHNVAWNALFWCNHDQPRI

VSRFGDEGEYRVPAAKMLAMVLHGMQGTPYIYQGEEIGMTNPHFTRI

TDYRDVESLNMFAELRNDGRDANELLAILASKSRDNSRTPMQWSNGD

NAGFTAGEPWIGLGDNYQQINVEAALADDSSVFYTYQKLIALRKQEAIL

TWGNYQDLLPNSPVLWCYRREWKGQTLLVIANLSREIQPWQPGQMR

GNWQLVMHNYEEASPQPCAMTLRPFEAVWWLQK 

Thioredoxin 
Escherichia 

coli 
S6, S11, S15 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADE

YQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVASATKVGALSKG

QLKEFLDANLA 

Glutamyl-tRNA 

synthase 

Escherichia 

coli 
S9, S13 

MKIKTRFAPSPTGYLHVGGARTALYSWLFARNHGGEFVLRIEDTDLERS

TPEAIEAIMDGMNWLSLEWDEGPYFQTKRFDRYNAVIDQMLEEGTAY

KCYCSKERLEALREEQMAKGEKPRYDGRCRHSHEHHADDEPCVVRFA

NPQEGSVVFDDQIRGPIEFSNQELDDLIIRRTDGSPTYNFCVVVDDWD

MEITHVIRGEDHINNTPRQINILKALKAPVPVYAHVSMINGDDGKKLSK

RHGAVSVMQYRDDGYLPEALLNYLVRLGWSHGDQEIFTREEMIKYFTL

NAVSKSASAFNTDKLLWLNHHYINALPPEYVATHLQWHIEQENIDTRN

GPQLADLVKLLGERCKTLKEMAQSCRYFYEDFAEFDADAAKKHLRPVA

RQPLEVVRDKLAAITDWTAENVHHAIQATADELEVGMGKVGMPLRV

AVTGAGQSPALDVTVHAIGKTRSIERINKALAFIAERENQQ 

GTP-

cyclohydrogena

se-1 

Escherichia 

coli 
S7 

MPSLSKEAALVHEALVARGLETPLRPPVHEMDNETRKSLIAGHMTEIM

QLLNLDLADDSLMETPHRIAKMYVDEIFSGLDYANFPKITLIENKMKVD

EMVTVRDITLTSTCEHHFVTIDGKATVAYIPKDSVIGLSKINRIVQFFAQR

PQVQERLTQQILIALQTLLGTNNVAVSIDAVHYCVKARGIRDATSATTTT

SLGGLFKSSQNTRHEFLRAVRHHN 

FKBP 
Escherichia 

coli 
S10 

MKVAKDLVVSLAYQVRTEDGVLVDESPVSAPLDYLHGHGSLISGLETAL

EGHEVGDKFDVAVGANDAYGQYDENLVQRVPKDVFMGVDELQVGM

RFLAETDQGPVPVEITAVEDDHVVVDGNHMLAGQNLKFNVEVVAIRE

ATEEELAHGHVHGAHDHHHDHDHDGCCGGHGHDHGHEHGGEGCC

GGKGNGGCGCH 
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Figure 31 - Spectra labeling output resulting from pLink search. Different MS/MS comparisons which resulted in this 

spectrum. Different peptides (Y, B) cross linked (x) or with the cross linker (s). 

 

The pLink search was followed by a spectrum labelling (Figure 31) and an identification report 

(table 3) which allows to conclude about the protein and the lysine residue that cross linked.  

 

Table 3 - Cross linked positions of each sample with the score and binding proteins with lysine positions. 

 

Samples Score Proteins (positions) 

S1 1.27e-002 HipA(143) – HipA(264) 

S5 9.74e-001 Glutamyl-tRNA synthase(1) – FKBP(1) 

S6 8.95e-001 HipA(281) – FKBP(1) 

S7 2.30e-001 Trehalose-6-phosphate hydrolase(144) – HipA(252) 

S7 7.94e-001 Glutamyl-tRNA synthase(352) – Thioredoxin(1) 

S8 4.31e-001 Galactitol-1-phosphate dehydrogenase(2) – Thioredoxin(1) 

S10 8.63e-001 HipA(264) – Glutamyl-tRNA synthase(378) 

S14 1.46e-001 Glutamyl-tRNA synthase(4) – Glutamyl-tRNA synthase(352) 

S14 1.93e-001 HipA(281) – FKBP(1) 
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The identification report from S1 had a score of 1.27e-002 that is relatively high, meaning the 

analysed peptides were significantly with that cross linked positions. S1 compared with the 

other samples, S5, S6, S7, S8, S10, S14, being the probability of cross linking reduced, which is 

indicating possible false positives.    

Therefore, was just possible to identify one intramolecular binding from HipA(143) and 

HipA(264) shown in Figure 32. 

 

 

Figure 32 - HipA with one intramolecular cross linking bond. Dashed white line with the value that is the calculated 

distance (Ȧ) between the two Cα Lysines.  
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4. Conclusion 

The HipAB complex is deeply studied in E. coli, but little is known of its structure and function in 

S. oneidensis. Both bacteria are good models to study the phenomenon of persistence, being 

the subject of on-going research.  In this study, the main aim was to analyse and study protein 

interactions, overcoming the technical limitations. To better understand this aim some 

predictions of conformational alterations were made to give a better overview of the different 

interactions, stressing that may be due to those alterations that the main functions of the 

proteins are altered.  

Mimicking what happens in bacterial cells, cross linking reactions were performed, using BS3 an 

in solution cross linker. BS3 can be used in different concentrations, being more or less efficient 

in cross linking, therefore three different concentrations were used 0.5mM, 1mM and 2mM. 

After the data analysis we concluded that the better cross linking efficiency was obtained with a 

higher concentration. Furthermore, analysis of the cross linking reactions, with LC-MS followed 

by Mascot Daemon research using NCBI database, allowed to confirm the presence of the HipA 

and HipB in the different samples. However for better results some improvements are 

suggested avoiding the increase of temperature to denature the sample for SDS-PAGE, larger 

volume injection in the LC-MS study, to have a larger response for MS analysis. In addition, LC-

MS data was used for analysis with pLink. This allows to identify where the cross linking 

reactions happen (which protein, which lysine residue). After identification of the lysine residue 

involved in cross linking, it is possible to calculate the distance between the bonds, using 

PyMOL. Therefore, this analysis allowed to confirm the bond from HipA(143) with HipA(264) 

with a distance of 17.8Ȧ.  

For further studies, my suggestion is to repeat the protocol with the improvements and 

additionally apply using native mass spectrometry, which can give a better overview from the 

complexes resulting from the cross linking reactions. 
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5. Materials and Methods 

5.1. Chemicals  

The following reagents were obtained from Sigma-Aldrich: carbenicillin (Cb), disodium 

phosphate, sodium chloride, imidazole, HEPES, isopropyl β-D-1-thiogalactopyranoside (IPTG) 

and glycerol. The reagents for SDS-PAGE (SDS, APS, TEMED) were obtained: from Bio-RAD. All 

the solvents used were obtained from VWR and were HPLC grade. All solutions were prepared 

and filtered using ultra-purified water (Millipore) from Milli-Q system. 

 

5.2. Instrumental 

MALDI-TOF analyses were carried out on a 4800 Plus MALDI-TOF analyser (AB SCIEX). SDS-PAGE 

analyses were performed using a Mini-Protean 3 cell electrophoresis system from Bio-Rad. 

Protein purification was carried out on an AKTA Purifier (GE Healthcare). A nickel-nitrilotriacetic 

acid (Ni-NTA) superflow cartridge from Qiagen and a Superdex 200 10/300 GL column (GE 

Healthcare) were used.  

For His-tagged protein purification, the Ni-NTA column was used due to its characteristics: 

deliver of high yields of high-purity protein, up to 50mg/mL and its high stability, which means 

that they are compatible with a wide range of buffer components, including strong denaturants, 

detergents and reducing agents. The affinity of Ni2+ ions is independent on the protein structure 

(native or denatured) (http://www.qiagen.com/Products/Catalog/Sample-

Technologies/Protein-Sample-Technologies/Purification-Kits-and-Resins/Ni-NTA-Superflow-

Cartridges#orderinginformation, 2013).  

The SD200 column is a high performance gel filtration column. This is a pre-packed glass column 

intended for use in gel filtration of proteins, peptides and other biomolecules according to size. 

The gel matrix is composed of Superdex, which is based on highly cross-linked agarose beads 

covalently bonded to dextran molecules. The gel filtration properties of the superdex matrix are 

governed mainly by the dextran chains. The SD200 10/300 GL column has a mean bead size of 
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13 µm and the fractionation range for the globular proteins is 3 000 – 600 000 Da  

(http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/pt/GELifeSciences/produc

ts/AlternativeProductStructure_17414/17517501, 2012).  

 

5.3. Software 

MALDI-TOF samples were analysed using the 4000 Series Explorer software with available 

databases tools (Mascot from Matrix Science). The Mascot database software package makes 

the search in the NCBI database. Another software package used was pLink, a programme which 

allows the study of the cross linking positions with resource to MS/MS and protein sequence 

data. 

 

5.4. Methods 

5.4.1. Expression of HipA/HipB 

Each gene (HipA, HipB and HipA(D306Q)) was cloned into BamHI and NdeI cloning sites of 

pET15b vector and fused with an N-terminal His-tag. The vector was then introduced into E. coli 

C43 (DE3) competent cells, by electroporation. Cells were cultured in 1% LB (Lysogeny Broth) 

medium supplemented with carbenicillin 0.04% (v/v) and incubated at 37ºC for 3h at 200rpm. 

At the optical density (O. D.) at 600nm for HipA (and the mutant HipA(D306Q)) and HipB was 0.7 

and 0.6 respectively. When the O. D. 0.7 and 0.6 was reached, isopropyl β-D-1-

thiogalactopyranoside (final concentration 1mM, IPTG) was added and the culture was allowed 

to grow for 3 hours at 37ºC. The culture was centrifuged at 10 000rpm for 5 minutes at 4°C 

(Beckman Coulter Avanti J30 I centrifuge). The supernatant generated was discarded and the 

pellet was either stored at -20°C or used for purification. 
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5.4.1.1. Protein Overexpression 

For evaluation of HipA and HipB overexpression, the O.D. was measured as described above and 

1mM IPTG was added to the samples. In order to control the growth of the bacterial cells, 1mL 

of sample was taken and the O.D. measured every 60 minutes for the following 3 hours. 

Samples (1mL) were centrifuged at 25 000rpm for 7 minutes at 4°C using a Beckman Coulter 

Avanti J30 I centrifuge. The supernatant was discarded and the protein pellet was resuspended 

in ultra-pure water and analysed by SDS-PAGE. Overexpressed protein bands were cut and 

digested overnight with 0.1µg/µL trypsin. The samples were then analysed by mass 

spectrometry (MALDI-TOF). 

 

5.4.1.1.1. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)  

SDS-Page was performed according to instructions of the manufacturer (www.bio-rad.com, 

2000). Bellow a detailed description of the procedure is made.  

 

1. Resolving gel  

A 15% (w/v) polyacrylamide gel was prepared using 10mL Tris-HCl pH 8.8, 10mL ProtoGel 30% 

(w/v) acrylamide/methylene bisacrylamide solution (37.5:1 ratio), 100μL 20% SDS and 10μL 

N,N,N′N′-tetramethylethylene diamine (TEMED) made up to 15mL with double distillated water 

(ddH2O). The polymerization was initiated by the addition of 200μL 0.1mg/mL ammonium 

persulphate (APS). The solution was gently poured into the space between the two glass plates 

to about 3cm from the top of the short glass plate. To ensure a uniform interface between the 

stacking and resolving gels, about 1mL ddH2O was gently overlaid on top and set for 1 hour at 

room temperature. 

 

2. Stacking gel  

A 6% (w/v) polyacrylamide gel was prepared using 676μL 1M Tris-HCl pH 6.8, 867μL ProtoGel 

30% (w/v) acrylamide/methylene bisacrylamide solution (37.5:1 ratio), 75µL 20% SDS, 7.5μL 
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N,N,N′N′-tetramethylethylene diamine (TEMED) made up to 10.5mL with ddH2O. The 

polymerization was initiated by the addition of 150μL 0.1mg/mL APS.  

The stacking gel was immediately added on top of the resolving gel and the appropriate comb 

(10 wells; 5mm x 1mm or 15 wells; 3 mm x 1mm) positioned. The stacking gel was allowed to 

polymerize for 30 min.  

After polymerization, the gel plates were removed from the cast and fitted in the cassette. The 

gel cassette was introduced into the buffer reservoir tank, and the tank was filled with electrode 

buffer [25mM Tris-HCl, pH 8.2, 250mM glycine and 0.1% (w/v) SDS] to cover the cassette. 

 

3. Sample preparation  

For preparation of protein samples, 10μL 6x SDS-PAGE loading dye buffer (360mM Tris-HCl, pH 

6.8, 60% (v/v) glycerol, 12% (w/v) SDS and 0.06% (w/v) bromophenol blue) and 1μL 1M DTT 

were made up to 30μL with ddH2O. The mixture was then heated for 5 minutes at 95°C and 

further centrifuged at 14,000g for 15s to collect any condensed vapour and to sediment any 

insoluble materials. 

 

4. SDS-PAGE electrophoresis  

The gel was electrophoresed at 130volts. Once the bromophenol blue dye front reached the 

bottom of the gel, the run was stopped and the gel was stained with Coomassie Brilliant Blue 

G250 overnight and destained with 30% methanol. 

 

5.4.1.1.2. In-gel digestion and peptides extraction for MALDI-TOF analyses 

1. Destaining of the gel 

After destaining the gel, the bands with the corresponding molecular weight of HipA (and the 

muntant HipA(D306Q)) and HipB were cut from the gel and placed into a 1.5mL vial in small 

slices. The gel pieces were washed with 150µL of 50% ACN/200mM ammonium bicarbonate to 

each vial and incubated for 20min at 30ºC. The gel bands were vortexed and centrifuged at 14 
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000 rpm for 3 minutes, 4ºC (Eppendorf centrifuge 5415R), to remove unpolymerized acrylamide 

and remaining Coomassie. The destaining procedure was performed two more times with 120µL 

and 100µL of 50% ACN/200mM ammonium bicarbonate solution as described above. The 

destained gel pieces were dried in a speedvac for 10 minutes. 

 

2. In-gel Digestion 

In-gel gel digestion was performed by adding trypsin in 50mM ammonia bicarbonate, to each 

sample (0.002µg/µL final concentration). Reaction was kept on ice for 45 minutes, to allow the 

gel pieces to rehydrate. Forty µL of 50mM ammonium bicarbonate were added to each piece 

and the bands were incubated overnight at a 37ºC. 

 

3. Extraction of Peptides 

The digested gel bands were centrifuged at 14 000rpm, 4ºC for 30 seconds (Eppendorf 

centrifuge 5415R), and the supernatants transferred to new 0.5mL vials. Peptides were 

extracted by adding 40µL of 60% ACN/0.1% HCOOH to each gel piece and incubated at 30ºC for 

20 minutes. The samples were then agitated in a vortex for 3 minutes, centrifuged and 

combined with the supernatant to the corresponding 0.5mL vial. The extraction step was 

repeated once, by adding 20µL of 60% ACN/0.1%HCOOH. The peptide solution in the 0.5mL vial 

was dried in a speedvac for approximately 6 hours.  

 

4. MALDI-TOF sample and matrix preparation 

The dried peptides were dissolved in 10µL of 0.1% HCOOH and 0.8µL of this solution were 

spotted on the MALDI-TOF plate. The plate was allowed to dry for a few minutes. The matrix 

was prepared by dissolving α-cyano-4-hydroxycinnamic acid in 50% ACN, 0.1% TFA (5mg/mL). 

The matrix (0.8 µL) was spotted on the plate on top of the spotted peptides and allowed to dry. 

http://en.wikipedia.org/wiki/Alpha-Cyano-4-hydroxycinnamic_acid
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α-cyano-4-hydroxycinnamic acid matrix was chosen for analysing this proteins and peptides, 

because it is particularly good for molecules smaller than 10kDa.  

 

5.4.1.2. Purification of HipA/HipB 

The protein pellet, from the point 1.4.1., was thawed and resuspended in buffer (25mM 

Na2HPO4, 500mM NaCl), with a free EDTA using a ratio of 1g pellet/25mL extraction buffer. For 

purification, the cell walls were lysed mechanically using sonication. During sonication, high 

intensity ultrasound is used to break the cell walls and release the soluble cytosolic recombinant 

protein. The protein suspension was sonicated for 4 minutes with amplitude of 20%, in a cycle 

of 1 second pulse, and 1 second break, using a Branson 200 and 400 watt sonicator. The lysate 

was centrifuged at 25 000 rpm for 30 min at 4 °C (Beckman Coulter Avanti J30 I centrifuge). The 

supernatant, containing the target protein, was filtered (0.22µL membrane filters) and purified.  

The affinity chromatography is based on IMAC using a Ni-NTA resin. The resin was equilibrated 

in 25mM Na2HPO4, 500mM NaCl, pH of 7.5. The sample was injected into the column and eluted 

with a gradient of 0-100% of 500mM imidazole in equilibration buffer (pH 7.5) was used. The 

imidazole competes with the metal from the resin allowing the protein to be eluted from the 

column. After having the protein separated by affinity, size-exclusion chromatography was 

performed. In order to use HipB for the cross linking experiments it was necessary to cleave the 

His-tag terminal with thrombin, overnight (Zhu et al., 2010). After the cleavage overnight from 

the His-tag, HipB was separated a second time by IMAC to have the purified protein.  

Size-exclusion chromatography was carried out with a Superdex 200 (GE Healthcare) resin. The 

buffer used was 10mM HEPES, 300mM NaCl, 5% glycerol at pH 7.5. A concentrated sample from 

the previous purification (2mL) was applied to the column and eluted with 10mM HEPES, 50mM 

NaCl at a pH of 7.5. The HipA is 51kDa and HipB is 10kDa, so the predicted elution volume of 

these proteins were determined based on the elution volumes of a calibration kit on HiLoad 

16/60 Superdex 200 pg column (Figure 12 and table 1). 

 

http://en.wikipedia.org/wiki/Alpha-Cyano-4-hydroxycinnamic_acid
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Figure 33 - Elution profile of the protein calibration kit on HiLoad 16/600 Superdex 200 pg 

column. Elution volumes were determined at peak maximum height (Healthcare, 2006). 

 

Table 4 - The content of Gel Filtration Calibration kit LMW (low molecular weight) (Healthcare, 

2006). 

Protein 
Molecular weight 

(kDa) 

Aprotinin  6500 

Ribonuclease A  13 700 

Carbonic anhydrase  29 000 

Ovalbumin  44 000 

Conalbumin  75 000 

 

By comparing the molecular weight and the elution volume it was possible to determine that, at 

the conditions used, HipA had an elution volume of approximated 80mL and HipB of 
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approximated 100mL. After purification an SDS-PAGE analysis was performed to see the purified 

proteins. 

 

5.4.1.3. Phosphorylation studies 

5.4.1.3.1. Phosphorylated HipA 

The phosphorylation studies were carried out using the purified HipA protein. HipA was 

autophosphorylated overnight with a final concentration of 1mM ATP, pH 7.5. The HipA 

phosphorylates forming a higher molecular molecule from the medium and smaller molecules 

with lower molecular weight which are separated by Hiprep 26/10 desalting column, where the 

small molecules enter the pores from the medium Sephadex, eluting later from the thus eluting 

first the phosphorylated HipA.  

 

5.4.1.3.2. Non-phosphorylated HipA 

The non-phosphorylated HipA was obtained by treating the HipA with 1mM of lambda protein 

phosphatase, from BioLabs, overnight. The separation of the non-phosphorylated protein was 

also done with a Hiprep 26/10 desalting column. 

 

5.4.1.4. Protein cross linking studies 

For the cross linking experiments the proteins used were the phosphorylated HipA, the non-

phosphorylated HipA, HipB and the complex HipAB. The cross linker was added in excess to the 

protein samples. Two mg of BS3 were dissolved in water. After dissolving BS3 the solution was 

diluted into a final concentration of 100mM. For samples that had a protein concentration 

lower than 5mg/mL, a 20 to 50-fold molar excess of BS3 was used. The final concentrations of 

BS3 for the different proteins used were: 0mM (control), 0.50; 1.00; 2.00mM. This was 

performed to check which was the ideal concentration. Reactions were carried out at room 

temperature for 35 minutes. The reaction was stopped by adding 50mM Tris left to incubate 15 

minutes at room temperature. The 15 different protein samples were analysed by SDS-PAGE as 
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described in 4.4.1.1.1. Expressed proteins bands were cut and digested overnight with 0.1µg/µL 

trypsin as described in 4.4.1.1.2. without the point 4 because the samples were then analysed 

by mass spectrometry (LC-ESI-FT-ICR).  

 

1. LC-ESI-FT-ICR sample preparation 

LC-MS was performed according to Chesini (Chesini et al., 2011). The dried peptides were 

dissolved in 50µL of 0.1% formic acid. For the LC-MS experiments the buffer used was 0.1% of 

formic acid and were injected 5µL of each sample was analysed. Peptides were first separated 

on an Agilent 1200 chromatographic system (Agilent, Santa Clara, CA, USA) and on-line 

measured on a LTQ-FT Ultra mass spectrometer (Thermo Fisher Scientific, Wal-tham, MA, USA). 

The samples were first loaded and desalted on a (5mm x 0.3mm) Zorbax 300SB-C18 trapping 

column at a 4μl/min flow rate using a 2% (v/v) acetonitrile, 0.1% formic acid buffer, and then 

separated on a (150mm x 75μm) Zorbax 300SB-C18 analytical column (Agilent) by a 50min linear 

gradient ranging from 2% (v/v) to 80% (v/v) acetonitrile, 0.1% formic acid at a 0.3μl/min flow 

rate. The LC-effluent was directly coupled to a Triversa NanoMate ESI source (Advion, Ithaca, 

NY, USA), working in nano-LC mode and equipped with a D-chip whereon a 1.7kV voltage was 

supplied. During the LC-separation the FT-ICR mass analyser acquired MS scans at 100,000 

resolution, the 3 most intense precursor peptides for each MS scan were automatically selected 

and fragmented by the LTQ ion trap mass analyser. 

 

 Mass spectrometry analysis 

The MS and MS/MS data were used for research in Mascot Daemon, where the research was 

made using NCBI database. 

 

 pLink research  
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The pLink research was made using the MS/MS data and the protein sequence information, 

outputting the cross linked peptides in a pBuild software support and a spectrum identification 

from the MS/MS matching. 
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7. Attachments 

7.1. Expression of HipA/HipB 

- Carbenicillin (Cb) - Antibiotic 

C = 250mM 

m = 2.5g 

10mL MQ water 

- Use 40µL/100mL 

(save 2mL in eppendorfs at -20ºC) 

 

- IPTG (Isopropyl β-D-1-thiogalactopyranoside) 

m = 2,38g IPTG (freeze) 

10mL MQ water and dissolve 

 

1. Preculture  

LB Cb Proteins 

20mL 5µL 20µL or use from colonies (with a tip) 

40mL 10µL 40µL or use from colonies (with a tip) 

100mL 25µL 100mL or use from colonies (with a tip) 

200mL 50µL 20mL or use from colonies (with a tip) 

LB and Cb are in a dilution of (1:4)  

GROW OVER NIGHT at 37ºC (for maximum 60h!) 

 

2. Culture 

LB Cb Preculture 
 

IPTG (-20ºC) 

50mL 20µL 0,5mL 50µL 



68 
 

1L 400µL 10mL 1mL 

2L 800µL 20mL 2mL 

 

WAIT 3H measure OD (next step) and ADD IPTG (dilution of 1:100)! 

 

3. Optic Density at 600nm 

- Before adding IPTG: 

1mL around 0.6 for HipB and 0.7 for HipA 

- After adding IPTG: 

 

 

 

 

7.2. Protein Overexpression 

1. Samples Preparation for SDS-PAGE 

1mL is collected before adding IPTG and after adding IPTG, 1H/1H 

- Centrifuge samples for 5mins – separate pallet 

- Resuspend supernatant with MQ water: 

o A = 2,00 add 100µL 

o A = 1,00 add 50µL 

- Take 10µL from the sample and add 10µL loading buffer to the resuspended samples 

- Leave 5mins at 95ºC 

- 20µL sample and 15µL marker 

- Run gel for 45mins-1h30 

- Add Coomassie brilliant blue R-250, leave overnight 

-  Distain the gel with 30% methanol 

 

Time Quantity OD 

1H 1mL  

Should increase  

 

2H 1mL 

3H 1mL 



69 
 

2. In-gel digestion of proteins (from SDS-PAGE): 

- Always were gloves!! 

- Always keep solutions closed to prevent contamination of dust. 

 

Day 1 

a. Wash (rinse) the gel with water to remove dust particles 

b. Cut out the protein of interest and transfer it into an 1,5mL vial in small slashes (for a 

protein band use a scalpel, for a 2-PAGE protein spot use a spot picker) 

c. Wash the gel pieces by adding 150µL of 50% ACN/200mM ammonia bicarbonate to 

vial and incubate for 20min at 30ºC. Vortex and centrifuge ( to remove 

unpolymerized acrylamide and other contaminants, such as Coomassie, which may 

give a higher background during MS measurement) 

TIP: see the final volume that is needed and add for example: 1mL ACN and 1mL of ammonia 

bicarbonate (NH4HCO3) 

d. Do the wash step in c. until the coomassie dye has disappeared 

e. Dry gelpieces in speedvac (they will turn smaller and white) 

f. Add 10µL diluted trypsin (50 x dilution of stock = 0,1µg/µL trypsin in 50mM ammonia 

bicarbonate) 

TIP: first prepare the ammonia bicarbonate, for example, for a total volume of 2mL, use 250mL 

of 400mM with 1750 of MQ water. 

Dilute 1µL of trypsin (keep trypsin in ice) in 49µL of your 50mM ammonia bicarbonate 

g. Keep your solution on ice for 45mins 

h. Add 40µL of 50mM ammonia bicarbonate (gel pieces need to be submerged) 

i. Digestion overnight at 37ºC bath 

 

Day 2 
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a. Centrifuge the tube and transfer supernatants (solution containing peptides) to 

newly labeled 0,5mL vial 

b. Extract the peptides by adding 40µL of 60% ACN/0,1% HCOOH to the gel piece and 

incubate at 30ºC for 20min (the amount can be increased if the gel piece isn’t 

entirely covered in liquid) 

TIP: For a final volume of 1mL pipe 600µL of ACN and 400µL of HCOOH 

c. Vortex for 3min, centrifuge and combine the supernatant to the corresponding 

0,5mL vial (which already contains peptides) 

d. Repeat the extraction step, by adding 20µL of 60% ACN/0,1%HCOOH 

e. Dry the peptide solution in the speedvac 

f. Dissolve the peptides in 10µL of 0,1% HCOOH (if you will not analyse the peptides 

immediately, better not dissolve them before storing at -20ºC) 

 

3. Preparing the matrix: 

a. Always set the correct matrix in the acquisition method (α-cyano, DHB) 

b. 5mg/mL matrix, 50% ACN, 0,1% TFA 

TIP: Total volume – 1mL which is 1000µL so is 500µL of ACN, 1µL of TFA and 499µL of MQ water 

If sample doesn’t dry fast enough (this will lead to bad crystallization) use 70% ACN. 

 

7.3. Purification of HipA/HipB 

1. Immobilized Metal Affinity Chromatography 

Buffer 1 (500mL) at pH = 7.5: 

25mM Na2HPO4  

Mw = 141.96g/mol 

m = 3.54g 
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500mM NaCl  

 Mw = 58.443g/mol 

 m = 29.2215g 

Buffer 2 (200mL) at pH = 7.5: 

25mM Na2HPO4  

Mw = 141.96g/mol 

 m = 3.549g 

500mM NaCl  

 Mw = 58.443g/mol 

 m = 29.2215g 

500mM Imidazole 

 Mw = 68.077g/mol 

 m = 6.80775g 

 

7.4. Cross linking studies 

Samples 
Protein 

Quantity 

Cross Linker (25mM) Tris 

(1M) 0.5mM 1mM 2mM 

Phosphorylated HipA 50µL 1µL 2µL 4µL 50µL 

Non-phosphorylated HipA 50µL 1µL 2µL 4µL 50µL 

HipB 50µL 1µL 2µL 4µL 50µL 
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HipAB 50µL 1µL 2µL 4µL 50µL 

 

- BS3 preparation: 

Dissolve 2mg in 140µL of water  

- Gel preparation: 

25µL of sample + 10µL loading buffer 

 


