
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2013
Instituto de Telemática
Elaborada na Universidade Técnica de Hamburgo

Francisco
de Gouveia

Transmissão e apresentação de conteúdos de
sensores médicos

Transmission and presentation of medical
sensor-data

Übertragung und Darstellung von medizinischen
Sensor-Daten

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2013
Instituto de Telemática
Elaborada na Universidade Técnica de Hamburgo

Francisco
de Gouveia

Transmissão e apresentação de conteúdos de
sensores médicos

Transmission and presentation of medical
sensor-data

Übertragung und Darstellung von medizinischen
Sensor-Daten

Dissertação apresentada à Universidade Técnica de Hamburgo ao abrigo
do programa ERASMUS para cumprimento dos requisitos necessários à
obtenção do grau de Mestre em Sistemas de Informação na Universidade de
Aveiro, realizada sob a orientação científica do Doutor (Prof. Dr. Volker Turau),
Professor do Instituto de Telemática da Universidade Técnica de Hamburgo,
de Martin Ringwelski, investigador assistente do Instituto de Telemática da
Universidade Técnica de Hamburgo e do Prof. Dr. José Maria Fernandes,
Professor auxiliar do Departamento de Electrónica, Telecomunicações e In-
formática da Universidade de Aveiro.

Declaration of Authorship I declare that this thesis and the work presented in it are my own and have
been generated as the result of my own original research. Each significant
contribution to it and quotation from the work of other people has been
attributed and referenced. This thesis has not been previously submitted in
whole or in part for the award of any degree.

Date: 08.10.2013 Signature:

o júri / the jury

presidente / president Prof. Dr. Volker Turau
Professor at Hamburg University of Technology

vogais / examiners committee Prof Dr. José Maria Fernandes
Professor at University of Aveiro

Palavras Chave transmissão de dados, monitorizaçao de sensores, sensores médicos, aa4r,
vitalresponder

Resumo Este documento apresenta o design, implementação e avaliação de um sis-
tema que recebe, processa e apresenta emissões instantâneas de dados vi-
tais de sensores ligados a uma pessoa ou ao meio em que esta se insere.
Este é usado para prevenção, análise e/ou acção perante uma situação de
emergência. Dados os cenários críticos one o sistema pode ser usado, este é
composto por uma arquitectura distribuída, com o intuito de reduzir o risco de
o sistema parar por alguma falha, e dar a possibilidade de expandir ou reduzir
a capacidade de processamento de acordo com a necessidade de utilização.
Além disso, é também um sistema completamante modular e suporta o dese-
volvimento de módulos com novas funcionalidades ou suporte para diferentes
tipos de sensores. A sua interface Web permite o acesso ao sistema, inde-
pendentemente da plataforma utilizada, desde que esta tenha um browser.
Está preparada para ter um design responsivo, de acordo com o tamanho
do ecrã do dispositivo, seja um telemóvel, um tablet ou um computador de
mesa. Dada a maturidade das aplicações e serviços Web disponíveis, é fácil
extender também a interface para suportar novoso tipos de visualizações de
informação.

Keywords data transmission, sensor monitoring, medical sensors, aa4r, vitalresponder

Abstract This document covers the design, implementation and evaluation of a system
that receives, processes and presents live streams of vital signs from sensors
attached to a person’s body or in his surrounding environment. This is used
either to prevent, analyse and/or act upon a critical scenario of emergency.
Due to this critical scenarios where the system can be used, a distributed
approach is implemented. Its aim is to reduce the risk of failure and give the
possibility of transparent resource scaling according to the needs. Moreover, it
is fully modularized for feature extensability and multiple sensor type support.
Its Web interface is meant to provide a multi-platform access to the system,
as long as the platform has a browser installed. It has a responsive design,
according to the screen size of the client device, be it a smartphone, a tablet
or a desktop computer. Given the maturity of Web applications and services
available, it is easy to add the support for different visualization frameworks or
services.

Keywords Datenübertragung, Sensor Überwachung, medizinische Sensoren, aa4r, vital-
responder

Abstract Diese Arbeit behandelt Design, Implementierung und Evaluation eines Sys-
tems, das live übertragene Vitalparameter von Sensoren empfängt, verar-
beitet und darstellt, die an einem menschlichen Körper angebracht sind oder
in seiner Umgebung. Es wird genutzt um kritischen Unfallszenarien vorzubeu-
gen, sie zu analysieren und/oder auf sie zu reagieren. Aufgrund dieser kritis-
chen Szenarien, in denen das System genutzt werden kann, wird ein verteilter
Ansatz implementiert. Das Ziel ist es die Fehlerrate zu reduzieren und, bedarf-
sabhängig, die Möglichkeit zur tranparenten Skalierung der Ressourcen zu
geben. Desweiteren ist das System voll modularisiert, um Erweiterbarkeit und
die Unterstützung vieler Sensortypen zu gewährleisten. Das Webinterface bi-
etet Zugang von verschiedensten Plattformen, solange ein Browser installiert
ist. Es hat ein responsives Webdesign, dass sich and die Bildschirmgröße
jedes Nutzergerätes anpasst, sei es ein Smartphone, Tablet oder Desktop
Computer. Der gegebene Reifegrad von Webapplikationen und -diensten er-
möglicht die Unterstützung verschiedener Visualisierungsframeworks oder
-dienste.

Contents

Contents i

List of Figures iii

Listings v

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Chapter structure . 3

2 Background 5
2.1 Ambient Assistance for Recovery . 5

2.1.1 Scope in this Master’s Thesis . 7
2.1.2 Requirements . 7

2.2 Vital Responder . 8
2.2.1 Components . 8
2.2.2 Communication . 13
2.2.3 Scope in this thesis . 15
2.2.4 Requirements . 15

2.3 Research on relevant projects . 15
2.3.1 Mobile Telemedicine System . 15
2.3.2 Wearable ECG-recording System . 17
2.3.3 ITALH and SensorNet . 18

3 Design 21
3.1 Analysis of conflicting requirements . 21

3.1.1 User interface . 21
3.1.2 Communication protocols . 21
3.1.3 Adaptability on demand . 22

3.2 Proposed design . 22
3.2.1 Sensor data relay application . 23

i

3.2.2 Packet processing system . 27
3.2.3 Client interface . 31

4 Framework 33
4.1 Platform . 33

4.1.1 Java . 33
4.1.2 Glassfish . 35

4.2 Storage . 40
4.2.1 MySQL . 40
4.2.2 MongoDB . 40

4.3 User Interface . 40
4.3.1 jQuery . 40
4.3.2 Twitter’s Bootstrap . 40
4.3.3 Sammy.js . 41

5 Implementation 43
5.1 Sensor Data Relay application . 43
5.2 Packet Processing System . 46

5.2.1 Entity Communication Point . 46
5.2.2 Queue . 52
5.2.3 Packet Handler . 54

5.3 Client interface . 57

6 Results 61

7 Conclusion and future work 65

Glossary 67

Appendix 69

ii

List of Figures

2.1 Ambient Assistance for Recovery . 6
2.2 ECG Tele-home-care solution . 6
2.3 Vital Jacket prototype and commercial version 9
2.4 Vital Jacket Box . 9
2.5 Vital Jacket Box architecture . 10
2.6 Droid Jacket . 11
2.7 Droid Jacket screens . 12
2.8 iVital . 13
2.9 Vital Responder architecture . 14
2.10 Vital Responder communication . 14
2.11 Mobile Telemedicine System: System schematic 16
2.12 Mobile Telemedicine System: Mobile application’s user interface 17
2.13 Wearable ECG-recording System: Devices . 18
2.14 SensorNet: Wireless connectivity . 18

3.1 Overall system architecture . 22
3.2 Entity components . 23
3.3 Use case diagram: Entity . 24
3.4 Time synchronization - latency issue . 25
3.5 Time synchronization and hand-shake . 25
3.6 Packet loss detection and recovery . 26
3.7 Packet processing system . 27
3.8 Activity diagram: Entity communication Point - Packet reception 28
3.9 Sequence diagram: Queue . 29
3.10 Scalable packet hander . 30

4.1 The Java Base Platform . 34
4.2 Java compilation and execution . 35
4.3 Glassfish architecture . 36
4.4 Functional parts of Glassfish . 36
4.5 Java EE Containers . 37
4.6 Java Server Faces . 39

iii

5.1 Sensor Data Relay: User Interface . 44
5.2 Class diagram: Android communication between Activity and Service 45
5.3 Sensor Data Relay: Hand-shacke packet structure 45
5.4 Sensor Data Relay: Data packet structure . 45
5.5 Sensor Data Relay: Ping packet structure . 46
5.6 Cumulative average formula . 46
5.7 Class diagram: ECP - Connection handler . 47
5.8 Class diagram: ECP - OnReceive module . 48
5.9 Class diagram: ECP - DataProcessor module implementations 50
5.10 Class diagram: ECP - UDP Connector . 51
5.11 Class diagram: ECP - Entity UDP Connector 52
5.12 Queue: Base 64 encoding and decoding . 53
5.13 Class diagram: Scallable Packet Handler . 55
5.14 Client interface: Responsive design . 57
5.15 Client interface: Secure connection required . 58
5.16 Client interface: Database architecture . 59

6.1 Wearable ECG-recording System: Devices . 61
6.2 Results: Latency . 62
6.3 Results: Processing time in the packet processing system 62
6.4 Results: Total processing time, starting on the packet sending of Sensor Data

Relay (SDR) until the storage in the database 63
6.5 Results: Delay in live data presentation . 63

7.1 Direct connection from packet handlers to the web server and Websocket connec-
tion to clients’ browser . 66

iv

Listings

1 JSP Example . 37
2 Data processor implementation: Add timestamp 49
3 Data processor implementation: Send to queue 49
4 Queue add method’s response . 53
5 Queue get method’s response example . 53
6 Queue remove method’s response . 54
7 Packet handler initialization . 54
8 Packet handler processor example . 56
9 Packet handler after processing example . 56

v

Chapter One

Introduction

1.1 Motivation

The ability to remotely monitor the vital signs of a person and the surrounding environmental
conditions can be used in different scenarios. One of this cases is the remote healthcare.
Allowing a non-critical patient to be monitored from home can be beneficial, both to the
hospital and to the patient. Considering a patient who doesn’t require a skilled nurse to
accomplish his treatments, one might benefit from the comfort of home, but also from the
help and constant support of the family. On the other hand, the hospital will be able to
host other patients with critical needs, while keeping track of the condition of patients that
are recovering at home. Another advantage is the ability to inform the patient about his
condition and advice the right medicine according to the situation, as it would be happening
at the hospital’s facilities.

A different scenario is to monitor old adults who live alone. In Portugal, it was reported
that back in 2011, 2872 old citizens were found dead alone in their homes [1]. Those citizens
were only discovered thanks to first responders breaking into their places [1], after reports
regarding the missing person. With the monitoring of vital signs, it is possible to know when
something is wrong with a person and have an appropriate response to the case.

Currently, there is a project starting that focus on safe rehabilitation, called Ambient Assis-
tance for Recovery (AA4R) 1. The idea behind is divided into three parts. One of them
is the monitoring of the patient’s status and its surrounding environment. Another part is
the medical server, whom is receiving the monitored data from the patient and sending the
processed information to the third entity, for instance, the hospital. The hospital, in turn,
will analyse the information and give feedback directly to the patient. Refer to chapter 2.1

1Ambient Assistance for Recovery project (http://www.aa4r.org/). It involves nine different
research institutes from the Hamburg University of Technology (TUHH), including the Institute of
Telematics (http://www.ti5.tuhh.de/), in cooperation with medical and industrial partners.

1

http://www.aa4r.org/
http://www.ti5.tuhh.de/

for more information about this project.

The previous scenarios are focused on the monitoring of the patients that are either recov-
ering or just being checked at home from the hospital. A different case scenario, where the
monitoring of vital signs can be also applied, is the one where people are taken into dan-
gerous extreme situations. For instance, first responders face high risk missions in critical
scenarios of emergency which may expose them, among other dangers, to high temperatures
and constant stress. Taking in consideration that both of this factors combined can lead to
a rapid increase of body core temperature, which is dangerous to human organism [2, p. 70],
it is essential to keep constant track of vital signs of a first responder. Moreover, incidents
during their missions may cause depression, sleepless or loss of appetite [2, p. 70], which may
lead to fatigue during their missions. With a fast response to an anomaly in the vital signs,
such as the replacement of a first responder in a bad condition, can prevent serious illnesses
or even the death of this professionals.

The project named Vital Responder2, aims to provide a first response monitoring system
[3, p. 397] for extreme scenarios, such as the one previously described. It is constituted
by different components, including a wearable device equipped with sensors, that transmits
data to a smartphone. This data is then processed with the smartphone application called
DroidJacket. This application’s functionality is to reduce the content size by using data down
sampling, present optionally a visualization on the screen and automatically detect possible
alarms. The processed data is then relayed to an external client [3, p. 399] to process the
detected alarms and present a visualization of the data streamed from the sensors. Currently,
the external client is a base station application called iVital developed for iPad. It allows to
visualize the individual status of elements of a team, with up to four elements at once [3,
p. 400]. Since this devices are not meant to be used by users experienced on technology, there
is an effort to keep the interfaces and interaction easily accessible and intuitive [3, p. 400].
Refer to chapter 2.2 for detailed information about this project.

1.2 Objectives

The aim of this Master’s Thesis is to analyse the requirements of both AA4R and VitalRe-
sponder projects, regarding the modelling and development of an information system as a
solution to remotely monitor patient’s or first responder’s vital signs and surrounding en-
vironmental conditions. The system design should take in consideration the minimization
of risk of failure and give the possibility to scale the processing capacity, according to the

2Vital Responder project (http://www.vitalresponder.pt/) is organized in a consortium, with
Electronics and Telematics Engineering Institute of Aveiro (Electronics and Telematics Engineering
Institute of Aveiro (IEETA) http://www.ieeta.pt/), from University of Aveiro, as the main insti-
tution, in partnership with Telecommunications Institute (IT http://www.it.pt/), BioDevices S.A.
(http://www.biodevices.pt/) and Center for Sensed Critical Infrastructure Research (CenSCIR),
from Carnegie Mellon University.

2

http://www.vitalresponder.pt/
http://www.ieeta.pt/
http://www.it.pt/
http://www.biodevices.pt/

quantity of patients and sensors. Furthermore, the system must be able to present to the
final user a clear visualization of the information obtained from the sensors’ data, and display
alerts when they occur. The client implementation should be prepared for multi-platform.

Additionally, a smartphone application will be developed with the purpose of creating a
gateway between the sensors and the information system. Currently, the VitalResponder
project has its own implementation, the DroidJacket, which obtains the data from the sensors
through Bluetooth connection and transmits it to the base station with TCP. For the AA4R
project, the implementation should transmit the data with UDP instead.

The UDP implementation will have to take in consideration the unreliability of the protocol.
Latencies, packet loss detection and recovery will be analysed with the UDP protocol. Also,
the delay between the time of reading values from the sensors up to the presentation to the
client interface, should be taken into analysis.

1.3 Chapter structure

The next chapter will introduce into more detail the projects above mentioned (AA4R and
Vital Responder) and how this Master’s thesis applies to both of them. Requirements are
analysed and documented for both cases. Also, the research results on relevant projects in
the field are presented.

Later, on the chapter 3, requirements will be merged, conflicts determined and analysed for
a final solution. The solution to the requirements will be then documented together with a
system design, based on the decision taken.

Before deeping into implementation details, the technologies and tools used for the develop-
ment are presented in the chapter 4

Regarding the implementation of the information system, chapter 5 will cover the smartphone
application development, the system responsible for data receiving, process and storage, as
well as the platform-independent client application, meant to present the information to the
user. In this chapter, technologies used for the development can be found, with guidelines to
the system usage and possibilities for further implementations.

The results of the development of the system will be analysed and documented on chapter 6.

3

Chapter Two

Background

In this chapter, the ongoing projects are introduced and contextualized in this Master’s
Thesis. Those projects are the AA4R and the Vital Responder. Additionaly, a research on
other relevant projects was made and documented.

2.1 Ambient Assistance for Recovery

As mentioned before, the Ambient Assistance for Recovery is a project starting at the Ham-
burg University of Technology, involving nine different research institutes, in cooperation
with medical and industrial partners. Each of those institutes plays a different role in this
project, according to their field of expertise.

The aim of AA4R is to give to the patients the ability to recover at home, while their vital
signs are being remotely monitored in the health care institution. Also, the health care
institution should be able to give back feedback to the patients or even control remotely the
patient’s actuators to improve their healing process. This is possible by merging the existent
technology with a system that allows to communicate with remote devices, actuators and
sensors.

As the figure 2.1 illustrates, there are three main points of communication. One is composed
by the entire set of instruments installed at the patient’s location or connected at his/her
body. They are used for localized tracking of environmental state and tracking of patient’s
vital signs, respectively. This point is where all the data is gathered and transmitted to
another point of communication: the medical server.

At the medical server, the data is processed, recorded and possibly transformed for a further
analysis from a specialized team. This is also the point where the healthcare institution (the
third point of communication) can access the information and send feedback to the patient.

5

Figure 2.1: Ambient Assistance for Recovery [4]

There are many cases where this could be applied. On orthopaedics, as an example, devices
such as intelligent implants with sensors, actuators and a radio frequency module can track
and optimize the healing process of a fractured bone. An existent product that could be
applied in this case is the iOS/ Intelligent Implant for Osteosynthesis, from livetec, winner
of the Innovation Competition of 2007 for the promotion of medical technology. It measures
the stiffness of the bone with non-invasive means and transmits it through Radio-frequency
transmitter (RF) to an external device [5].

Figure 2.2: ECG Tele-home-care solution [6]

Cardiology is another use case. In 2005, a paper was published with a concept for a continuous
remote recording of Electrocardiogram (ECG) signals, as the figure 2.2 illustrates. It consists
on a sticky wireless sensor attached to the patient’s chest, continuously transmitting read
data to a Hand Held Device (HHD) , via RF. Installed in the HHD, the implemented

6

software automatically connects the device to a GPRS/GSM mobile network and transmits
the necessary data to a web server, through the Internet [6]. On this HHD, the doctor can
define alarm criteria, so that in case of anomaly detection, 1 minute of ECG is recorded
and sent to the server. The doctor, then, has access to this data and can leave feedback in
the same system. The patient has also access to the system through a web-interface, where
he/she can retrieve the ECG-findings and contact the doctor [6].

2.1.1 Scope in this Master’s Thesis

The design and development of an information system that can record, process and show data
from different devices, located remotely at each patient’s location, was the topic proposed
for this Master’s Thesis. This information system covers the three communication points
described before (see figure 2.1).

Similarly to the concept described on in [6], an application for a HHD will be developed to
receive the data from the different sensors (instead of a single ECG sensor), via Bluetooth,
and relay them to the web server, using the protocol UDP/IP, via 802.11 or the mobile’s
broadband connection. This application will be running on the patient’s side, and will serve
as a Gateway to the patient’s sensors and actuators.

For the third communication point, the healthcare institute, a web-interface will be imple-
mented with live data from sensors being presented in the form of charts.

2.1.2 Requirements

For the HHD, an Android application should be developed. It will be responsible for receiving
data from the sensors, via Bluetooth, and relaying the data to the web server, via 802.11 or
mobile’s broadband connection.

On the medical server side, the system should be able to connect to the HHD, receive the
UDP/IP data, interpret it, process it and store it in a database. Considering that a single
system will be receiving data from different patients, and that each patient might have more
than one sensor being monitored and that there are sensors transmitting data with an high-
frequency rate (such as ECG), the system should be prepared to handle the high number of
connections and packets received. It is convenient to have a system prepared to be scalable,
for the case of having a growing number of patients and greater number of sensors per patient
in the future. Also, taking in consideration that the health of the patients might be in risk,
single points of failure in the system should be avoided or its risk of failure reduced.

Regarding the data transmission, to avoid missing data, a protocol that prevents packet loss
should be developed. Also, it is important to implement a protocol that synchronizes the
clock of the HHD with the server time. For that, the latency should also be taken into
consideration.

7

Regarding the web interface, it should list the patients of an authenticated doctor. When a
patient is selected, his sensors’ live data should be presented. For the consistent visualization
of the data, the order of the values must be taken into consideration.

2.2 Vital Responder

Thought to be used by first responders during their missions under adverse conditions, Vital
Responder project is a set of components that help this professionals to understand, in real
time, the human stress and fatigue of their team and detect anomalies with their vital signs.
It is a research and development project, lead by Institute of Electronics and Telematics
Engineering of Aveiro, from University of Aveiro, in partnership with Instituto de Teleco-
municações, BioDevices S.A. and Center for Sensed Critical Infrastructure Research, from
Carnegie Mellon University.

The challenges of this project are mainly related with real-time constant information gath-
ering of body signals (which is hard to achieve under the adverse conditions first responders
have to face), indoor location tracking of this professionals (which is not possible to achieve
with Global Positioning System (GPS) based location systems) and inter-disciplinary re-
search in a team with engineers and clinicians on the origins and nature of physiological
stress [7].

2.2.1 Components

The current implementation of Vital Responder project [7] is composed by four main com-
ponents, introduced and explained in the following sub-sections.

Vital Jacket

Designed to be used in many critical scenarios that require movement, Vital Jacket R© was a
project for a vital signs’ monitoring system. It was meant to be wearable, while maintaining
the high quality of vital signs’ tracking with continuous or high frequent sampling [8].

The concept of having an wearable device was based on former work made by the IEETA -
R&D non-profitable organization, from University of Aveiro [8][9]. The institute developed
all the microelectronics, informatics and mobile communications. The textile work was de-
veloped together with the Technological Centre for the Textile and Clothing Industries of
Portugal (CITEVE) , a non-profilable association from the Portuguese textile industry.

The prototype of the project is a jacket with sensors attached to it. It has a pocket where
the device which receives and relays the data from all the sensors will be inserted (see section
2.2.1). The prototype can be seen in the picture a) at the figure 2.3.

Back in 2007, the project development of Vital Jacket R© was licensed to a biomedical en-
gineering spin-off company named BioDevices, S.A.. This company further developed the

8

project, reducing the size of the jacket, turning it into a t-shirt, as can be seen in the b)
picture at the figure 2.3. The t-shirt is able to monitor the ECG, hearth rate and body
position, using ECG leads and a 3-axis accelerometer.

This is a certified product used for sports, clinical scenarios and emergency situations [10].
It is integrated into Vital Responder project to monitor the first responders’ vital signs.

Figure 2.3: Vital Jacket prototype (a) and commercial version (b) [8]

Vital Jacket Box

The Vital Jacket R©’s sensors are connected through wires to a single device, named Vital
Jacket R©Box (see figure 2.4). This device relays the received data from the sensors to another
device through Bluetooth connection. Additionally, it can store the received data into a SD-
Card for further offline analysis.

Figure 2.4: Vital Jacket Box [11]

Droid Jacket

To receive the data sent from the Vital Jacket R©Box, an Android HHD is used. This device has
an application called Droid Jacket installed. This application has several components, which

9

include user management (for team support), data processing, information visualization and
data server.

Figure 2.5: Vital Jacket Box architecture [11]

The application was designed as a modular system, managed by the implemented frame-
work named Biological Signal Acquisition Layer (BIOSal) . Different data sources, parsers,
processors and alarms can be implemented and integrated into the application (see figure
2.5).

As the data is received, it is parsed, processed, checked for alarming values and, when in
server mode, relayed to the connected clients. The processing modules can be implemented
to detect patterns in the data, such as heart beats detection. Alarms can be created, for the
case of alarming values or alarming patterns’ detection, such as arrhythmia.

Regarding the user interface, the application provides access to user management, to a real-
time monitoring visualization of the processed data, to a map with the spatial positioning
of the other users and gives the ability to the user to start the server mode and change
application’s configuration.

At the figure 2.6, a real-time visualization of the processed data can be seen. In this case, the

10

information is being presented in a form of a chart. The figure 2.7.b shows a visualization
in form of a map, with the spatial positioning of the team members. The screen in the
figure 2.7.d shows Android’s notification list with an alert from the application, alerting for
arrhythmia detection.

Figure 2.6: Droid Jacket [11]

When the application is set to server mode, it starts listening for external TCP connections.
Once connected, the processed data and alarms are relayed to the connected device. In
the case of Vital Responder project, the device being connected to receive this data is an
iPad with an application called iVital (see section 2.2.1). When connected to iVital, the
Droid Jacket application starts running in the background, as any interaction from the first
responders with the HHD is not desirable during the performance of their tasks [3].

11

Figure 2.7: Droid Jacket screens [11]

iVital

As it is not convenient for the first responders to interact with the mobile device during their
tasks, a separate mobile team coordination station was implemented. This base station, a
proof-of-concept in form of an iPad application dubbed iVital, has the capability to connect
via 802.11 to 4 devices (but, technically scalable up to 12) with Droid Jacket running in
server mode (see section 2.2.1). It is a mobile solution, used by the team coordinator. It
allows to have an overview status of the team in action, as the figure 2.8 illustrates.

On the screen, the intervention area is presented. In this area, the team members are spatially
located with color representation, when the GPS positioning is available. On the bottom, a
list of team members is shown, with a color representations consistent to their position on
the map. By pressing one of the team members, the bottom screen shows his/hers vital signs
and alarms. As for the environmental condition, on the top of the screen it is possible to
read information, such as humidity, temperature and wind.

The implemented alarm system warns the user with audio or/and visual signs whenever it
detects that an individual is in an alarming situation, with the pre-defined alarm implemen-
tations (see BIOSal, in section 2.2.1).

Another important feature implemented in the iVital, is the feature "search and rescue".
This feature gives the ability to send help to an injured person, by sending a message to the
nearest first responder with the location where that person is. The message sent contains the

12

Figure 2.8: iVital [3]

coordinates of the person, which DroidJacket will parse and then guide the first responder to
the injured individual [3].

The communication with the Droid Jacket is made with a tag-oriented protocol. The data-
grams are composed by a common header and the data. The common header contains the
timestamp tag and the timestamp value. The data is composed by the data type tag and the
data values [3].

At this device, the data received is aggregated, processed and then presented to the user in
form of visualization, such as the ones described above.

2.2.2 Communication

As previously described, the Vital Responder project is composed by a wearable device Vital
Jacket together with Vital Jacket Box for sensor data relay, an Android application dubbed
Droid Jacket for data processing, alarm detector, visualization and relaying and the iVital,
used for aggregated data processing, alarm detection and visualization for team coordination.

The Vital Jacket’s sensors communicate with the Vital Jacket box through wires. The latter
device relays the data via Bluetooth and can optionally save it into a SD-Card for further
analysis.

The Android device, with the Droid Jacket application installed, receives the Bluetooth
streamed data from a Vital Jacket Box, as can be seen in the figure 2.9. When set into server
mode, the Droid Jacket application listens to TCP/IP connections. When a connection is
established, it is registered as a listener for the processed data.

13

Figure 2.9: Vital Responder architecture [3]

Currently, the iVital application is the one establishing connection to several Droid Jacket’s
devices (up to 4, but technically scalable to 12). The connection is made through wireless
connection with the IEEE 802.11 protocol. Unfortunately, an operational limitation exists,
as the connection cannot be established directly to the Android device. This is due to the
fact that the operative system do not support ad-hoc connections [3].

Figure 2.10: Vital Responder communication [3]

The figure 2.10 describes the communication steps between the above described devices.

First, the Droid Jacket application starts the Bluetooth device discovery. Then, when the
correct Vital Jacket Box is found and selected, it establishes a connection and keeps it alive
until a disconnect request. The physiological data is transmitted from the Vital Jacket Box

14

while connected to the Droid Jacket’s HHD. The transmitted data includes 1 lead ECG at
500Hz, accelerometers sampled at 10Hz and GPS location at 1Hz [3]. When set into server
mode, the Droid Jacket application listens to TCP/IP connections. This connection is used
to relay the processed data to other devices.

In Vital Responder context, the connection to the Droid Jacket is done from the iPad’s
application iVital. This application establishes a connection to the Android HHD device and
sends a command representing a "Start All". Once this command is received on the Droid
Jacket, the iVital’s connection is registered as a listener to the processed data. It means that,
as soon as the data is processed, it is sent to the iVital application.

2.2.3 Scope in this thesis

The aim for this Master’s Thesis will be to develop a multi-platform information system.
This information system should receive the data from the Droid Jacket and present it live at
the client application interface with appropriate visualizations. The idea is to have a Web
alternative to the currently developed iVital application.

2.2.4 Requirements

As mentioned in the subsection 2.2.3, one of the objectives is to design and develop a multi-
platform information system. It should be possible to access this system in a computer, a
tablet or a HHD, taking in consideration the different screen sizes. In all of those cases, the
user interface should be intuitive, to be used by professionals with no experience on computer
software usage.

The information shown on the screen should be presented as soon as the data is available. A
perfect scenario would be to have the information displayed in real-time.

Regarding the connection, it should be established from the information system to the Droid
Jacket applications in server mode, via TCP/IP. The communication should be bi-lateral to
allow the sending of commands.

2.3 Research on relevant projects

In this section, the research on other related work is documented. It includes a Brazilian
project [12], a telemedicine solution for senior citizens and patients with cronic deseases,
a Norwegian system for electrocardiogram data transmission [6] and an American project
presenting a heterogeneous wireless network to support a home health system [13].

2.3.1 Mobile Telemedicine System

The Brazilian telemedicine project’s aim is the constant assistance of senior citizens and
patients with cronic deseases. It consists of a home care system that supports medical mon-
itoring standards, as well as telecommunication standards.

15

Figure 2.11: Mobile Telemedicine System: System schematic [12]

As the figure 2.11 presents, the implemented system uses mobile telephony for a telemedicine
system. The mobile device is connected to a sensor gateway through a RS-232 standard serial
interface. This sensor gateway is a radio-frequency receiver that obtains the data wirelessly
transmitted by the sensors.

The authors of [12] describe a mobile phone application with a simple to use interface (see
figure 2.12). With few commands and basic options, a patient will have decreased difficulties
interacting with the application. Its purpose is to upload the monitored data, the clients
vital signs, to a server via TCP/IP. This server is, typically, located in a hospital and stores
the data in a relational database. For the connection to the monitors, only a generic driver
is modeled. The implementation of drivers for many different signals from several available
equipements is out of the scope of the project.

For the data to be evaluated by a doctor, a server application is provided. This application
aims to receive, store and distribute data. The implemented features allow to display pa-
tient lists with patient data, visualization of vital signs, data export in eXtensible Markup
Language eXtensible Markup Language (XML) format and printouts as PNG-images. The
XML export makes the system compatible to other analyzing software.

Both applications in the client-server architecture, the client application on the mobile phone

16

Figure 2.12: Mobile Telemedicine System: Mobile application’s user interface [12]

and the server application on a hospital’s computer, are implemented in Java.

According to the authors of [12] the system archieves a guaranteed transmission of a packet
each 600 ms. Depending on the data size a transmission lasts 2 to 30 seconds at a baud rate
of 3400 bps. Lost packets are tracked by Cyclic Redundancy Code (CRC) .

2.3.2 Wearable ECG-recording System

In 2005, a complete system for ECG data transmission was in trial in Norway’s hospitals.
Rare occurences of cardiac arrhythmias of patients in daily life are aimed to be detected.

Critical patients get wireless ECG sensors which they can stick to their chest (see figure 2.13).
Each sensor contains a battery that lasts for several days and a RF transmitter. The RF
radio receiver and respective microcontroller are connected to a standard Personal Digital
Assistant (PDA) , via RS-232. This HHD can be set-up by the doctor who defines alarm
criteria. While the sensor continously sends data, the HDD detects arrhytmias in it. Only if
the patient is in an alarming or abnormal state, the PDA sends the last minute of recorded
ECG data via GPRS to a server. As the data is not constantly transmitted to the server,
this is not a remote monitoring solution with live data. However, for each minute, the HHD
calculates average values of the monitored sensor data, such as heart rate, and stores it in a
status file. This data is sent regulary to the server as an XML file by using the File Transfer
Protocol (FTP) protocol. It is mentioned that no technical skills are required to use the
system.

The server is located in a Local Area Network (LAN) of a hospital. It runs Microsoft Server
2003, an Structured Query Language (SQL) database and a Microsoft .Net application.
The client and doctor can only access the server through a Virtual Private Network (VPN)
. The application is accessed by using a browser. The patient can see his own data, read
messages and drug prescriptions from the doctor and can send him questions. In such way,

17

Figure 2.13: Wearable ECG-recording System: Devices [6]

a fast feedback can be provided. On the hospitals’ side, a remote clinical application is
installed. Alarm records and their time are displayed as well as a vizualization of the ECG
data. Furthermore, printouts are possible and a textbox for comments is available.

2.3.3 ITALH and SensorNet

The focus of the Information Technology for Assisted Living at Home (ITALH) project lies
on privacy and security of the users. The target group are elder citizens who would have to
live in group care facilities if they would not have the system. The main differences to other
systems are the Home Health System gateway which replaces the server of other systems and
the fact that it is located at the user’s home.

Figure 2.14: SensorNet: Wireless connectivity [13]

In order to provide privacy, the system is encapsulated. The sensors contain embedded
processing capability. Only on significant events, the data is transmitted to the central server.
The data transmitted contains the sensor status and notification messages. The SensorNet
is the main part of the system. It is an ad hoc heterogeneous wireless network, based on
Bluetooth and Zigbee (IEEE 802.11.4) technology (see figure 2.14). All kinds of sensors are
connected by this network. They measure data about the patients state, his movements and
his environment, to detect events, such as if he falls. All the sensors have processors which
analyse the data immediatly without sending it to the network. Only in case of emegency,
or if an authorized user connects to them, data will be sent to the Home Health System
or an additional mobile gateway. This saves local bandwidth and data protection is higher.
Furthermore, transmitted data is encrypted.

18

There are two kinds of gateways possible in the SensorNet. The fixed one, a Windows XP
computer and a mobile one, which is a Symbian mobile phone. They are also communicating
among each other, if needed. In 2005, when the project started, a video conference with
the mobile phone was only possible over the bluetooth connection to the fixed Home Health
System gateway.

The task of the Home Health System is to decide if further help is needed and request it in
that case. It is securely connected to the global internet and telephone system. If a sensor
detects abnormal behaviour, the system will send a notification to the user to confirm his
status. If no response is obtained back in a (short) period of time, an emergency signal is
created and the access to sensor data is automatically authorized without the user consent.
Many different proceedings are possible. Nevertheless, the system will notify a doctor or
relative or establishes a phone call if needed. Authorized users can then login and connect to
some sensors, for example a camera, to check the users state. A similar usage is imaginable
when the user has an online appointment with a doctor.

The great advantage is that the Home Health System is installed at home and no private data
is sent, unless necessary. There is no constant or unsecure streaming of data, as it happens
in in other systems. With the mobile gateway it is even possible to collect data in the Home
Health System when the user is not at his place.

This project from the United States and Denmark provides remote monitoring in case of an
accident or acute illness if needed, but also protects the privacy of the clients. The gateway
interfaces can be configured variabily, depending on the technical or medical knowledge of
the user.

19

Chapter Three

Design

In this chapter are documented the analysis of conflicting requirements and the documenta-
tion of the system design.

3.1 Analysis of conflicting requirements

Taking in consideration the requirements mentioned in the chapter 2, from both AA4R and
Vital Responder projects, an information system solution was designed. As the following
requirements were conflicting, some decisions had to be taken during the design process.
This section is meant to identify the conflicting requirements.

3.1.1 User interface

The iVital application is meant to show in real time the positioning of the team-members on a
map. Each team member is represented by a marker uniquely identified by a color. Individual
vital signs’ visualization can be done without losing the map visualization (see figure 2.8). It
would be desirable for the information system to replicate this feature. Unfortunately, in the
context of patient monitoring, having a user interface that is showing each patient position in
real time can be a privacy issue. Only in some extreme emergency scenarios, a visualization
with a map showing the patient’s position would become useful, but still, can be seen as a
privacy concern.

3.1.2 Communication protocols

The Droid Jacket application uses TCP/IP protocol for the incoming connections, when in
server mode. This mode is meant to relay the processed data to another device. Currently
this is used by the iVital application. The aim of this Thesis is to create a web alternative
to the iVital application, which is able to communicate to the Droid Jacket as it is.

Additionally, as a requirement for the AA4R project, a similar application will be developed.
For scientific purposes, the use of UDP/IP protocol must be used instead of TCP/IP. This

21

protocol is lightweight, comparing to TCP/IP, allowing it to be faster at the cost of its
reliability [14]. Due to this, a protocol to prevent packet loss should be designed.

So, with this addition in mind, the system which will communicate with the devices will have
to be able to communicate with both TCP/IP and UDP/IP protocols.

3.1.3 Adaptability on demand

While on Vital Responder project, the system would be used mainly during the intervention
of the first responders’ teams, the AA4R project is meant for a long-term usage. It means
that, in the former scenario, the system would have peaks of usage during many simultaneous
interventions, and fortunate moments when the system is barely used. On the latter scenario,
the constant monitoring of the patients is fundamental. Also, the number of patients can
grow with the adoption of the system, as well as the quantity of sensors and, possibly, their
increasing data frequency rates for a most precise sampling.

3.2 Proposed design

With the analysed requirements in mind, the system can be decoupled into three distinct
projects. Those projects are organized into three main functionalities: sensor data relay,
sensor data processing and client interface for live visualization of sensor data.

Figure 3.1: Overall system architecture

The figure 3.1 gives an overview of the decoupled projects and the data layer used by them.
It also illustrates their relations in the communication.

An entity is defined as a set of sensors connected to a single sensor data relay device and
the device itself. It represents a person and/or location, depending on which sensors are
connected to the device. From this section on, when the word entity is used, it is being
refered to this meaning, unless stated otherwise.

22

The packet processing system is the set of components responsible for data gathering from
the entities, followed by data processing and storage.

The data layer is composed by two databases meant to store sensor data, as well as user and
sensor management data. Both are used by the client interface to support the information
organization and data visualization, while the packet processing system solely uses the former
to store the processed sensor data.

This chapter introduces the design of the components and protocols that compose the final
solution:

• Sensor data relay application

• Packet processing system

– Entity communication point
– Queue
– Scallable packet hander

• Client interface

3.2.1 Sensor data relay application

As one of the functionalities of the Droid Jacket application, the aim of the SDR application
is to receive data from a set of sensors and relay it to the connected remote systems. The
connection to the sensors is made through a gateway, which retrieves the data from the
connected sensors (see figure 3.2). The data gatherer (see chapter 3.2.2) connects then to the
SDR to obtain the data retrieved from the gateway.

Figure 3.2: Entity components

The selection of the sensor gateway is made by the user, when the SDR application starts,
through a list of nearby devices. When the user selects the gateway, the connection to it is
established. Once the connection is established, the gateway starts streaming data. At the
same time, the SDR application starts listening for connections from data gatherers. At this
point, if successfully connected, the user is able to see information relative to Bluetooth and
UDP/IP connection, including the local IP address. Using this IP address, the remote system
should be able to connect to the SDR application. Appart from Bluetooth and UDP/IP
connection information, the user is also able to see statistics, such as, number of packets

23

received and transmitted. The use case diagram of the figure 3.3 describes this interactions
with the application.

Figure 3.3: Use case diagram: Entity

As the diagram illustrates, only the use cases with blue color should be visible and used when
the device is not connected to a gateway. On the other hand, only the green use cases should
be visible and used when a connection to the gateway is successfully established.

No other use cases exist, because it is not desirable that the user is required to interact
with the application. When the application is connected, it should perform its tasks as a
background process with no user interface. The user interface to show Bluetooth and UDP/IP
status and packets’ statistics should only be shown on user request.

Regarding the connection between the data gatherer and the SDR application, the UDP/IP
protocol is to be used. As this protocol does not guarantee the order and the delivery of all
the packets [14], a solution should be designed to keep data consistency through the time and
a protocol to prevent that the data is not being lost.

To prevent data’s consistency loss due to the stream via UDP/IP, the timestamp is sent
together with each sensor value. But, this raises a new issue. If the time at the device is
not correct, the data will be wrongly shifted in time. An attempt to solve this problem is to
synchronize the time on the device with the data gatherer. The data gatherer sends a packet
with its current timestamp, the SDR receives it and stores the difference in time between
both. Everytime a timestamp is generated on the SDR side, the time difference is taken into

24

account. Unfortunately, this is not enough.

Figure 3.4: Time synchronization - latency issue

As illustrated on the figure 3.4, only using the server time is not enough. The time taken
for the packet to reach the SDR application should be considered as well. Analysing the
example of the figure, the 20 seconds it takes for the packet with the timestamp to reach
the target will result in a wrong time synchronization with 20 seconds of delay. To solve it,
it is required to know what is the latency of the packets. As the clock time should not be
taken into consideration for the latency calculation (the purpose of calculating the latency is
to know the correct time after all), sending the timestamp of one side to another will not add
any relevance to the result. But, if the time sent by the data gathered is sent back from the
SDR application, as it is, then the sum of the latency of both directions can be measured.
In this case, the timestamp can be used as it will be calculated by the same source. So, to
calculate the latency of both directions, the difference between the reception time and the
packet’s timestamp is calculated. An estimate of how much latency exists on one direction
can be calculated by dividing this time difference by two.

Figure 3.5: Time synchronization and hand-shake

This process can be done during the connection establishment. The protocol illustrated on
the figure 3.5 defines a 3-way hand-shake procedure (ideologically based on the one from
TCP/IP [15, p. 31]).

25

At the step 1., a synchronization packet is sent, together with the data gatherer timestamp.
At step 2., the SDR application calculates the difference between its time and the timestamp
received. At step 3., the packet is sent back as an acknowledge and synchronization packet,
together with the original timestamp. At step 4., the data gatherer calculates the difference
between its current time and the timestamp received. At step 5., an acknowledge packet
is sent, together with the estimated latency (time difference divided by two). At step 6.,
to the time difference calculated previously, is added the estimated latency. Once the SDR
receives the acknowledge, the connection is considered established. At this point, the SDR
application starts streaming the data from the sensors.

Unfortunately, this method does not consider time drifting. One possible solution for time
drifting, is to do a periodic time synchronization with the Entity Communication Point (ECP)
.

Regarding the unreliability of the protocol UDP/IP [14], a protocol should be defined to
detect and recover the packets that are lost during the sensor data transmission. As the
timestamps are being sent from the SDR application to the data gatherer, they can be used
to detect missing packets.

Figure 3.6: Packet loss detection and recovery

The figure 3.6 shows the designed protocol. The SDR application stores locally each packet

26

sent. With a fixed period of time T , the data gatherer sends back all the timestamps of sensor
data received. The SDR then removes all the entries with the corresponding timestamps, and
checks for entries with the timestamp lower than the highest timestamp acknowledged. All
existent entries are referent to lost packets and are sent again to the data gatherer. While this
process is performed, the current sensor data is still being transmitted without interruption.

Between the first N packets in the figure 3.6, one packet is lost (red arrow, packet L).
After T period of time, a packet is sent back with the received timestamps. In this packet,
the timestamp L is not included, as it was not received. The SDR application removes all
the entries with timestamps 1, 2, 3, ..., N . Then, a query is made to the stored packets.
Assuming N is the highest timestamp received, all the entries found with timestamp lower
than N will be considered as not successfully sent. The first blue arrow in the figure represent
the acknowledgement of lost packets and the highest timestamp. The second blue arrow is
the lost packet being sent again. In the second T period of time, the packet with timestamp
L is acknowledged as received. It is sent together with the other timestamps received in the
meantime. The green arrow acknowledges that no packet was lost, together with the highest
acknowledged timestamp.

3.2.2 Packet processing system

The packet processing system is responsible for:

• Connection to the entities and sensor data retrieval

• Sensor data processing

• Sensor data storage

Figure 3.7: Packet processing system

Since the system usage is variable, depending on the case scenario and on the occasion, a
scalable system is taken into account during the design. Moreover, considering the impor-
tance of a reliable system in patients or first responder’s health monitoring, the tasks are
decoupled into different steps in a distributed system. By doing so, the different components
can be installed in separate physical machines, preventing that the processing of one function-
ality competes with another in the same processor. Additionaly, by dividing the complexity
through the components, the maintenance is easier, the development more clear and the risk
of failure can be reduced.

27

Illustrated in the figure 3.7, the system is decoupled into an ECP, a Queue and a Scalable
Packet Handler (SPH) . The processed data, from the SPH, is stored in a data store, such
as a non-relational database.

The following sections describe the design of each component of the distributed system:

• Entity Communication Point

• Queue

• Scalable Packet Handler

Entity Communication Point

The ECP is the component which manages connections to the entities. It connects to the
remote SDR applications, obtains the sensor data and sends it to a queue for further pro-
cessing. This component must be able to establish connections, using different protocols, on
demand.

This component should not realize unstable operations, such as data interpretation and pro-
cessing, as it is a single point of failure in the distributed system. If this system fails, no
sensor data is received and the other components will not be able to accomplish their tasks
without data. Still, some basic operations should be still done, such as adding a timestamp to
the packet and sending it to a queue. The operations in a packet should happen in a separate
thread to the packet listener. In such way, if a task takes longer to accomplish, the packet
gathering will not be compromised. Also, the packet listener usually is a blocking operation.
Separating it from the processing will allow the application to run tasks in parallel, while the
listener waits for the next packet.

Figure 3.8: Activity diagram: Entity communication Point - Packet reception

The figure 3.8 is an activity diagram with the process of packet listening and processing. As
it is represented, each time a new packet is received, a new thread is created to process this
packet, while at the same time, the packet listener waits for another packet.

Also important is the fact that each connection’s listener should run in a different thread.
Otherwise, only one connection could stay actively listening for new packets.

28

Queue

The Queue is a component that receives messages, store and allow their retrieval on demand.
When a message is received it is placed into a queue. In the context of this project, a message
will serve the purpose to buffer the received packets for further processing. By buffering
the messages, the processing system is not overloaded with packets. Instead, it consumes
them as there are resources available [16, p. 11-12]. This queue provides a similar workflow
than the Amazon Simple Queue Service [17, p. 6][18, p. 2], but without the advantage of a
redundant and distributed queueing system . Still, this architecture contributes to a system
more resilient to failure [17, p. 6][16, p. 10].

Figure 3.9: Sequence diagram: Queue - Message handling

The figure 3.9 illustrates the sequence of a message request by a packet handler. When a
packet handler requests a message, if the queue is empty, the connection is kept active until

29

a new message arrives (1). If the queue contains at least one message, the oldest message is
screened from the other packet handlers (2) and retrieved to the requesting one (4). A new
thread is created with a timeout of a time T (3). When this timeout reaches the deadline,
the message is unscreened from the other packet handlers, unless it has been removed before.
A packet is removed with success when no other packet handler finished the same job before
(6). If a packet handler takes longer than the deadline, then another packet handler can
read and process the same message. If, by any chance, a second packet handler obtains the
message after the deadline and is able to finish before the current task, then the second packet
handler will successfully remove the message. Then the first packet handler will atempt to
remove the same message, a negative result will be given. In this case, the processed data
should be discarted (7.2). If a packet is not successfully removed from the queue because it
doesn’t exist anymore, then it means that another packet handler have already processed the
message. For this reason, the storage of the results of the processed packet should only occur
after a successfully removed packet from the queue (7.1).

Scalable Packet Handler

A packet handler is a component that retrieves messages from the queue, processes and stores
them into a data store. As the values are independently processed, many instances can run
parallelly[16, p. 14-15] (see figure 3.10). This makes the system scalable, as new instances
and/or machines can be started to consume and process more data, when necessary. On the
other hand, it is also possible to reduce the number of instances when the workload is lower.
Such scalable system allows the adaptability of resources, depending on the required usage,
solving the problem mentioned on the section 3.1.3.

Figure 3.10: Scalable packet hander

If the quantity of messages being stored in the queue have a constant increase, it means that

30

an additional packet handler is needed to avoid delays in the packet processing. If this delay
occurs, the client interface will not be able to reproduce a reliable live data visualization
of the streamed sensor data. On the other hand, if the queue is constantly empty and the
packet handler needs to wait to obtain the next message, then too many packet handlers are
running and at least one can be safely turned off, unless only one exists.

3.2.3 Client interface

The client interface serves the purpose of showing historical data, as well as live data being
transmitted from the entities. A user is able to authenticate and then list its asscoiated
entities. When chosing an entity, the user can see a set of widgets, each one representing one
sensor of this entity. The visualization should be generated according to the data type and
needs.

It should be able to adapt to the user screen, being it a smartphone, a tablet or a computer
desktop.

31

Chapter Four

Framework

In this chapter, some of the technologies used in this project will be introduced:

• Java platform

– Differences between JSE, JEE and JME
– Glassfish, a Java’s web application server
– Brief introduction to Glasfish’s HTTP Server, Enterprise Java Beans, Java Server

Pages, Java Server Faces

• Relational database MySQL

• NoSQL database MongoDB

• Web frameworks

– jQuery
– Twitter’s Bootstrap
– Sammy.js

4.1 Platform

The following subsections will introduce the technologies and tools that will be used during
the implementation of the project.

4.1.1 Java

Apart from being a general-purpose, concurrent, class-based and object-oriented language
[19, p. 1], Java is not only a programming language. It is also a platform that runs over
other platforms, as an abstraction layer. It allows the same Java application to run over
different operative systems, such as Microsoft Windows and Linux, without the need of a
different compilation[20, p. 6]. The platform is composed by a Virtual Machine (VM) and
an Application Programming Interface (API) .

33

Figure 4.1: The Java Base Platform [20, p. 14]

To program an application, the Java Platform provides the Java Base API, together with
a Java Standard Extension API. The former API is the one containing classes that the
programmer can take for granted for development, depending on the Java Platform, but
independently of the underlying operative system. The sub-sections will introduce some
of the available Java Platforms. Regarding the latter, the Java Standard Extension API,
contains classes that extend the capabilities of the Java beyond the Java Base API. Those
classes may eventually migrate to the Base API, but are still under development or are waiting
for review and feedback before being finalized [20].

An application written in Java code is compiled into bytecoded instructions and binary,
defined by [19]. This bytecode is not executed directly on a physical machine, but on a Java
Virtual Machine (JVM) instead.

The JVM is responsible for interpreting Java Bytecode and translating it, through a Porting
Interface, into something that can be understood by the underlying platform (see figure 4.1),
at run-time. The underlying platform can be a desktop, server, mobile operative system or
even a browser. This means that the JVM is an abstract computing machine [21]. It doesn’t
recognize the Java programming language, only the bytecode from the compiled class files.
With that in mind, a different programming language can be used, as far as it is compiled at
the end to valid class bytecode files [21].

In the figure 4.2 can be seen the processes of compilation and execution. The java source
files, containing Java programming language code, are compiled into Java bytecode class

files. As mentioned before, these files contain the bytecode understood by the Java platform,
and have no relation to Java programming language. All classes used in the compiled files
are loaded from libraries, at run-time. If the refered classes are not found in the libraries, a
run-time exception occurs. Otherwise, the JVM interprets the Java bytecode and compiles
it according to the underlying platform, where is then executed.

34

Figure 4.2: Compilation and execution [20, p. 24]

Java Standard Edition

The Java Standard Edition (JSE) is a set of libraries and a platform essential for the core
functionality of a Java application. It contains the basic types and objects, in addition to
high-level classes meant to deal with networking, security, database access, Graphical user
interface (GUI) and XML parsing [22]. It is used to develop and run command-line or GUI
applications.

Java Enterprise Edition

Built on top of JSE, Java Enterprise Edition (JEE) is a platform and a set of libraries meant
to run and develop large-scale, multi-tiered, scalable, reliable and secure network applications
[22]. Those applications run on an application server, such as Glassfish (see section 4.1.2) or
Tomcat. As it is built on top of JSE, this API contains all of the JSE features.

Java Micro Edition

Built for small devices, such as mobile phones, Java Micro Edition (JME) is a lightweight
platform and a subset of libraries present in JSE[22]. The applications developed for this
platform are usually client applications of JEE applications.

4.1.2 Glassfish

Glassfish is an open-source Java application server. Its development is based on the Reference
Implementation (RI) of JEE[23, p. 34], with the purpose of running JEE applications. It is
built on top of Open Services Gateway initiative (OSGi) , a service platform for Java which
gives the capability to install, start, stop and uninstall components in run-time, without the
need to restart the system.

35

Figure 4.3: Glassfish architecture [23, p. 35]

As the figure 4.3 expresses, this application server contains several decoupled features that can
be used by the JEE application or directly by the server administrator. It has a command-
line and a Web Interface to configure and monitor the application server. This interfaces also
allow the deployement and undeployement of applications and components in run-time.

Figure 4.4: Functional parts of Glassfish [23, p. 36]

The figure 4.4 shows the application server splitted into different modules. Not all the modules
are going to be used in this thesis. For that reason, a short introduction will be made on the
ones considered relevant in this context.

HTTP Server

One of the possible interfaces for a JEE application is through the HTTP protocol. The
application server manages a listener on the configured ports (usually 8080 and secure 8181
for development, or 80 and secure 443 for production). When a request is made, Glassfish
parses its HTTP header and forwards the request to the right action: be it a HTML page,

36

a resource file or a Web Service. When the request leads to nowhere, a 404 error (page not
found) is returned to the client.

Web Container

As the figure 4.5 illustrates, the JEE application server provides a Web Container and an
Enterprise Java Beans (EJB) container (see section 4.1.2 for the latter)[24].

Figure 4.5: Java EE Containers [24, p. 48]

The Web Container manages the execution of web pages, servlets and local EJB interface
components. When dynamic content needs to be rendered into the HTML pages, technologies
such as Java Server Pages (JSP) , Java Server Faces (JSF) or servlets can be used.

Servlets are modules dynamically loaded on a Web Server. It handles the received requests
and, according to the implementation, responses are generated. A HTTP Servlet is an
extension to the servlets. It has implemented all the necessary methods to handle Hypertext
Transfer Protocol (HTTP) requests headers. As an example, its interface has the methods
doPost and doGet to handle POST and GET requests, respectively. Those methods are
automatically called according to the request, and the developer only has to implement their
logic, without the need to handle and filter HTTP headers.

<html>
<head><title>F i r s t JSP</title></head>
<body>

<%
double num = Math . random () ;
i f (num > 0 . 9 5) {

37

%>
<h2>You w i l l have a luck day !</h2><p>(<%= num %>)</p>

<%
} e l s e {

%>
<h2>Well , l i f e goes on . . . </h2><p>(<%= num %>)</p>

<%
}

%>
<a href="<%=␣request.getRequestURI()␣%>"><h3>Try Again</h3>

</body>
</html>

Listing 1: JSP Example [25]

JSP complements servlets by generating code inside text-based documents, such as Hypertext
Markup Language (HTML) pages or XML documents, in a jsp file. This file contains a
mixture of static content (such as HTML code) and scriplets. Similarly to PHP, the scriplets
are enclosed by delimiters. In JSP case, the delimiters are <% %>. All the Java code that
is written inside the scriplets delimiters is rendered on the server side, while the rest of the
content of the jsp file is kept intact and sent to the client as it is. The listing 1 illustrates a
small example of a JSP page.

JSF is a framework for building Web Applications [24, p. 59], that separates the logic from
the presentation [24, p. 105]. It is composed by an API for event-handling, validation, data-
conversion, internationalization and accessibility, and a set of tag libraries to bind components
to their representation in the web page. The components implemented can be reusable and
their functionality extended. The binding between the components and their representation
is made through managed beans. Managed beans are Plain Old Java Objects (POJO) that
support resource injection, lifecycle callbacks and interceptors [24, p. 104]. As managed beans
are stateful objects, their lifecycle depends on the scope defined during the implementation.
Since JEE 6, the scope of the managed beans can be set by using annotations. There are
three possible scopes: Request, Session and Application. With the request scope (defined
with @RequestScoped) the managed bean is alive only during the request processing time, being
discarted as soon as the response is sent to the client. With the session scope (defined with
@SessionScoped), it is loaded during all user session, keeping state between different requests.
With the application scope (defined with @ApplicationScoped), it is kept loaded during the total
execution of the application, regardless of the active sessions. Its state is persisted among all
the users.

Like the JSP, JSF is built on top of Java servlets (see figure 4.6).

38

Figure 4.6: Java Server Faces [24, p. 105]

Enterprise Java Beans Container

As the figure 4.5 illustrates, the JEE application server provides a Web Container and an
EJB container (see section 4.1.2 for the former)[24].

An EJB is a component that encapsulates the internal logic of an application [24, p. 435],
denominated as BusinessLogic. The task of the EJB container is to control system-level
services, such as object lifecycle, transaction management and security[24, p. 436].

As the logic is decoupled from the presentation, the client applications are lightweight and
the client’s development is mainly focused on the application presentation. Also, as EJB are
portable components, the same implementation can be used by different applications.

There are three ways to access an EJB, as the figure 4.5 describes. If the client application
is running on the client’s machine, the EJB can be accessed through remote interfaces. The
remote interface contain part of or all methods of the EJB implementation. If the client ap-
plication runs on the server side (such as a Web Application), the EJB can be accessed either
by the local interface or directly in the implementation methods. The difference between
those two is that, on the latter case, the EJB implementation should part of the same Web
Application project. The former case is when the same EJB is shared between applications
in the same Web Application Server.

Such as managed beans, EJB Session Beans also have lifecycles declared with annotations.
There are three different type of Session Beans: Stateful Session Bean, Stateless Session Bean
and Singleton. The Stateful Session Bean (declared with @Stateful) is loaded and persists its
state during a user session. Its state is not shared among clients, and it is discarted as soon
as the session is terminated. The Stateless Session Bean (declared with @Stateless) should
only keep the client’s state during its invocation. When the invocation is finished, all the
related data should be discarted. The reason for this is that the Stateless Session Beans are
pooled in EJB container, and they are used according to their usage. Also, they are shared
among users. During two consecutive invocations, by the same user, to the same Stateless
Session Bean, it is not guaranteed that the same instance will be invoqued. Regarding the
Singleton EJB (declared with @Singleton), it works the same way as the latter Session Bean,
with the difference that the EJB Container assures that only one instance of this bean exists

39

during all application lifecycle. It has transactional features and manages concurrent access
by clients [24, p. 438].

4.2 Storage

The following subsections will introduce a relational and a non-relational database.

4.2.1 MySQL

MySQL is a free Open Source Relational Database Management System (RDMS) . It works
as a server and can be managed either via command line or via client applications. As a
relational database, the data is organized into different tables. In each table, the information
is stored as entries (rows in a table). Each entry can be related to many entries in the same
table or other different tables. The relationship between entries is made through a foreign
key. A foreign key is an unique identifier of an entry in a table.

Queries to the MySQL database are done with SQL. SQL is a standardized language, used
to query relational databases.

4.2.2 MongoDB

Meant for schema free, JSON-format document based storage, MongoDB is an Open Source
non-relational database. Its syntax is similar to the Javascript Object Notation (JSON)
format and it fully supports indexing on attributes.

4.3 User Interface

The following subsections will introduce libraries to support the development of the presen-
tation layer of Web Applications.

4.3.1 jQuery

jQuery is a javascript library that supports the work of the developer to build web applications
with Javascript. It works on the client side, in a web browser.

It is lightweight and wraps common tasks in functions, which allows the code to remain
cleaner and more readable to the developer. It also simplifies the Assynchronous Javascript
And XML (AJAX) request calls and message handling. Regarding the elements in the
Document Object Model (DOM) , the creation, filtering and manipulation of elements is
made trivial with this framework. Furthermore, it is extensible as it has plugins’ support.

4.3.2 Twitter’s Bootstrap

This Twitter framework solves many issues related with cross-browser visualization and pro-
vides functionality to build a clean, responsive and interactive web interface. When the
responsive design is being used, its elements change form according to the screen size, allow-
ing the interface to adapt accordingly to stay usable.

40

4.3.3 Sammy.js

The Sammy.js helps to keep track of page navigation flow in Single Page Interface (SPI) . It
interprets the URL and redirects the calls to the appropriate functions to show content in
the pages, without the need to refresh them.

41

Chapter Five

Implementation

In this chapter, the implementation of the designed solution will be described. It contains
the following items:

• Sensor Data Relay application

• Packet Processing System

• Client interface

5.1 Sensor Data Relay application

The SDR application is implemented as an Android application. It is composed by two
Activities and a Service. The two Activites are referent to two user interface screens.

One Activity shows the list of Bluetooth devices nearby (see figure 5.1a). This is the activity
that is presented to the user when the connection to the sensor gateway is not established. It
allows turning on and off bluetooth. When turned on, the application makes a discovery for
devices that are nearby and discoverable. Once the user selects the device, the connection is
established and the user is asked to uniquely identify the entity. Then, the second Activity

is presented and a Service is started in the background.

The second Activity contains a three-tab layout that shows statistics, UDP connection in-
formation and Bluetooth connection information, in each respective tab (see figure 5.1b).
This screen is presented only when the application has a connection established to the sensor
gateway. It gives connection information, such as the the local IP address. This informa-
tion is important to establish a connection from the Packet Processing System to the SDR
application.

43

(a) Devices nearby (b) UDP connection status

Figure 5.1: Sensor Data Relay: User Interface

The Service running in the background has the purpose to do all the logic and connec-
tion management. It means that even if the application is closed, it keeps running in the
background. When the Service is created, it starts listening to UDP packets, in a parallel
thread.

There are three ways to communicate with a Service from an Activity [26]:

• Extending the Binder class - If the service is private to the own application;

• Using a Messenger - If the communication is made across different processes. Messages
are buffered in a queue and processed one by one;

• Using Android Interface Definition Language (AIDL) - Used also for interprocess-
communication. The difference to the Messenger is that multiple messages are pro-
cessed at the same time.

As the Service in this application is meant to be used solely by the application itself, the first
approach is used. To do so, the Binder interface is implemented, containing a reference to the
instance of the Service. This Binder instance is returned by the service’s onBind method.
To have access to the Binder instance, the activity should call the onServiceConnected

callback method. This method returns a ServiceConnection instance with the reference to
the service’s Binder instance. See figure 5.2 to understand how they are connected.

The protocol for connection establishment and clock synchronization is implemented in this

44

Figure 5.2: Class diagram: Android communication between Activity and Service

service. The figures 5.3a, 5.3a and 5.3a illustrate the packet structure of the three-way
handshake protocol from the figure 3.5.

(a) SYN packet

(b) SYN/ACK packet

(c) ACK packet

Figure 5.3: Sensor Data Relay: Hand-shacke packet structure

When the three-way handshake successfully happens, the connection is considered established.
Once it happens, the data that is received from the sensor gateway starts to be streamed. To
prevent a too high number of packets being sent, a buffer is developed. This buffer keeps the
received sensor data until the next packet is built and sent. To build a packet, all the data is
loaded from the buffer, the buffer is cleared and the loaded data is then merged. The packet
sending is defined to happen each 500 ms. In such way, two packets are sent per second,
independently of the number of sensor values in the buffer.

(a) Data chunk

(b) Entity data packet, with N sensor values (data chunks)

Figure 5.4: Sensor Data Relay: Data packet structure

45

The figure 5.4a represents a chunk of data. It contains the respective sensor identifier, sensor
type, a timestamp of the reading and the value. The figure 5.4b represents the complete data
packet sent from the entity to the ECP with N sensor values.

In all the packets transmitted between the entity and the ECP, there is a message type. The
message type identifies the type of message being sent.

Additionally to the protocols previously designed and documented, a protocol to constantly
estimate the latency between the SDR and the ECP is developed. The timestamp is sent to
the SDR (figure 5.5a), which in return sends the timestamp unchanged (figure 5.5b). The
latency is estimated by the time it took for the packet to travel in both directions, divided
by two.

(a) Ping request packet

(b) Ping response packet

Figure 5.5: Sensor Data Relay: Ping packet structure

At the ECP, the average latency is constantly calculated. Thus, the cumulative average
formula is used to avoid the need to store all the latency values received (see figure 5.6).

CAi+1 = iCAi+xi+1
i+1 , where CA is the cumulative average, xi+1 the current latency and

i the number of latency values received.

Figure 5.6: Cumulative average formula

This formula is also used in order to calculate other cumulative averages, such as the average
number of sensor values received per packet.

5.2 Packet Processing System

As designed, the packet receiving process is decoupled from the packet processing and packet
storage. This decouple is made by the separation of each process into different components
(see figure 3.7).

5.2.1 Entity Communication Point

The component responsible for handling the connections to the entities is the ECP. It
establishes the connections to the devices and receives the data from them. Due to the fact

46

Figure 5.7: Class diagram - Entity Communication Point - Connection handler

that the system should be able to receive data from different protocols, a modular approach
was taken into consideration (see figure 5.7).

To allow the creation of customized connectors, a Connector interface is implemented. It
is an abstraction of a connection to a remote device. It contains the methods to obtain the
connection’s information and also methods to communicate with the device. Independently of
the implementation of this interface, calling the same method in two different implementations
should result in a similar behaviour, in what the communication to devices is concerned.

The ECP has a connection handler (ConnectionHandler) with two methods (send and
receive). It uses a connection factory (ConnectionFactory) to instantiate the connectors
(Connector), depending on the protocol to be used. Once the connector is created and con-
nection established, it is able to send data to the remote devices. Also, when the receive
method is called, a new thread is created to wait for incoming data (ReceiverThread). If no
thread would be created at this point, either the programmer would be responsible for the

47

non-blocking listener implementation or the system would stop each time a listener waits for
the next packet.

As the packet listening runs assynchronously in a different thread, the system does not wait for
its data to arrive. Instead, a data handler (OnReceive) is passed as an argument in the listen

method. Each time a packet arrives, the implementation of the Connector should use the
OnReceive handler to call the processData method, with the data as argument. This method
will call the configured packet processor’s modules (implementation of DataProcessor).

Figure 5.8: Class diagram - Entity Communication Point - OnReceive module

The DataProcessor is an interface with a method to process the data (processData). The
implementation of this interface receives the data as an input argument and should return the
processed data as its output. The order of the configured DataProcessors is important as the
output of one module will be the input of the next module, as a chain of data processors. An
example of an implementation is the one that adds the ECP timestamp to the data received
(see listing 2).

48

public class AddTimestamp implements DataProcessor {

@Override
public byte [] processData (byte [] data) {

Long timestamp = System . cur rentT imeMi l l i s () ;

ByteBuffer newData = ByteBuffer . a l l o c a t e (data . l ength +
Constants .TIMESTAMP_SIZE) ;

// Add timestamp to the beggining
newData . putLong (timestamp) ;
// Add data to the end
newData . put (data) ;

return newData . array () ; // Return the timestamp together with the data
in the same binary array

}
}

Listing 2: Data processor implementation: Add timestamp

It is not mandatory to modify the data received. One implementation where it happens is
the one that sends the received data to a queue. In this case, after the data is sent, the
method returns the original data, received initially as an input argument (see listing 3).

public class SendToQueueAction implements DataProcessor {
private final QueueInter face queue ;
// ... Constructor with the QueueInterface initialization

@Override
public byte [] processData (byte [] data) {

// Send to the queue
queue . add (Base64CoDec . Base64Encode (data)) ;

// No changes were made to the data , returning original
return data ;

}
}

Listing 3: Data processor implementation: Send to queue

The class diagram of the figure 5.9 represents how the extensions to the DataProcessor are
implemented.

The implementation of the OnReceive interface is the ActionHandler. It creates a new
thread (DataProcessTask) to execute the chain of packet processors. It is used each time

49

Figure 5.9: Class diagram - Entity Communication Point - DataProcessor module
implementations

the method processData is called. If, otherwise, the processing would be running in the same
thread, the connector would be waiting for the processing chain to finish before listening to
the next packet.

Furthermore, by using a thread to process each packet, more than one packet processor runs
in parallel. Additionally, if a packet processing fails for some reason, the processing chain
might be interrupted, but the system continues working. It is important to guarantee that,
as a single point of failure, the ECP has a reduced risk of failing due to processing problems.

To complete the topic, the Connector implementations to establish the connections are pre-
sented. Currently, the UDP connector is implemented with the basic functionality of sending
packets and receiving packets. This module is implemented in a way that only packets from
requested addresses are accepted. If a packet arrives with an invalid source address, the
packet is discarted. As the system can be connected to different devices, and the receiving

50

port is the same for all of them, an object to manage the UDP connections’ addresses is
implemented (see figure 5.10, DatagramSocketWorker). It is important to state that the
same UDP implementation is being reused for different connections.

Figure 5.10: Class diagram - Entity Communication Point - UDP Connector

The DatagramSocketWorker contains a list of allowed addresses that can be accepted as
packet sources. When a new device is connected, the address is added to the list. When a
packet arrives, it is checked for its validity.

The EntityUDPConnector represented in the figure 5.11 is an extension to the UDP con-
nector. The protocol of communication defined in the design for the three-way handshake
and packet loss prevention is built on top of the existent UDP implementation. By reusing
the implementation of the UDPConnection module, the complexity of sending and receiving
packets is reduced to the use of the two methods send and receive.

51

Figure 5.11: Class diagram - Entity Communication Point - Entity UDP Connector

To manage the connections and their actions at the ECP, such as command sending to entities
or establishment of a new connection, REST services were implemented. They are meant to
be used by the client interface application, according to the user request.

The URL http://<ecp_endpoint>/ECP/webresources/connector/execute?command=

receive&endpoint=192.168.0.100&port=1234&protocol=tpmsd.entity is an example of
a service endpoint to establish connection to the address 192.168.0.100, on the remote port
1234 and using the protocol tpmsd.entity. Currently, the protocol names are hardcoded in
the ConnectorFactory’s implementation.

5.2.2 Queue

The Queue is implemented as a buffer to the packet handlers, as described in the system
design. It is implemented with three basic methods: add, get and remove. Those methods
are accessible through a REST web services’ interface. The result of the service calls is in
JSON format [27]. To simplify the transfer of data from and to the queue through HTTP
requests, the messages that the queue handles are in the String format. To avoid characters
in the messages that would interfer with the JSON format and to have a standardized[28]
mechanism to convert binary data into and from String format, the Base64 is used.

Base64 is an encoding mechanism which uses 6-bits to represent a character in the list of 64
characters (+1 for padding) of the Base64 alphabet. Each composition of four characters in
Base64 format (24-bit) represents a block that can be splitted into 3 bytes [28, p. 6]. The
Base64 alphabet is composed by lower-case and upper-case letters, a plus sign and a forward-
slash. If the binary data does not fill the last 24-bit block, the equal sign is used for padding.
This range of characters do not interfer in the JSON syntax.

52

http://<ecp_endpoint>/ECP/webresources/connector/execute?command=receive&endpoint=192.168.0.100&port=1234&protocol=tpmsd.entity
http://<ecp_endpoint>/ECP/webresources/connector/execute?command=receive&endpoint=192.168.0.100&port=1234&protocol=tpmsd.entity

Figure 5.12: Queue: Base 64 encoding and decoding

To add a message to the queue, the message needs to be encoded first into Base64 (see
figure 5.12). Then, a HTTP Post request to the URL http://<queue_endpoint>/Queue/

webresources/queue/add is done, with the encoded message in the body. The expected
result is a JSON map with a key-value pair representing the success of the operation (see
listing 4). If the result is true, the message is added with success.

{
"result" : "true|false"

}

Listing 4: Queue add method’s response

To get a message from the queue, the URL http://<queue_endpoint>/Queue/

webresources/queue/get is used. It retrieves the oldest unscreened message with a message
handler. The message handler serves to identify the message uniquely. This handler is later
used to remove the message. If there are no messages in the queue, the request connection
stays waiting until the new message arrives. This process of waiting is done with Java moni-
tor. When a message is retrieved, it is screened from the buffer, not being possible to retireve
it in a defined interval of time. If after the interval of time the message is not removed, it
is put back into the queue (see figure 3.9). The message comes enconded in Base64 format.
For that reason, a decoding needs to be done to obtain the original message (see figure 5.12).
The listing 5 is an example of a get method’s response.

{
"content" : "AAABQXWsCyVFbnRlciBkYXRhIHRvIHNlbmQuLi4=" ,
"uuid" : "e5894b3e -99bd -41f8 -9410-ec86dc597caa"

}

Listing 5: Queue get method’s response example

To remove a message, the URL http://<queue_endpoint>/Queue/webresources/queue/

remove?uuid=<messagehandler> is used, with the uuid parameter obtained in the get

53

http://<queue_endpoint>/Queue/webresources/queue/add
http://<queue_endpoint>/Queue/webresources/queue/add
http://<queue_endpoint>/Queue/webresources/queue/get
http://<queue_endpoint>/Queue/webresources/queue/get
http://<queue_endpoint>/Queue/webresources/queue/remove?uuid=<message handler>
http://<queue_endpoint>/Queue/webresources/queue/remove?uuid=<message handler>

method. If the message is removed successfully, the service returns a positive answer (see
listing 6 to see the remove method’s response format). Otherwise, if the service returns a
negative answer, it means that some other process obtained the same message and processed
it faster (refer to chapter 3 for details).

{
"result" : "true|false"

}

Listing 6: Queue remove method’s response

5.2.3 Packet Handler

The packet handler obtains the packets from the queue, processes them and stores the pro-
cessed values into a NoSQL database. It is implemented as a JSE application, to avoid the
need of a web application server. As a Daemon, it runs without the need of user interaction.
It can run in multiple cores, as the number of running Daemons can be defined when starting
the application (see listing 7). By default, four Daemons are initialized.

{
java −j a r Daemon . j a r <num_daemons>

}

Listing 7: Packet handler initialization

To not be dependent on the implementation, the Daemon’s components are modular.

The interface to obtain the message from the queue is the same as in the ECP (the
QueueInterface on the figure 5.13 is the same as on the figure 5.9).

When the data is received, it is decoded from Base64 to the original binary data. The class
SimplePacketObject is an implementation with the base functionality to interpret the infor-
mation in the binary data. This class can be extended to interpret different data types and
provide an interface to edit the values. An implemented extension is the SimpleDataObject,
which reads the data from the sensors and allows the data to be edited later in the processing
steps.

There are two processing interfaces that can be implemeted: PacketProcessor and
AfterProcessing. The former serves the purpose to modify the read data. An example
where it can be useful is when the floating point values from the sensors are calculated to be

54

Figure 5.13: Class diagram: Scallable Packet Handler

a short number, so that it can be placed in packet’s data placeholder - e.g.: a sensor reading
the value 19.20, transforms by multiplying the number by 100 and sends it as 1920. When it
arrives to the packet hander’s processor, the reverse is done to obtain the original value, by
dividing it by 100 (see example in listing 8).

55

public class TemperaturePacketProcessor implements PacketProcessor {
private static final int PACKET_TYPE_TEMPERATURE = 1 ;

@Override
public void proce s s (SimplePacketObject packet) {

for (SimpleDataObject obj : packet . getSensorsData ()) {
// Checks if it is a temperature packet
if (obj . getSensorTypeID () == PACKET_TYPE_TEMPERATURE) {

obj . updateValue (obj . getValue () / 100) ; // Calculates back the
original number

}
}

}
}

Listing 8: Packet handler processor example

The latter interface, AfterProcessing, is meant to perform tasks with the data after being
processed, without changing it. One possible action is the storage of the values. The example
in the listing 9 is the implementation of this interface to store data in the MongoDB NoSQL
database.

public class StoreToMongoDB implements Afte rProce s s ing {
private DBCollection dbCo l l e c t i on ;
// ... Construtor with DBCollecton initialization
@Override
public void execute (SimplePacketObject packet , Debug debug) {

List <DBObject> l i s t = new LinkedList <>() ;

for (SimpleDataObject sdo : packet . getSensorsData ()) {
BasicDBObject o = new BasicDBObject ("sensor" ,

new BasicDBObject ("sensorID" , sdo . getSensorID ())
. append ("sensorTypeID" , sdo . getSensorTypeID ())
. append ("entityID" , packet . getEntityID ()))
. append ("timestamp" , sdo . getTimestamp ())
. append ("value" , sdo . getValue ())
. append ("ecpTimestamp" , packet . getEcpTimestamp ()) ;

l i s t . add (o) ;
}
dbCo l l e c t i on . i n s e r t (l i s t) ;

}
}

Listing 9: Packet handler after processing example

56

As it happens in the ECP, the processing instances run sequencially in a chain.

5.3 Client interface

For the client application of this project, a web-based application is developed. The choice
of a web-based application is based on the need of a multi-platform client interface that can
be easily adapted to different screen sizes.

(a) Client interface: Desktop interface

(b) Client inter-
face: Mobile inter-
face

Figure 5.14: Client interface: Responsive design

The application is built as a SPI. It is based on a single HTML page and AJAX requests
in order to update page information and presentation. The AJAX requests are made to
REST webservices created at the web interface server side application. The REST webser-
vices provide information, such as the user’s entities and sensor values’ history. The REST
webservices do not keep the state between requests. In order to use the webservices, an au-
thentication token is required. In order to generate this token, an authentication is required

57

in the authentication service. The use of such an implementation allows the development of
native applications which can use the system by making requests to the webservices in order
to obtain information.

To aid the development of the web interface application, the jQuery framework is used. To
manage page Uniform Resource Locator (URL) s with a non-refreshing page, the library
Sammy.js is used. For a responsive user interface, adaptable to user’s screen size, the Twitter
Bootstrap is used (see figures 5.14a and 5.14b, for desktop and mobile interface, respectively).

For security reasons, the page and the webservices cannot be used with a connection without
security. If the page is loaded with an http://<endpoint>/tpmsd prefix, an error is displayed
and a button to switch to https://<endpoint>/tpmsd (see figure 5.15).

Figure 5.15: Client interface: Secure connection required

In order to support the management of the information in the application, the MySQL
relational database is used. The figure 5.16 contains the database architecture.

The user table contains the username and a password hash generated with a random salt.
By using salt in the password hash, the difficulty is increased to guess passwords that fit to
the hash [29], in case the database is compromised.

Related to the user table, there is an usersession. This table stores temporary valid tokens
of user’s authentication. A token authentication fails in the services if a non-existent token
or a token after its expiration date is used.

Each user is related to entities. Each entity is composed by sensors. Each sensor has a
type. The ID fields in the entity, sensor and sensortype tables are defined in the hardware.
With those identifiers, it is possible to query the sensor data database in order to obtain the
correct sensor data.

Even though the user is related to entities, the table usersensordashboard defines which
sensors are shown in the user’s dashboard, and with which visualization type. Currently,

58

http://<endpoint>/tpmsd
https://<endpoint>/tpmsd

Figure 5.16: Client interface: Database architecture

only chart visualization type is implemented in the javascript, but can be extended to other
types.

59

Chapter Six

Results

In order to analyse the performance of the system, the execution time of the components is
measured in a cumulative average (see chapter 5).

Figure 6.1: Wearable ECG-recording System: Devices [6]

First of all, it is important to mention how the system is deployed during these tests. As
the figure 6.1 illustrates, the mobile application SDR is running on an Acer Iconia Tab A200
tablet running Android 4.0.3. On the other side, the ECP, the queue, the SPH and the Web
interface are runnning on the same laptop computer. The relevant hardware to be mentioned
is an Intel CoreTMi7 processor, 8 GB of DDR3 1333MHz memory, a primary SSD drive
running the operative system Microsoft R©Windows 7, a secondary hard drive with 7200rpm
where both MySQL and MongoDB databases are stored and a 802.11n connection.

In this tests, the time measured between the SDR and the rest of the system is an estimative.
It is not guaranteed that the time a packet needs to be transmitted from the ECP to the
SDR will be the same as in the other way around. Still, the estimation of latency is done
with the average of the two ways.

61

Figure 6.2: Results: Latency

Taking in consideration the sensors’ sample interval, as well as the streaming interval to the
ECP, tests were made with different combinations. All the tests were made twice to the UDP
protocol with samples of, at least, 1000 packets, each. The sample interval is the difference of
time between the reading of two sensor values. The streaming interval is the time difference
between two packet sendings from the SDR. Considering, as an example, a sample interval
of 200ms, which is equivalent to 5 reads per second, and a streaming interval of 500ms (2
packets sent per second), each packet contains in average 2.5 sensor values.

Not all the lines reach the end of the charts. The reason is that if the sample interval is
bigger than the streaming interval, then empty packets are transmitted. In these cases, the
tests were not considered.

Figure 6.3: Results: Processing time in the packet processing system

By measuring the latency it is possible to conclude that, as the number of packets sent per
second increase, the latency seems to decrease. This is an interesting result, as the latency is
not calculated based on the sensor data packets. Also interesting is the fact that the latency

62

decreases with the increasing number of received packets per second. The reason for this
event could not be found and the implementation of the latency calculation should not have
any influence on the data received and vice versa.

The figure 6.3 shows that the processing time required, from the ECP up to the end of the
Packet Handler processing, increases as the number of packets sent per second increases as
well.

Both of the last measures influence the total time the packets need to be processed until they
reach the database. By analysing the total time required for the packets to be processed, the
conclusion is that the system, running in the conditions stated above, have the most efficient
performance when the packets are streamed each 125ms (see figure 6.4).

Figure 6.4: Results: Total processing time, starting on the packet sending of SDR until
the storage in the database

However, the database seems to struggle retrieving the most recently added results. The
figure 6.5 is a screenshot which shows that the data is sent to the database with a delay of
less than one second. On the user interface, it is presented with a delay of 6 seconds. In
this example, the data is tested with a sample interval of 150ms and a streaming interval of
200ms.

Figure 6.5: Results: Delay in live data presentation

63

Chapter Seven

Conclusion and future work

In this work, a scalable distributed system applied in a remote vital signs monitoring scenario
is presented. The decouple of main functionalities of a system into separate autonomous
components makes their development less complex and easier to test. Moreover, the tasks
can be distributed to replicas of components, such as the scalable packet handler allowing the
data processing being executed in parallel. The queue system is implemented in such a way
that prevents the loss of data due to packet processing failures. If a packet is processed by a
packet handler which stops working, the packet will be put back into the queue after some
time, so that another packet handler restarts the unfinished job. Therefore, the risk of such
critical system to fail is reduced. Furthermore, the parallelization of the components opens
the possibility to scale the system according to the usage scenario. On top of that, this can
be done while the system is running by just stating a new instance of the component. This
means that the system does not need to be restarted and the change is transparent to the
user, unless the increase or decrease of performance is apparent. Also important to mention
is the extensability of the system. The fully modular design allows implementation of key
components to support new functionalities and different devices.

The system is constituted by a HHD application, a packet receiver component, a decoupled
queue system, a set of packet processing modules and a web interface. The storage of the
sensor data is made in a NoSQL database, while the administration part of the web interface
is stored in a relational database.

The implemented system is a fully working solution as shown in chapter 5. However, some
adjustments and additional features can improve the system functionality and performance.

One of the features is the implementation of different connectors to support different devices.
A connector, that is not implemented, yet, is the Droid Jacket’s connection through TCP/IP
protocol. Currently, UDP is implemented and an extension to the procotol exists to support
the SDR.

65

Additionally, further packet processing modules’ development may be taken into consid-
eration. Appart from just re-calculating values, as the listing 8 shows, a module can be
implemented to detect alarming situations and act accordingly.

Regarding performance, a direct connection from the packet handlers to the web interface’s
server can be taken into consideration. This is due to the time required for the database to
retrieve instantaneously the last stored data and a solution to reduce the need of reads of the
database. By sending the data directly to the web server, and using a WebSocket from the
web server to the client’s browser, the data can be streamed as soon as it is processed by the
packet handlers without additional queries to the database (see figure 7.1).

Figure 7.1: Direct connection from packet handlers to the web server and Websocket
connection to clients’ browser

Stress tests to the system on a real distributed environment are needed to understand how
the components act in physically separated machines and to understand when it is necessary
to increase or reduce the scalable packet handler. It is also important to evaluate the trans-
mittion of data with a less reliable and slower network connection, such as mobile broadband
connection in zones where its coverage is reduced.

A missing mandatory feature in the SDR application is the bluetooth connection to a sensor
gateway. Without it, the data cannot be obtained from the sensors. Currently, the Android
application serves as a simulator with user interaction.

Finally, the web interface needs further design and implementation regarding the management
of users, entities and visualizations. Currently, the web interface allows the reading of infor-
mation from the existent database. Besides, there is one kind of visualization implemented
in the Javascript, with the Google Chart API. More realisations are possible.

66

Glossary

AA4R Ambient Assistance for Recovery

AIDL Android Interface Definition
Language

AJAX Assynchronous Javascript And XML

API Application Programming Interface

BIOSal Biological Signal Acquisition Layer

CITEVE Technological Centre for the Textile
and Clothing Industries of Portugal

CRC Cyclic Redundancy Code

DOM Document Object Model

ECG Electrocardiogram

ECP Entity Communication Point

EJB Enterprise Java Beans

FTP File Transfer Protocol

GPS Global Positioning System

GUI Graphical user interface

HHD Hand Held Device

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IEETA Electronics and Telematics
Engineering Institute of Aveiro

ITALH Information Technology for Assisted
Living at Home

JEE Java Enterprise Edition

JME Java Micro Edition

JSF Java Server Faces

JSON Javascript Object Notation

JSP Java Server Pages

JSE Java Standard Edition

JVM Java Virtual Machine

LAN Local Area Network

OSGi Open Services Gateway initiative

PDA Personal Digital Assistant

POJO Plain Old Java Objects

RDMS Relational Database Management
System

RF Radio-frequency transmitter

RI Reference Implementation

SDR Sensor Data Relay

SPH Scalable Packet Handler

SPI Single Page Interface

SQL Structured Query Language

URL Uniform Resource Locator

VM Virtual Machine

VPN Virtual Private Network

XML eXtensible Markup Language

67

References

[1] K. Catulo, “Descobrir os velhos que se tornaram invisíveis”, Jornal i, pp. 28–29, Feb. 2012.

[2] A. Bitner, P. Zalewski, J. Klawe, K. Gorynski, M. Zawadka, and J. Pawlak, “Heat exposure
effects and kinds of illnesses among firefighters - review”, Medical and Biological Sciences, vol.
26, no. 2, pp. 69–72, Oct. 2012. doi: 10.2478/v10251-012-0034-6.

[3] D. Teles, M. Colunas, J. Fernandes, I. Oliveira, and J. Cunha, “Ivital: a real time monitoring
system for first response teams”, inMobile Networks and Management, ser. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, K.
Pentikousis, R. Aguiar, S. Sargento, and R. Agüero, Eds., vol. 97, Springer Berlin Heidelberg,
2012, pp. 396–404, isbn: 978-3-642-30421-7. doi: 10.1007/978-3-642-30422-4_29. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-30422-4_29.

[4] AA4R Fail Safety, http://www.aa4r.org/files/Fail_Safety_in_AA4R- 121101.pdf,
[Online; accessed 8-April-2013].

[5] Intelligent Telemetry for Implants, http://www.compamed.de/cipp/md_compamed/custom/
pub/content,oid,19798/lang,2/ticket,g_u_e_s_t/~/Intelligent_Telemetry_for_
Implants.html, [Online; accessed 10-July-2013], Nov. 2010.

[6] R. Fensli, E. Gunnarson, and T. Gundersen, “A wearable ecg-recording system for continuous
arrhythmia monitoring in a wireless tele-home-care situation”, in Computer-Based Medical
Systems, 2005. Proceedings. 18th IEEE Symposium on, 2005, pp. 407–412. doi: 10.1109/
CBMS.2005.22.

[7] Vital Responder Project, http : / / www . vitalresponder . pt / index . php ? option = com _
content&view=article&id=2&Itemid=3, [Online; accessed 5-April-2013].

[8] J. P. S. Cunha, B. Cunha, A. Pereira, W. Xavier, N. Ferreira, and L. Meireles, “Vital-jacket: a
wearable wireless vital signs monitor for patients’ mobility in cardiology and sports”, in Perva-
sive Computing Technologies for Healthcare (PervasiveHealth), 2010 4th International Confer-
ence on-NO PERMISSIONS, 2010, pp. 1–2. doi: 10.4108/ICST.PERVASIVEHEALTH2010.8991.

[9] A. Trigo, C. J. P. S, C. M. B., W. Xavier, and F. N. S., Eds., Wireless bedside vital signs
monitoring unit, Luxemburg: Med-e-Tel, 2004.

[10] M. Colunas, J. Fernandes, I. Oliveira, and J. P. S. Cunha, “Droidjacket: an android-based
application for first responders monitoring”, in Information Systems and Technologies (CISTI),
2011 6th Iberian Conference on, 2011, pp. 1–4.

[11] M. Colunas, J. Fernandes, I. Oliveira, and J. Cunha, “Droid jacket: using an android based
smartphone for team monitoring”, in Wireless Communications and Mobile Computing Con-
ference (IWCMC), 2011 7th International, 2011, pp. 2157–2161. doi: 10.1109/IWCMC.2011.
5982868.

[12] M. Figueredo and J. Dias, “Mobile telemedicine system for home care and patient monitoring”,
in Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International
Conference of the IEEE, IEEE, vol. 2, 2004, pp. 3387–3390.

69

http://dx.doi.org/10.2478/v10251-012-0034-6
http://dx.doi.org/10.1007/978-3-642-30422-4_29
http://dx.doi.org/10.1007/978-3-642-30422-4_29
http://www.aa4r.org/files/Fail_Safety_in_AA4R-121101.pdf
http://www.compamed.de/cipp/md_compamed/custom/pub/content,oid,19798/lang,2/ticket,g_u_e_s_t/~/Intelligent_Telemetry_for_Implants.html
http://www.compamed.de/cipp/md_compamed/custom/pub/content,oid,19798/lang,2/ticket,g_u_e_s_t/~/Intelligent_Telemetry_for_Implants.html
http://www.compamed.de/cipp/md_compamed/custom/pub/content,oid,19798/lang,2/ticket,g_u_e_s_t/~/Intelligent_Telemetry_for_Implants.html
http://dx.doi.org/10.1109/CBMS.2005.22
http://dx.doi.org/10.1109/CBMS.2005.22
http://www.vitalresponder.pt/index.php?option=com_content&view=article&id=2&Itemid=3
http://www.vitalresponder.pt/index.php?option=com_content&view=article&id=2&Itemid=3
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8991
http://dx.doi.org/10.1109/IWCMC.2011.5982868
http://dx.doi.org/10.1109/IWCMC.2011.5982868

[13] J. M. Eklund, T. R. Hansen, J. Sprinkle, and S. Sastry, “Information technology for assisted
living at home: building a wireless infrastructure for assisted living”, in Engineering in Medicine
and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the,
IEEE, 2006, pp. 3931–3934.

[14] J. Postel, “User datagram protocol”, Isi, 1980.

[15] ——, “Rfc 793: transmission control protocol, september 1981”, Status: Standard, 2003.

[16] J. Varia, “Architecting for the cloud: best practices”, Amazon Web Services, 2010.

[17] ——, “Cloud architectures”, White Paper of Amazon, jineshvaria. s3. amazonaws.
com/public/cloudarchitectures-varia. pdf, 2008.

[18] Amazon Simple Queue Service - Developer Guide API version 2012-11-05. 2012.

[19] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, “The java tm language specification
java se 7 edition”, 2012.

[20] D. Kramer, “The java platform”, White Paper, Sun Microsystems, Mountain View, CA, 1996.

[21] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual Machine Specification,
Java SE 7 Edition. Pearson Education, 2013, isbn: 9780133260465. [Online]. Available: http:
//www.google.de/books?id=95HzjxTELRkC.

[22] Your first cup: An introduction to the java ee platform, http://docs.oracle.com/javaee/6/
firstcup/doc/p1.html, [Online; accessed 12-August-2013], Apr. 2012.

[23] A. Goncalves, Beginning Java EE 6 with GlassFish 3. Apress, 2010.

[24] E. Jendrock, R. Cervera-Navarro, I. Evans, D. Gollapudi, K. Haase, M. William, and C. Sri-
vathsa, The java ee 6 tutorial, http://docs.oracle.com/javaee/6/tutorial/doc/index.
html, [Online; accessed 12-August-2013], Jan. 2013.

[25] Java Server-side Programming: Getting started with JSP by Examples, http://www.ntu.edu.
sg/home/ehchua/programming/java/JSPByExample.html, [Online; accessed 12-September-
2013], Oct. 2012.

[26] Bound-services, Android Developers, http://developer.android.com/guide/components/
bound-services.html#Binder, [Online; accessed 27-September-2013].

[27] D. Crockford, “The application/json media type for javascript object notation (json)”, 2006.

[28] S. Josefsson, “The base16, base32, and base64 data encodings”, 2006.

[29] A. Baldwin, “Enhanced accountability for electronic processes”, in Trust Management,
Springer, 2004, pp. 319–332.

[30] Bluetooth, Android Developers, http : / / developer . android . com / guide / topics /
connectivity/bluetooth.html, [Online; accessed 10-April-2013].

[31] H. Weberpals, Parallel programming primer, http : / / www . tuhh . de / parallel / cw /
lecture.html, [accessed December-2012; Computational Web lecture at Technical University
of Hamburg-Harburg], Dec. 2012.

70

http://www.google.de/books?id=95HzjxTELRkC
http://www.google.de/books?id=95HzjxTELRkC
http://docs.oracle.com/javaee/6/firstcup/doc/p1.html
http://docs.oracle.com/javaee/6/firstcup/doc/p1.html
http://docs.oracle.com/javaee/6/tutorial/doc/index.html
http://docs.oracle.com/javaee/6/tutorial/doc/index.html
http://www.ntu.edu.sg/home/ehchua/programming/java/JSPByExample.html
http://www.ntu.edu.sg/home/ehchua/programming/java/JSPByExample.html
http://developer.android.com/guide/components/bound-services.html##Binder
http://developer.android.com/guide/components/bound-services.html##Binder
http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://www.tuhh.de/parallel/cw/lecture.html
http://www.tuhh.de/parallel/cw/lecture.html

Appendix

Contents

• This Master’s Thesis document in pdf format

• Complete source code of the developed project
– Sensor Data Relay mobile application
– Packet Processing System

∗ Entity Communication Point
∗ Queue
∗ Packet Handler

• Software deployment manual

CD

71

	Contents
	List of Figures
	Listings
	Introduction
	Motivation
	Objectives
	Chapter structure

	Background
	Ambient Assistance for Recovery
	Scope in this Master's Thesis
	Requirements

	Vital Responder
	Components
	Communication
	Scope in this thesis
	Requirements

	Research on relevant projects
	Mobile Telemedicine System
	Wearable ECG-recording System
	ITALH and SensorNet

	Design
	Analysis of conflicting requirements
	User interface
	Communication protocols
	Adaptability on demand

	Proposed design
	Sensor data relay application
	Packet processing system
	Client interface

	Framework
	Platform
	Java
	Glassfish

	Storage
	MySQL
	MongoDB

	User Interface
	jQuery
	Twitter's Bootstrap
	Sammy.js

	Implementation
	Sensor Data Relay application
	Packet Processing System
	Entity Communication Point
	Queue
	Packet Handler

	Client interface

	Results
	Conclusion and future work
	Glossary
	References
	Appendix

