

 Universidade de Aveiro

2013

Departamento de Electrónica, Telecomunicações e

Informática

António Mário
Constantino Malta
Novo

DicoogleWeb: uma interface Web para repositório de
imagem médica

DicoogleWeb: a Web interface for a medical image
repository

 Universidade de Aveiro

2013

Departamento de Electrónica, Telecomunicações e

Informática

António Mário
Constantino Malta
Novo

DicoogleWeb: uma interface Web para repositório de
imagem médica

DicoogleWeb: a Web interface for a medical image
repository

 dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação científica do Dr. Carlos
Manuel Azevedo Costa, Professor Auxiliar do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro

o júri

presidente Prof. Dr. António Manuel Melo de Sousa Pereira
professor Catedrático da Universidade de Aveiro

 Prof. Dr. Rui Pedro Sanches de Castro Lopes
professor Coordenador do Dep. Informatica e Comunicações da ESTG do Instituto Politécnico de
Bragança

 Prof. Dr. Carlos Manuel Azevedo Costa
professor Auxiliar da Universidade de Aveiro

agradecimentos

Gostaria de agradecer à minha família por me apoiar constantemente.
Agradeço também a todo o grupo de bioinformática, em especial ao Luís
Bastião, Carlos Ferreira e Frederico Valente por toda a ajuda e suporte.
O meu obrigado segue também para o professor Carlos Costa pela ajuda e
paciência que teve para comigo.

acknowledgements I would like to thank my family for the continuously support me.
I would also like to thank the whole bioinformatics group, especially to Luís
Bastião, Carlos Ferreira and Frederico Valente for all the help and support.
A big thank you note goes also to professor Carlos Costa for all the help and
patience towards me.

palavras-chave

PACS; DICOM; Telemedicina; Imagem Médica; Web.

resumo

O Dicoogle é uma solução de software, em código fonte aberto, que foi
desenhada para suportar o fluxo de informação num laboratório de imagem
médica. Além disso, está dotado de um mecanismo de indexação que permite
indexar todos os metadados contidos nos ficheiros DICOM do seu repositório.
A actual implementação pode ser lançada em modo servidor (por omissão)
mas também dispõem de um módulo gráfico cliente que pode conectar-se a
qualquer instância servidor através de Java RMI. Isto proporciona um acesso
simples a estações de trabalho clientes dentro ou fora de uma organização
medica.
Esta dissertação propõe e implementa uma solução que permite migrar o
Dicoogle para ambiente Web. Para além de disponibilizar todas as
funcionalidades da versão anterior, a versão Web oferece um conjunto de
novos serviços e interface de acesso aos dados.

keywords

PACS; DICOM; Telemedicine; Medical Imaging; Web

abstract

Dicoogle is an open-source software solution designed to manage the
information workflow in a PACS as well as the archiving and indexing process
of the arriving DICOM files. The current implementation can either be run in
server mode (default) or used as a client to connect to another server instance
of Dicoogle (via Java RMI). This enables simple access to client workstation
within or outside a medical organization.
This work will focus on adapting the current implementation of Dicoogle for the
Web environment, allowing, system clients, to view medical images, on the
majority of devices with network access.

Table of Contents

1. Introduction .. 1

2. State of the Art .. 2

2.1. Medical Environment .. 2

2.1.1. PACS .. 2

2.1.2. DICOM ... 3

2.1.2.1. WADO .. 6

2.2. Web .. 6

2.2.1. HTTP .. 7

2.2.2. Web Standards .. 14

2.2.2.1. HTML5 ... 14

2.2.2.2. JavaScript ... 15

2.2.2.3. CSS3 ... 16

2.3. Dicoogle ... 16

2.3.1. Plugin Support .. 17

2.3.2. P2P Architecture ... 19

2.3.3. Limitations .. 20

3. Requirement Analysis .. 21

3.1. Functional Requirements ... 21

3.1.1. Web Oriented Architecture ... 22

3.1.2. Search ... 23

3.1.3. DICOM File Transfer ... 24

3.1.4. DICOM Frame Export .. 24

3.1.5. Plugin Support .. 25

3.1.6. User Authentication .. 26

3.1.7. User Roles .. 26

3.2. Non-functional Requirements .. 27

3.2.1. Mobile Clients Support ... 27

3.2.2. Security ... 27

3.2.3. Performance .. 28

3.2.4. Web Standards .. 28

3.2.5. All-in-one Solution ... 30

4. DicoogleWeb.. 30

4.1. Core Architecture... 30

4.1.1. RMI... 32

4.1.2. SDK .. 32

4.1.3. Plugins .. 33

4.1.3.1. Data Export and Retrieval .. 34

4.1.3.2. Access to GUI ... 35

4.2. Server-side Architecture .. 37

4.2.1. Web Container .. 37

4.2.2. Dynamic Content .. 38

4.2.3. Data Retrieval ... 39

4.2.3.1. Web Services .. 39

4.2.3.2. Search ... 39

4.2.3.3. Tags .. 43

4.2.3.4. Frames .. 45

4.2.3.5. DICOM Files .. 46

4.2.4. Configuration .. 47

4.3. Client-less Solution .. 51

4.3.1. HTML ... 51

4.3.2. Mobile GUI .. 52

4.3.3. Viewer .. 53

5. Results .. 56

5.1. Overall Solution ... 56

5.2. Performance ... 56

5.2.1. Search ... 57

5.2.2. Viewer .. 58

5.2.3. DICOM File Transfer ... 59

5.2.4. GUI ... 60

5.3. Improvements .. 61

5.3.1. Frame Caching .. 61

5.3.2. Minimalistic JavaScript .. 61

5.3.3. HTTP Caching .. 62

6. Conclusion ... 64

6.1. Implementation Issues ... 65

6.2. Further Work ... 65

7. References.. 66

1

1 Introduction

Nowadays, with advancements in medical imagery equipments devices and

formats, there is a growing demand for more and more storage and archiving solutions.

Not too long ago, patients and doctors had to maintain hard-copies of medical imagery

exams, like X-Ray radiograph sheets or an ECG paper log. In this era of digital devices

and low expense digital storage space, these imagery exams, as-well as patient

information, can be easily stored digitally (soft-copies) with smaller costs than maintaining

hard-copies of it. And since this data is stored digitally, there is also the possibility of

making it available to any network device with access to the data storage device. This also

creates a simpler environment where doctors can access this information faster and with

greater ease.

In the Bioinformatics group at IEETA, it was developed a medical imaging achieve

with search engine and distributed computing techniques, named Dicoogle [1]. It is an

open-source software solution designed to manage the information workflow in a PACS as

well as the archiving and indexing process of the arriving DICOM files. The core part of

application relies on a client-server architecture, that can run in server mode and also as a

client to connect to another server instance of Dicoogle (via Java RMI).

With this dissertation, we plan to provide a web solution for the current Dicoogle

implementation. The target implementation must allow web clients, at least within the

same medical institution, to be able to retrieve, view and analyze the information stored

within a DICOM file, as well as searching the PACS. Effectively removing the need for 3
rd

party external DICOM viewer installations on the doctors’ workstations, and create the

possibility to extend the functionality through the web-based components, which may be

useful to other Dicoogle developers.

Being a web based scenario, various technologies and implementation options

related to the web environment, that will help accomplish the above, will be discussed

throughout this paper. Taking into account the current state of the project, there will also

be some improvements that can, later, be added to the new solution.

2

2 State of the Art

In this chapter, some attention will be put towards the current scenarios and

technologies currently in use in the medical environment, Dicoogle and the web

environment, as well as some new technologies that might aid the development of the new

solution.

2.1 Medical Environment

With current medical imaging techniques and records shifting to the digital era,

new technologies and standards were developed to aid in the storage and later-on analysis

of medical exams. The next point in this paper will focus on these technologies.

2.1.1 PACS

A PACS (Picture Archiving and Communication System) provides a "simple" yet

powerful digital storage and access model for medical imaging information, removing the

need to manually retrieving and archiving said data [2].

This architecture relies on a secure network for transferring the images and

information, and is based on four major components:

• Medical imaging devices: these are used to create images (of parts) of (organs and

tissues of) the human body for clinical purposes. Among these are MIR machines,

X-Rays machines, and many others;

• A QA (Quality Assurance) workstation or gateway: this component of the network

manages the consistency and quality of the (image) data originated from the

imaging devices;

• An archive: used for storing the medical information;

• A set of doctors workstations: these workstations will have access to the archive for

retrieving the information, and are used by the doctors to analyze the previously

mentioned retrieved information;

3

Figure 1: PACS components and set of data transfers between them.

All these components/devices, depicted in figure 1, communicate with one another

using a standard protocol called DICOM (Digital Imaging and Communications in

Medicine) [3] that dictates the image storage and transfer format. The doctor workstations

can use a set of DICOM (Digital Imaging and Communications in Medicine) messages to

query, retrieve and also “forward” information from the PACS archive.

All this guarantees that, in very little time and with greater efficiency, the

information obtained with the medical imaging devices will be available for medical

professionals to retrieve and analyze.

2.1.2 DICOM

The DICOM standard [3] defines how to handle, transmit and store medical

imaging information. It defines both a TCP/IP network messaging protocol and a digital

file/data format. Firstly released in 1985, by NEMA (National Electrical Manufacturers

Association), it is an evolving standard, and its currently in version, 2011, is defined in 20

independent and freely available parts/documents from PS 3.1 to PS 3.20 [3].

Since this file/data format aims to represent real-world data, it represents the data

using IODs (information object definitions) with properties and attributes. These IODs are

used to store/represent, for example, the patient, with name, sex, and many other attributes.

There are several IODs within the same DICOM file, each one representing a different

real-world entity:

4

Tag ID Tag Name

0008,0080 Institution Name

0010,0010 Patient Name

0010,1010 Patient Age

0010,0030 Patient Birth Date

0010,0040 Patient Sex

0018,5010 Patient Position

0021,1091 Biopsy Position

Table 1: List of some of the IODs available.

Each IOD contains a list of child properties and values pertaining to the parent

IOD. And since there is a multitude of real-world data types (like millimeters, date and

others) the DICOM format uses a Data Element encoding scheme with Value

Representations accordingly to the data/value the element holds:

Value Representation Description

AE Application Entity

AS Age String

AT Attribute Tag

CS Code String

DA Date

DS Decimal String

DT Date/Time

FL Floating Point Single (4 bytes)

FD Floating Point Double (8 bytes)

IS Integer String

LO Long String

LT Long Text

OB Other Byte

OF Other Float

OW Other Word

PN Person Name

SH Short String

SL Signed Long

SQ Sequence of Items

SS Signed Short

ST Short Text

TM Time

UI Unique Identifier

UL Unsigned Long

UN Unknown

US Unsigned Short

UT Unlimited Text

Table 2: List if all the DICOM Value Representations and their description, taken from Chapter 6.2 of DICOM

document PS 3.5 [3].

5

For instance, the Series IOD lists the property Modality Type, which indicates the

application area (or type of radiology imaging system) that produced the image(s)/data

archived within the file.

DICOM files can also contain an IOD with pixel information referring to one or

more images.

SOP
SOP Class UID

SOP Instance UID

Patient

Patient Name

Patient ID

Patient Birth Date

Patient Gender

Study

Study UID

Study Date

Study Time

Study ID

Referring Physician

Accession Number

Series

Series UID

Series Number

Modality Type

Equipment
Manufacturer

Institution Name

Image

Acquisition Attributes…

Position Attributes…

Image Number

Image Type

Rows

Columns

Samples-per-Pixel

Planar Configuration

Pixel Representation

Pixel Data

Table 3: This is the structure of an example DICOM file that would contain an image.

6

The data, depicted in table 3, appears in the same order as it would appear in the

DICOM file, meaning that a Patient is subject of a Study, which contains a Series, which

used the following Equipment to produce the following Image.

These files can hold very large image sets, and on large medical institutions, the

number of DICOM files, need to be sent for storage, can grow very quickly. This creates a

problem, since all the information is stored inside the file. When a workstation, or any

other PACS client, wants to retrieve that file it has to know the name of the file, that

contains the information needed, beforehand. One of the solutions is indexing all the

properties, and their values, of a DICOM file along with its file name on a database. This

will ensure faster search and retrieval of the archive contents.

2.1.2.1 WADO

The DICOM specifications, at document PS 3.18 [3], already has defined a system

for querying and retrieving DICOM information via Web, it is called WADO (Web Access

to DICOM Persistent Objects).

It is a standard that dictates how a web enabled PACS server to should process web

clients’ requests for information and which data and format to return to the client. Based on

HTTP, it provides a standard URI format to be used to query the server for specific

DICOM data.

The WADO specification is rather minimalistic, since it provides only a standard

set of guidelines on how to provide the DICOM information that resides on the PACS to

requesting web clients (URI format and response MIME type support). This DICOM

information can be accessed by clients that know, beforehand, the identification numbers

(StudyUID, SOPInstanceUID, and others) of each requested DICOM file, leaving the

searching capability within the PACS out of scope.

2.2 Web

The World Wide Web (WWW, W3 or Web for short), is, without doubt, the most

used service across the Internet. By providing easy access to visual, audio and textual

information stored within interlinked documents, any Internet user can have access to the

billions of public documents stored within the remote servers that build the Internet.

7

The Web is free to both be accessed or to supply content by anyone, as opposed to

its previous predecessor the Gopher protocol [4], which is, since 1993 when the Web was

declared free by CERN, deprecated.

The WWW consists in the symbiosis between three systems:

• URI/URL: the Uniform Resource Locator and Uniform Resource Identifier

are a set of globally unique identifiers for each resources on the Web;

• HTML: the HyperText Markup Language is the publishing language of

most Web documents;

• HTTP: the Hypertext Transfer Protocol is the protocol that allows clients

and servers to interact with each other, exchanging information and

documents;

Since the access to each server is dictated by which IP address, or translated DNS

record, is visited, the usage of URLs/URIs on the Web allows each web client to either

point directly to the needed document or to simply follow the set of links on that server

documents that lead to the pertaining document.

2.2.1 HTTP

The Hyper Text Transfer Protocol (HTTP) standard was developed by the Internet

Engineering Task Force (IETF) in cooperation with the World Wide Web Consortium

(W3C). After some improvements and updates to the standard, version 1.1 of HTTP was

now defined by RFC 2616 [5], as of in June 1999.

As its name indicates, the main purpose of the HTTP protocol was to easily

exchange textual information (in ASCII format), but it can also handle the exchange of any

binary data type.

It defines a set of message types and response codes in order to exchange data

between client and server, in a web environment. It also relies on an underlying TCP

connection for exchanging these messages and resulting data.

Two message types are defined: request and response. The request message, which

is sent from the client to the server, carries some headers indicating what resource the

8

client is requesting from the server. The server after receiving receives the request, checks

the existence of the requested resource and sends a response message back to the client.

The request message will carry, besides the URI and parameters of the resource to

access/request, but also which action or method should the server perform to said resource.

This method can have one of the following values:

Method Meaning

GET Retrieve whatever information is identified by the Request-URI and returns

its information and contents.

HEAD Identical to GET except that the server MUST NOT return a message-body

in the response.

POST Used to request the origin server to accept the entity enclosed in the request

as a new subordinate of the resource identified by the Request-URI.

PUT Requests that the enclosed entity be stored under the supplied Request-URI.

DELETE Requests that the origin server delete the resource identified by the Request-

URI.

OPTIONS Request for information about the communication options available on the

request/response chain identified by the Request-URI.

TRACE Used to invoke a remote, application-layer loop-back of the request message.

Table 4: List of HTTP request methods and their meaning.

The response message, besides carrying the requested resources’ data and

information, if found, will also carry a response code header indicating the successfulness

of the request parsing and response created. Here are the values this response code header

can have, and their meaning accordingly to their RFC 2616 documentation:

Group Code Title Meaning

Informational

100 Continue The client SHOULD continue with its

request.

101 Switching

Protocols

Indicates a provisional response,

consisting only of the Status-Line and
optional headers.

Successful

200 OK Indicates that the client's request was
successfully received, understood, and

accepted.

201 Created The request has been fulfilled and

resulted in a new resource being
created.

9

202 Accepted The request has been accepted for

processing, but the processing has not

been completed.

203 Non-

Authoritative

Information

The returned meta-information in the

entity-header is not the definitive set as

available from the origin server, but is

gathered from a local copy.

204 No Content The server has fulfilled the request but

does not need to return an entity-body.

205 Reset Content The server has fulfilled the request and

the user agent SHOULD reset the
document view which caused the

request to be sent.

206 Partial

Content

The server has fulfilled the partial GET

request for the resource.

Redirection

300 Multiple

Choices

The requested resource corresponds to
any one of a set of representations.

301 Moved

Permanently

The requested resource has been
assigned a new permanent URI.

302 Found The requested resource resides
temporarily under a different URI.

303 See Other The response to the request can be

found under a different URI.

304 Not Modified The requested document has not been

modified.

305 Use Proxy The requested resource must be
accessed through the proxy given by the

Location field

307 Temporary

Redirect

The requested resource resides

temporarily under a different URI.

Client Error

400 Bad Request The request could not be understood by

the server due to malformed syntax.

401 Unauthorized Requires user authentication.

402 Payment

Required

Code reserved for future use.

403 Forbidden The server understood the request, but
is refusing to fulfill it.

404 Not Found The server has not found anything
matching the Request-URI.

405 Method Not

Allowed

The method specified in the Request-

Line is not allowed for the resource

identified by the Request-URI.

406 Not

Acceptable

The resource identified by the Request-
URI is unable to accept the headers sent

in the request.

407 Proxy

Authentication

Required

Indicates that the client must first
authenticate itself with the proxy.

10

408 Request

Timeout

The client did not produce a request

within the time that the server was

prepared to wait.

409 Conflict The request could not be completed due

to a conflict with the current state of the

resource.

410 Gone The requested resource is no longer
available at the server and no

forwarding address is known.

411 Length

Required

The server refuses to accept the request

without a defined Content-Length.

412 Precondition

Failed

The precondition given in one or more

of the request-header fields evaluated to

false when it was tested on the server.

413 Request Entity

Too Large

The server is refusing to process a
request because the request entity is

larger than the server is willing or able

to process.

414 Request-URI

Too Long

The server is refusing to service the

request because the Request-URI is

longer than the server is willing to

interpret.

415 Unsupported

Media Type

The entity of the request is in a format

not supported by the requested

resource.

416 Requested

Range Not

Satisfiable

The request included a Range request-

header field, and none of the range-

specifier values in this field overlap the

current extent of the selected resource.

417 Expectation

Failed

The expectation given in an Expect
request-header field could not be met

by this server.

Server Error

500 Internal

Server Error

The server encountered an unexpected

condition which prevented it from

fulfilling the request.

501 Not

Implemented

The server does not support the

functionality required to fulfill the
request.

502 Bad Gateway The server, while acting as a gateway or

proxy, received an invalid response

from the upstream server it accessed in
attempting to fulfill the request.

503 Service

Unavailable

The server is currently unable to handle
the request.

504 Gateway

Timeout

The server, while acting as a gateway or
proxy, did not receive a timely response

from the upstream server specified by
the URI.

505 HTTP Version

Not Supported

The server does not support, or refuses
to support, the HTTP protocol version

that was used in the request message

Table 5: List of HTTP response codes and their meaning.

11

The response code value is then check by the client, upon receiving the response

packet(s), to check if additional requests must be made in order to retrieve the resource (for

instance, if the resource has moved to another location a new request will be made to

retrieve the resource from said location).

Here is an example communication between a HTTP client and server, after a TCP

connection has been open:

Figure 2: Example communication between a HTTP client and server.

An example of Request and Response packets can be the ones bellow:

Request Response

GET /index.html

HTTP/1.1

Host: www.example.com

HTTP/1.1 200 OK

Date: Wed, 05 Jun 2013 00:00:01 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

Content-Type: text/html; charset=UTF-8

Content-Length: 131

Connection: close

<html>

<head>

 <title>An Example Page</title>

</head>

<body>

 Hello World, this is a very simple HTML

document.

</body>

</html>

Table 6: Example request and resulting response HTTP packet data.

12

Despite being a simple protocol definition, and because it is build on-top of the

state-full TCP protocol, it provides an excellent and error free way of transferring data on

an otherwise "state-less" network like the internet.

Given the simplicity of the HTTP protocol, new architecture specifications

emerged, that aimed to provide more functionality, and with a larger feature set and more

semantic information, to the HTTP protocol.

One of these technologies is ReST (Representational State Transfer), and by

relying on the underlying HTTP protocol, aims to provides better and easier resource

representation and access. It is still client-server based, like HTTP, but uses a set of

guidelines in order to guarantee that clients can access server resources and in a more

streamlined manner while also being able to perform actions, traditional HTTP

methods/actions, over said resources. Solutions that adopt the ReST architecture style can

be easily extendable and accessible by other ReST systems. This is mainly due to the URL

specification that guarantees easy system interaction and better scalability by adoption a

more generalist interface set.

Table 7 presents an example communication between a client and server, where the

client requests the number of devices on the server, and then removes the ability to “edit”

of the first device:

Request Response

GET

URL:

/device/

OK

Body:

/device/1/

/device/2/

/device/2/

GET

URL:

/device/1/capabilities/

OK

Body:

/device/1/capabilities/print/

/device/1/capabilities/edit/

DELETE

URL:

/device/1/capabilities/edit/

OK

Table 7: Example ReST communication between a client and server.

SOAP (Simple Object Access Protocol) is another technology that aims to

standardize the exchanging of information on HTTP based systems. By relying less on the

URL structure and using the HTTP request and response body to exchange data and actions

between server and client, SOAP can provide a broader feature set than ReST or solely

13

HTTP can, while still maintain consistency among implementing systems. SOAP messages

use XML structured documents, on HTTP bodies, that carry a more verbose and data set

than other types of message passing. This can be a benefit when large sets of data with

many meaning must be transmitted from one system to another (be it client or server). But

can also be a drawback due to the extra amount of information that ship with each request.

Table 8 depicts an example communication between client and server where the

clients requests the stock price of Google stocks:

Request

POST

URL:

/InStock/

Body:

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPrice>

 <m:StockName>GOOG</m:StockName>

 </m:GetStockPrice>

</soap:Body>

</soap:Envelope>

Response

OK

Body:

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

<m:GetStockPriceResponse>

 <m:Price>915.43</m:Price>

</m:GetStockPriceResponse>

</soap:Body>

</soap:Envelope>

Table 8: Example SOAP communication between a client and server.

These technologies will prove useful during the development of the solution

presented in this paper, by allowing a standardized set of web-services, completely GUI

(Graphical User Interface) agnostic, to be built.

14

2.2.2 Web Standards

One of the most relevant aspects of a web based solution is its compliance with the

open web standards. The compliance with these well defined standards ensures

compatibility across a whole multitude of very distinct system architectures that might

want to retrieve and consume data from the server.

These royalty free standards are regulated by the World Wide Web Consortium

(W3C), and are well defined, in order to guarantee that all platforms can comply and

support the standards, while still improving functionality on a web based environment.

Nowadays, one of the main compatibility issues lies on how web browser

applications parse and render web pages. Not all browsers follow the standards norm, one

of these examples is Microsoft Internet Explorer 6, which uses custom (closed, and non

standard) rules for both parsing and rendering web content. Now loosing usage share [6],

it used to be, up to a few years ago, the most used internet browser. This forced web

developers to target this browser specifically, when developing and deploying web

enabled applications.

Newer browsers have as a major goal, the support for open web standards, even

Microsofts’ new implementations, removing possible implementation compatibility issues

from open web standards compliant solutions.

2.2.2.1 HTML5

HyperText Markup Language (HTML) is, as the name implies, a document markup

language, and the main document descriptor for web environments. It defines a set of tags,

and tag properties, which can be used to create well structured documents that can later on

be rendered by a web browser. HTML is also compliant with the SGML (Standard

Generalized Markup Language) ISO standard [7], which means that both document and

tag validity checks can be performed to each HTML document.

Its initial development started at CERN, in the late 1980’s, due to the researchers’

necessity of sharing and using documents. It became a standard only in November 24,

1995, with the release of the HTML version 2.0 definitions.

15

Throughout the years, new versions of HTML, mainly with improvements and

fixes to the standard, continued to be launched. However, version 4.01 of HTML,

published in December 1999 [8], remained the standard HTML version ever since then.

HTML version 5 is the most recent version of the HTML standard, and as of

December 12, 2012, more than a decade since the last version, a W3C Candidate

Recommendation. And although not all web-browsers fully support its' directives, the

major distributions like Mozilla Firefox, Google Chrome, Microsoft Internet Explorer,

Opera and Apple Safari do. Most recent mobile device browsers also support this version,

and with continuing mobile device technologies improving, mobile device support will

continue to grow.

The new HTML version brings many improvements and new features to the HTML

standard. One of the most important features is the addition of the canvas tag element,

which allows client side drawing and rendering on a portion of a web page.

2.2.2.2 JavaScript

Since HTML is only capable of providing static content, between HTTP requests,

this created the need for a client-side method of adding and modifying HTML content

within a web page rendered in a web browser (to avoid multiple server requests).

Originally developed by the Netscape browser team to include in the, now

deceased, Netscape browser and allow dynamic user interaction and browser control,

JavaScript, which was based on a Java implementation, is, as of June 1998, an ISO

standard.

JavaScript is a programming language that is run-time evaluated within the web

browser, meaning no target architecture compilation is needed, making it cross-platform.

It features a dynamic typing and object-based definition, that provides great functionality

and flexibility.

With a syntax and subset of features very similar to regular EMACScript

languages, development in JavaScript is no longer tied to the web environment, and the

language is now used in regular stand-alone application, games and even operative

systems, as in Microsofts’ new Windows 8, validating the ease of use and development of

JavaScript (code) in any scenario, not just the web target.

16

2.2.2.3 CSS3

As with most documents, the placement and formatting of the rendered information

is important for document layout and proper information flow.

Cascading Style Sheets (CSS) is a document definition that can be integrated with

markup languages, like HTML, to help style and format each web pages layout. This

approach of separating document content and document presentation, can improve content

accessibility while still providing flexibility and control of the presentation characteristics.

It also enables multiple pages to share the same layout/formatting, thus reducing

complexity and possible repetitions of either content or layout definitions.

Based on priority rule blocks, each rule being composed of element selectors and a

declaration set of attributes and values, CSS is capable of modifying each individual

element, as-well as a group of elements and their graphical attributes, allowing the

browser application to render each HTML element as intended.

Version 3 of this specification adds new features to element selectors, allowing an

advanced (almost regular expression based) syntax to be used for element selection, and

new attributes to elements. Animations, in the form of multiple/chained attribute changes,

can also be achieved with this new specification.

And while version 3 of the specification is not yet a standard, leading to multiple

vendor specific implementations, some 3
rd

 party tools allow for simpler CSS

implementations. One of these tools is LESS, and allows CSS developers to focus only on

the main CSS specification, and afterwards the LESS compiler can create a CSS

document with rules for multiple vendor specific implementations.

2.3 Dicoogle

Dicoogle [1] is an open-source software solution, designed and implemented at

Universidade de Aveiro, which implements and conforms to the DICOM standard [3].

Bundled in an all-in-one Java solution, it is designed to manage the information workflow

in a PACS [9] as well as the archiving and indexing process of the arriving DICOM files.

It is in essence an improved, yet fully standard compatible, PACS core.

The current implementation can either be run in server mode (default) or used as a

client to connect to another server instance of Dicoogle (via Java RMI). This enables

simple access to client workstation within or outside a medical organization.

17

Doctors can use this interface to search among the indexed files using any

parameters they please, either free-text or building a more complex query that will improve

the search results. One of the great features of Dicoogle is the fact that it indexes DICOM

files as they arrive to be stored, granting in-time file/data search and removing the

necessity of scheduling indexing processes. Also, since it is implemented using Java and is

an all-in-one bundle (jar solution), it can be easily deployed across different system

architectures without problems, requiring only that the standard JRE VM (Java Runtime

Environment Virtual Machine) to be installed on the target machine.

Dicoogle has also implemented a simple plug-in system, based on its own in-house

SDK, and can load and execute plug-ins that will provide extra functionality to the system.

For instance, in the current implementation there is a plug-in that allows users to search

through a P2P network of Dicoogle peers that effectively enhances the performance and

results of a search.

There is also a set of WADO web services already implemented in the current

version of Dicoogle.

2.3.1 Plugin Support

The current Dicoogle version already has a plug-in support system. Based on an

SDK and on the JSPF library [10], this system allows the easy development and deploy of

Dicoogle plug-ins.

There are three plug-in types that can be instanced with the current Dicoogle SDK:

• GenericPluginInterface

Plug-ins that implement this interface will have access to the indexing

mechanism and also contribute to Dicoogles’ indexing and searching engine

results. All Dicoogle plug-ins must implement this interface.

• NetworkPluginAdapter

This interface extends GenericPluginInterface and also provides networking

handling tasks abilities to plug-ins.

• GraphicPluginAdapter

This interface extends GenericPluginInterface and also provides plug-ins

the ability to access a dedicated part (for each plug-in) of the user interface.

18

Dicoogle also features some proven examples of each plug-in instance. The

DICOM indexing mechanism, driven by the Lucene engine [11], currently reside on a

GenericPluginInterface plug-in. The P2P capabilities of Dicoogle are also available via

the JGroups plug-in that implements NetworkPluginAdapter. Both plug-ins also make

available their configuration options on the GUI by implementing the

GraphicPluginAdapter.

This, rather simple plug-in support system, allows extra functionality to be added to

Dicoogle without the need for a new deploy of the Dicoogle server, simply add the plug-in

to the Dicoogle plug-in directory, restart the Dicoogle server application and the new

functionality is added to the system.

Figure 3 denotes the current Dicoogle plug-in system implementation and

interaction:

Figure 3: Current Dicoogle plug-in system implementation and interaction.

19

2.3.2 P2P Architecture

Since Dicoogle only supported searching on one server instance, extra work has

been made by the Dicoogle developing team, to implement distributed search architecture.

This allows the several instances of Dicoogle, which are running within a medical

institution, to cooperate and distribute the load when performing searches on the indexing

engine.

A, custom, peer-to-peer (P2P) architecture was devised and implemented onto

Dicoogle [12], that allows peers (Dicoogle clients and servers) to cooperate during a

distributed search, enhancing the set of search results, as-well as reducing the time spent

until the first search results are seen by the client conducting the search. Given the nature

of this search procedure/algorithm, search results will continue to arrive at the requesting

client until all peers complete the search.

Figure 4, bellow, is a diagram indicating how the communication between peer is

processed, when Peer 1 starts doing a distributed search on a Dicoogle P2P network

containing Peer 1 Peer 2 and Peer 3:

Figure 4: Example Dicoogle P2P search communication diagram [12].

20

2.3.3 Limitations

The current system has some limitations, and this is part of why a new revamped

architecture would greatly benefit both developers and users of Dicoogle.

The current implementation of Dicoogle relies on and underlying Java RMI

interface to for the communication between Dicoogle clients and server. Although RMI

provides great functionality with small developing effort, it also creates the need of a

Dicoogle client application that will need to be deployed and used by the medical

professional in order to access and use Dicoogle. And although Java is available to a

whole range of distinct platforms, other factors like the Graphical User Interface (GUI)

severely limit the ability of extending Dicoogle client use on platforms other than the

typical desktop system.

Also, Dicoogle’s current plug-in system, mainly due to this RMI interface, requires

Dicoogle plug-ins to be transferred to each Dicoogle client, upon client initialization. This

approach has the strong point of releasing some of the server load, which would be

necessary to accommodate and serve each plug-ins’ functionality, to the clients, but also

enforces the previous need for a client side instance of Dicoogle.

On the other hand, the RMI implementation is complex, mainly in the

communication between the core and GUI part. The migration to the web will also be

compliant to the current trends of the new applications, which will better fulfill the

requirements of Dicoogle’s users.

Finally, despite of the portability of Java, the Dicoogle solution still need to be

installed and deployed on the computers, which carries some portability issues.

21

3 Requirement Analysis

Porting the current Dicoogle platform onto a web enabled environment, imposes,

from a developers standpoint, not only some implementation issues, but also architectural

issues. In this chapter, it will be introduced the requirements analyses that will lead the

developing of new Dicoogle frontend.

3.1 Functional Requirements

Nowadays, the web thrives, and web-based software solutions are a common

alternative to stand-alone desktop implementations. Part of the success of these kinds of

solutions resides on the fact that it takes a significantly less amount of time and effort for a

client to be able to use the system, since the only action the client as to take is open up a

web browser and point it to the solutions URL.

Also, with the growing amount of computing devices type and architectures, like

mobile communication devices, a person is bound to use several distinct devices

throughout their day, be it the nearest desktop computer (commonly x86 based device) or

a smart-phone (commonly a ARM device).

In this scenario, if a user wants to have the same functionalities on any of these

devices, the applications must first support the target devices architecture and secondly the

user (or in charge IT personnel) will need to install and configure the same applications on

these multiple devices. This carries some costs, not only on time spent setting-up and

configuring the solutions on several devices, but also, most of the times, the cost of

multiple software license fees, one for each machine the solution will be installed on.

Providing a software solution as a service over a network and making it accessible

to multiple devices via a web-interface reduces the time spent configuring said solution,

while also maintaining the same interface and functionality coherence across multiple

devices.

One example of a desktop versus a web-based solution is Microsoft Office versus

Google Docs. Google Docs might not be as “advanced” nor contain the same

functionalities as Microsoft Office, but for the majority of the documents created by users

of both systems, Google Docs will provide all the needed functionality without the user

22

having to buy and install a client-side office solution like Microsoft Office. One other

great factor in favor of Google Docs is out-of-the-box multi-platform/architecture support

due to being a standard web solution, allowing the solution to be used on multiple devices

regardless of architecture or installed software.

The new Dicoogle solution must, also, be able to provide a better overall user

experience and easiness of use then its desktop counterpart. By providing all the tools

necessary for the target scenario (medical professional searching and analyzing the

contents of DICOM files), without the need of installing 3
rd

 party tools, the benefits of the

new web solution will be far greater versus of the old desktop solution.

3.1.1 Web Oriented Architecture

The new DicoogleWeb solution must be accessible to any web based client,

providing both DICOM search and data results while still maintaining the previous PACS

functionality. Since we are adopting the web architecture, new solutions could also,

besides providing data to clients, be implemented with new capabilities, removing the need

of external analysis tools on the clients’ devices for parsing and rendering the DICOM

information.

The new usage scenario will allow doctors and other medical personnel within a

medical institution, or even outside of said institution given that the new solution can be

made available to outside web clients, to access the PACS resources from any web enabled

system without any previous configuration of the client device. Moreover, since the new

graphical interface will be web based it will be significantly less taxing on the client

devices processing and/or rendering abilities, compared to the previous Java AWT + RMI

implementation, allowing lower grade (read cheap) smart-phones to still be able to fully

use DicoogleWeb.

Integrating a DICOM frame viewer into the solution would maximize the solutions

potential compared to the stand-alone desktop implementation, where each client needed a

DICOM viewer installed on their client system. This would allow any web enabled client,

with proper rendering capabilities, to not only display each medical study and inner

DICOM file information but also to display the medical images captured and archived in

said DICOM files, making DicoogleWeb a rather complete PACS and analysis system.

23

All these implementation requirements will greatly improve the medical staff

(doctors) usage experience, minimizing the amount of time spend loading distinct software

solutions, and thus maximizing diagnosis potentials, while still bringing costs down due to

the removal of purchase of external DICOM analysis tools. On the other hand, Dicoogle

has also been used by clinical researchers that have deployed the application in several

hospitals. Nevertheless, because it was a desktop application, it was complex to

disseminate Dicoogle among other researchers, and to have remote access from other

devices.

3.1.2 Search

Much like the desktop implementation, the new web-based solution must be able to

provide the same searching capabilities within the PACS system.

And given the new web architecture, this can also be provided in a way that would

allow other systems/solutions to query DicoogleWeb and use the returning results for other

analysis purposes. A REST based web API can then be created to support these

requirements. This REST interface will improve DicoogleWebs’ functionality, by

generalize the web interface, improving compatibility and scalability between component

and systems interactions.

Furthermore, providing web clients with a way to obtain and view the full list of

tags that are defined within a DICOM file hosted on the system is also needed. And like

the search results these can be made available in a way that other systems can request for

other analysis purposes.

Allowing users of the system to perform these searches in a interface that is similar

to the previous desktop implementation will also allow a smoother and easier, on the users,

transition from the old architecture to the new architectures.

24

3.1.3 DICOM File Transfer

Once again, like the previous desktop implementation, DicoogleWeb must be able

to serve the DICOM files hosted within its internal PACS to outside/requesting clients.

This will allow doctors to download each DICOM file and then use the external tools of

their liking to analyze said DICOM files, to copy the files onto a mobile media so it can be

shared with an offline (without access to DicoogleWeb) workstation, or to simply provide

a carbon-copy of said files to the patient.

Since file transfers over a web interface are pretty common nowadays this feature

can be easily implemented on the new system.

3.1.4 DICOM Frame Export

As mentioned before, if the new solution is to implement a DICOM viewer, a

method for retrieving the pixel information stored within an archived DICOM file must be

implemented.

The client can either request the complete file using the file transfer, or request just

the frames, of that file, that are of interest. Since medical studies can be very long and thus

the DICOM files also be very large in size, so fully transfer these files to the client will

take a considerable amount of time, even on a fast network. Not to mention that after-

wards the client would need external tools to parse and analyze the medical images

archived in the downloaded DICOM file.

Since a simple DICOM viewer is to be integrated in the new web solution,

providing a standard way for a client to obtain a certain requested frame from a specific

DICOM file can be of great value to the viewer implementation. This will also help

minimize the load on the client while also removing potential free hard-disk/RAM space or

processing power needed to parse the full DICOM file. Also if implemented correctly this

can also be used by external, although custom (designed for DicoogleWeb), viewing and

analysis tools that can request each DICOM frame as they please. A WADO alike interface

can be used for this purpose, maintaining compatibility with standard implementations.

25

3.1.5 Plugin Support

Dicoogle already has a plug-in development and supportive system. However, to

cope with the new web architecture, the internal Dicoogle plug-in system must be

revamped, removing RMI requirements and other minor issues with the previous

implementation.

Since now plug-ins cannot be transferred to client systems, like they used to be on

the previous implementation, extra functionality must be added in order to continue to

support the current functionality, while allowing extra functionality to still be added later

on.

One of the arising issues is how will each plug-ins’ internal settings be configured

through the new user interface (web). Without potential access to Java runtime libraries on

each client, mainly mobile devices users, the execution of plug-ins client-side is not

possible. So maintaining and running the plug-ins on the DicoogleWeb server, only, is

necessary, taking into account that their functionalities must still be available to system

clients.

Another issue is how will each plug-in access the new web GUI if it desires to

display information, this way, directly to the client/user. On the previous Dicoogle

solution, each plug-in had access to a dedicated portion of the user interface.

While replicating this window-based functionality, on the new solution, would partially

solve the issue, it would also create another one: the necessity for server-side event-based

user input validation and re-generation of the interface each time a user modifies a field on

the interface. This would create multiple AJAX calls that could, depending on the amount

of client using the interface at one time, potentially, overwhelm the server and introduce a

Denial of Service (DoS) effect.

An extra functionality that can be added to the plug-in system is the ability to

provide data directly via external HTTP requests (REST alike). This would allow

developers to write plug-ins that can extend DicoogleWebs functionality, like providing

statistical information or other analysis results, without any modification on either the

DicoogleWeb Core or SDK required.

26

3.1.6 User Authentication

Serving personal and sensitive medical information requires that only authorized

personnel can view and analyze said information.

The previous Dicoogle implementation already defines a simple whitelist/valid user

list and authentication system, which consisted of a manually registered list of user-names,

passwords and level of clearance of authorized users.

To maintain some compatibility and portability between the previous Dicoogle

version and the new one, it is possible to continue to use this list to authenticate web

users/clients requests that desire to access the PACS information or configuration. This

will continue to guarantee that unauthorized requests cannot access sensitive medical

information nor make changes to the system configuration.

3.1.7 User Roles

Unauthenticated users must not be able to access the medical information or system

configuration of the solution, and need to provide valid credentials before doing so.

Medical professionals should not have access to the solution configuration options,

only system administrators will be able to change those, avoiding erroneous

usage/configuration of the solution.

The previous Dicoogle solution already had the concept of user roles implemented

in it, so porting this to the new web solution will be pretty straight-forward, and will still

maintain the same usage scenario for each user group.

27

3.2 Non-functional Requirements

3.2.1 Mobile Clients Support

Since the new solution will be web-based and potentially accessible via WAN

(Wide Area Network), it would be of great value if medical professionals (doctors) or

system administrators could now access both the interface and its data "on the go" without

the need to find the nearest desktop computer. This will effectively remove the desktop

environment requirement from the solution.

Given the current specifications of most mobile devices (smart-phones and tablets),

the solution needs to cope with some of the constrains that these kind of computing devices

impose, like limited screen size, processing power and user input methods.

Other constrains on the mobile environment are which technologies are supported

by the mobile browser on each device and also the battery drain the solution will create on

these devices during its usage. For the former, the Google Android and Apple iOS

operative systems have "normalized" which technologies mobile browsers currently

support, with HTML5, being supported on at least Android v1.5 and iOS v3.2 [13].

As for the battery usage, maintaining the solution as JavaScript free as possible will

minimize the strain/load on the devices CPU allowing it to throttle most of the time, thus

saving battery time.

Focusing on the devices screen size, there are already some CSS and JavaScript

libraries that adapt and format the web interface according to the screen size of the device

it is being presented on (done client side, for each device). This will allow developers of

the solution to focus on the solution itself and not on the way it will be presented to the

user, while still maintaining usage compatibility with lower/bigger screen devices.

3.2.2 Security

Access to Dicoogle is not strictly bound to users within the same LAN (Local Area

Network), meaning that clients outside of the medical institution can access Dicoogle in

the same way as if they were inside the medical institution (if the institution network is

configured to allow this scenario of course). This creates the necessity of a secure

connection between the solution server and each client device, so no medical information

can be leaked or accessed by network sniffers.

28

The HTTP protocol already has a secure mode, HTTPS, which can protect the

clients’ connection by providing bi-directional encryption between each client and the

server. On HTTPS web clients can also validate if they are accessing the “real”

DicoogleWeb solution server, and not a fake/spoofed one, by validating the certificate

returned by the server.

These measures will effectively protect both server and clients against man-in-the-

middle attacks, like ARP and DNS spoofing or the sniffing capture of raw network data.

3.2.3 Performance

The new Dicoogle web architecture, while being substantially different from the

previous RMI one, must maintain on average the same, or lower, load during system usage

by web clients.

By maintaining server calls to a minimum and providing the ability of client-side

caching of resources, including medical data ones, the new web solution can minimize the

server load for the same amount of clients, compared with the previous Dicoogle version.

And if there’s an HTTP gateway (with caching enabled) deployed between web clients and

the server, the server load will also be minimized, when consuming medical data resources

(like downloading a DICOM file).

Moreover, since the previous solution provided no caching mechanisms, the

performance of the new Dicoogle solution should surpass the old solutions performance,

while conducting the same tasks. By providing a lowering the time spent by doctors

waiting for the solution/data to be ready, the new performance will surely be a strong point

of the new solution.

3.2.4 Web Standards

By using and supporting open web standards, a new level of compatibility between

Dicoogle and external clients and solutions can be achieved. The previous Dicoogle

solution, while fully supportive and compliant of the DICOM protocol which allowed it to

interact with other PACS, lacked a proper and open interface of interaction with outside

29

application/clients. This enforced the use of the only interface available for Dicoogle, the

desktop, Java RMI based, application.

Wanting the solution to remain as open as possible, allowing easy and standard

interaction with other applications and/clients, the use of open web standards will ensure,

at least from a developers point of view, that both the (Dicoogle) information and interface

its presented is easily accessible, retrievable and replaced if needed, by any requesting

client.

As mentioned above, at 3.2.1, client cross-browser compatibility is of high priority.

By using only open web standards, that are well defined and documented, being supported

by all major web browsers, it is possible to guarantee that any browser that supports the

HTML5 specification will retrieve, render and execute the solution as intended.

Given the current capabilities of the HTML5 specification, like the canvas tag

element that allows client-side programmatically driven rendering, and the JavaScript

abilities present on any web browser, it is possible to use only open web standards during

the development and on the resulting implementation of DicoogleWeb. This will remove

the need to 3
rd

 party client browser plug-ins to aid in processing and the display of the user

interface, making DicoogleWeb available to any HTML5 compliant browser/device.

One of the scenarios where web clients’ browser compatibility is needed will be

during the retrieval and rendering of DICOM frames from the server, since most DICOM

files have its frame data in either RAW or JPEG2000 format.

Both of these formats are not open web standards and thus are not supported by the

majority of the browsers, so server-side conversion of these formats, to one that can be

interpreted by all web browsers, must be done.

Two open-web candidate formats arise: JPEG and PNG. PNG was chosen to be the frame

delivery format since it provides pixel perfect (loss-less) conversion while still providing

average data compression to minimize network usage, compared to the lossy (partial

information lost) JPEG format. Another candidate format would be the JPEG-LS (loss-

less) format, which could have been chosen instead of PNG. JPEG-LS would provide

identical overall image compression and performance versus PNG, however, since the

PNG format is a completely open and patent free standard it was chosen as the de-facto

format (although some internal JPEG-LS algorithm parts are subject to patents, the

30

licensing of these patents are free [14], and are only relevant to implementations of the

compression/decompression algorithm).

3.2.5 All-in-one Solution

Much like the desktop implementation, this new web solution should be easily

deployed onto a medical institution. Meaning a self-contained server solution that requires

neither external applications nor previous configuration settings to be run, besides the Java

Run-time Environment (which is needed by any Java enabled application).

This feature will continue to allow small medical institutions, as well as larger

ones, to easily deploy the solution without the need for expensive dedicated hardware or

on-call IT personnel.

4 DicoogleWeb

In order to effectively port the current Dicoogle architecture to a web based one,

some architectural changes must be done, while retaining the essential features of the

system.

Maintaining the current PACS core implementation and building around it is one of

the objectives, removing RMI dependencies, effectively decoupling Dicoogle from any

final user interface.

4.1 Core Architecture

DicoogleWebs’ core architecture will be very similar to the previous Dicoogle core

architecture, although some important changes are in order, both to extend and improve the

architecture as-well as implementing the necessary changes for the new interface.

Retaining the full functionality of the previous embedded PACS core is a must.

Also, as the project moved on, new issues with concurrent sub-projects of Dicoogle

arose, so adding extra functionality, while keeping the new architecture generic enough to

avoid specialized interfaces, is one of the strongest points of the new architecture.

31

The new DicoogleWebs architecture is depicted, in figure 5, bellow:

Figure 5: DicoogleWeb architecture diagram.

 By keeping the previous Dicoogle core implementation mostly intact, and building

the new web interface and API around it, we effectively removed the RMI dependency

from the new DicoogleWeb interface.

The RMI interface will still be fully functional, but since it is now deprecated in

favor of the new web based interface, it is not the main development target anymore.

The “Dicoogle Web Services” element will now contain the web services API that

provide search results, DICOM files, plug-in data, configuration options, indexing core

information and control, and authorization information to outside system clients that want

to use the new REST API to interact with DicoogleWeb.

The “Web GUI” component will handle the presentation of DicoogleWeb

information and configuration onto a client web browser, by providing said information in

a user friendly series of web-page/HTML documents.

32

4.1.1 RMI

One of the objectives of the new platform was to effectively remove the RMI

dependency from Dicoogle. However, leaving the current RMI implementation in a

working state, and just remove the Dicoogle architecture/platform dependency from it, will

leave both communication interfaces fully functional.

This design will make the transition to the new architecture and interface much

easier on the medical professionals. Leaving the decision to change user interface to either

the system administrator, that can force either RMI or HTTP interfaces to be disabled or to

the doctors, which might be accustomed to the previous interface, to do the transition to the

leaner and user-friendlier web interface.

4.1.2 SDK

Being the skeletal structure that supports Dicoogle, the SDK must both cope and

support the new web architecture, while also improving functionality and compatibility

with other distinct Dicoogle sub-projects.

In a joint effort, with the remaining Dicoogle developers, several modifications and

improvements were made to the Dicoogle SDK. These changes were in place in order to

support the various Dicoogle sub-projects within the Dicoogle developing team(s), while

maintaining the SDK generic enough across different projects.

New plug-in interfaces were added to the SDK, further extending the plug-in

system functionality. From now, instead of all plug-ins being able to provide querying

capabilities if they please, there is a plug-in interface dedicated to querying/searching.

Another set of interfaces for requesting/providing access to the graphical interface,

providing data/information via HTTP were also added. The base plug-in interface, while

remaining basic enough, providing only basic information and command of/for any plug-

in, must be implemented/extended by any plug-in interface, including the noted above..

Given the HTTP interfaced plug-in, direct data/information export by plug-ins is

now, possible, for each plug-in that desires to do so.

Some extra changes were also made to the SDK, in order to allow for easy

development of DicoogleWeb plug-ins, by providing, in the new SDK itself, much of the

33

basic functionality and tools that most plug-ins would otherwise need to internally support,

like the management of their internal settings.

Al of these changes will help new developers to adopt the Dicoogle platform and

start (to help) developing for and improving the platform, since now it’s easier and faster

to develop plug-ins.

4.1.3 Plugins

Since from now on, Dicoogle plug-ins will not be transferred to the client systems’,

the system will accommodate only server-side plug-ins, while still being able to provide

said plug-ins functionality to DicoogleWeb clients.

Adding extra functionality to the plug-in system is also in order, and since now

there will be a new vector of communication from clients to plug-in via HTTP requests, an

API must be defined to provide all plug-ins with a common functionality of exporting

information/data via HTTP.

Another point of interest, is access to the new graphical user interface by plug-ins.

Previously, on the “old” (RMI interfaced) Dicoogle, plug-ins had exclusive access to their

own Java AWT JPanel, and were free to add and modify its content accordingly to their

needs. Mimicking this behavior on the new web-interface would require at the very least a

layer to translate AWT objects and their properties to HTML. An extra layer would then be

needed to provide post-back feedback for these web components in order to simulate and

process the actions triggered by each element event. This would also put an enormous

stress on the Dicoogle server, since it would have to cope with all the concurrent clients

post-back HTTP requests.

Now with HTML being the main target for a user interface, a system for mediating

the access by plug-ins to DicoogleWeb system HTML pages must be devised and

implemented. This must be implemented taking into account that there is an HTTP

connection between server and client, so there is no “direct” server access by the client,

meaning requests and responses will be delayed. Also, trying to maintain HTTP requests to

a minimum by the client side interface would be a positive point in favor of mobile

devices, from a both a network and battery standpoint.

34

An overhaul of the current plug-in system must be done, by changing both the SDK

logic part as-well as the core plug-in support system, in order to accommodate such

structural changes. Minimal changes must also be done to each plug-in currently provided

for Dicoogle, mainly minimal interface ones, in order to use them in the newer system

architecture.

4.1.3.1 Data Export and Retrieval

One of the major implementations that can revamp the Dicoogle plug-in system

resides in providing a way for a plug-in to make available, to any requesting web client, its

functionality. This would allow external web client applications to retrieve data directly

from each DicoogleWeb plug-in.

During the DicoogleWebs’ implementation, a group effort agreement, between

distinct Dicoogle developers and maintainers, was reached. This involved the ability to

provide each plug-in with its own “realm” within DicoogleWebs’ web environment. So by

allowing each plug-in to have its own HTTP end-point, DicoogleWeb external client

applications can consume information/data directly from each plug-in.

Extra functionality and compatibility can also be achieved by the new plug-in

system by allowing plug-is to provide, besides their data, a default XSLT schema that will

parse, organize and render the plug-ins returned data directly onto a user-friendly web-

page layout. Since modern web browsers possesses this capabilities, this can be done

completely on the client-side, saving precious server processing power while providing a

standard and decoupled way of presenting the data.

Each plug-in that requires this type of functionality will then be allowed to process

HTTP requests and create responses for its own end-point in like fashion:

Request and response 1 for data:

\plugin\<pluginname>\<plugindata>

Request and response 2 for XSLT (optional):

\plugin\<pluginname>\<plugindata>\xslt

35

Figure 6: Plug-in data export functionality diagram.

However, there are currently two concurrent data export implementations that need

to be completely merged, so a fully standard functionality still does not exist.

4.1.3.2 Access to GUI

Extra work is still being made to allow access to the web interface by Dicoogle

plug-ins, the current implementation uses an anchor based system, which allows plug-ins

to “inject” in place dynamic HTML code onto a previously exported location by the target

page. This is a simple yet very functional, to some extent, interface model.

Each DicoogleWeb web-page decides if it allows HTML code to be injected in it,

and on which locations. This is done by calling the include method of the

pt.ua.dicoogle.server.web.gui.CodeInjectionPoints.getInstance() object, for

each location where code can be injected. Note that each unique web-page location must

also have an unique identifier/name, or code will be injected into multiple places that share

the same identifier/name. Upon call of that core function, DicoogleWebs’ core will run

through all the initialized plug-ins that implement the SDK

pt.ua.dicoogle.sdk.web.gui.InjectsCode interface which indicates that this plug-in

36

wants access to the GUI, and ask for the code that it wants to inject on this location,

passing the location name and web-page context along to the plug-in. Each plug-in

CodeInjector object will then modify the web-page context and/or content as it pleases,

injecting in-place HTML code and/or changing HTTP headers, and afterwards, the web-

page can then be served to the requesting client.

Figure 6 exemplifies, in a simplistic manner, the interaction between Dicoogle and

plug-ins that want to inject code onto the requesting web page.

 Figure 6: Interaction between Dicoogle and plug-ins that want to inject code onto the requesting web page.

The upside to this implementation is that plug-ins can control the HTTP context of

each request/response and of the servlet, allowing, for instance, other authentication

methods to be implemented and deployed as plug-ins.

There are some downsides to this implementation, like if one of the plug-ins injects

a badly coded piece of HTML (with unclosed or invalid HTML element tags), the

remaining of the pages layout can disrupted. And if the target interface is not an HTML

browser, rendering of the plug-in injected HTML interface will not be possible.

The major issues with this implementation can be solved by creating a validation

and a translation layer, in-place before injecting the code onto the target page, which will

close or remove disruptive HTML elements. This layer can also translate the injected code

to the target graphical interface (for instance for a Java AWT interface there is no

translation to be done, since AWT internally supports HTML elements), removing the

requirement of an HTML interface.

37

4.2 Server-side Architecture

Like in the previous Dicoogle implementation, a server instance of DicoogleWeb is

still required to be running at all times. This instance will continue to handle both the inner

PACS core and the remaining Dicoogle functionality, with the addition of, now, also

providing an HTTP client serving interface to system clients, like doctors, who wish to

access and use DicoogleWeb.

The interoperability between Dicoogle and/or other PACS server instances is still

fully functional via the DICOM protocol.

Extra functionality required by other external systems can be provided by

DicoogleWeb via the HTTP protocol (web API requests).

4.2.1 Web Container

In order to serve HTML and other data types via the HTTP protocol, and since the

solution must follow the all-in-one scheme of operation, an embeddable Java HTTP web

container is required to serve web clients requests.

A list of available embeddable Java HTTP servers was compiled, comparing each

solution capabilities:

embeddable HTTPS JSP WAR JAVA version

TJWS yes yes yes yes 1.2+ (optimized for 1.7)

HttpdBase4J yes yes no no 1.6+

NanoHTTPD yes no no no 1.1+

jetty yes yes yes yes 1.6+

Table 9: Comparing available embeddable Java Web Servers.

Since we are going to serve sensitive and private medical information, the server

must support the enabling of a secure HTTP connection.

A server that supports the serving of dynamically generated web pages would be of

greater value, since it allows DicoogleWeb to act and response differently to every web

client request. And since only two of the solutions support JSP (Java Server Pages), which

allows programmers to easily create dynamic web content, the above requirements,

between the two JETTY was chosen, since it is a more mature and widely known solution.

38

Another point of interest of the chosen framework, versus a regular Java REST

system, is the default support for HTTP sessions, meaning that it is not possible to hijack

or bypass the web interface authentication system (unless due to programming error), thus

granting extra security to the system, which is key when dealing with sensitive medical

information and data.

4.2.2 Dynamic Content

Since most of the content will be generated during server run-time at a per-request

basis, it was chosen to use a web container that supports Java Server Pages.

This technology, while not very common within the more commercial web environment

versus the more widely known Microsoft ASP technology, still manages to both provide

the functionalities that REST-alike web containers provide, while still greatly improving

developer easiness and usability by allowing them to easily create a dynamic response

content.

Taking this approach for web-page generation will create an extra load on the

server for each request received. But since dynamic pages are pre-compiled before being

served by the container, this extra load on the server is marginally low compared to the

benefits provided to developers of/to the platform.

Decoupling the request processing and response content generation layer from the

response content presentation layer, completely separating the two, will transform this

architecture into a more Model-View-Controller (MVC) alike one. This provides, not only

a cleaner code base, but will also help in the development process, where DicoogleWeb

developers might need to debug, server-side, the response code generator for a specific

page.

There are already some custom MVC Java libraries that could provide this type of

functionality, like the Spring Framework [15], but this functionality can be implemented

without the use of external libraries, removing potential JDK and other requirements.

Which will also help to keep DicoogleWebs’ deployment solution size as low as possible.

39

4.2.3 Data Retrieval
Given the new web architecture, an opportunity to create a Web API, that external

applications can use, arises. This will improve DicoogleWebs’ interoperability with other

solutions that might want to retrieve/consume data/information from DicoogleWeb and/or

its inner PACS core.

The embedded client interface for querying the system (search) is already, for the

most part, consuming medical information and data via a custom web API. Improving this

API and allowing external applications/systems to use it can prove to be one of the new

architectures vantage points.

This new web API can also replace the incomplete WADO interface from the

previous Dicoogle version, as-well as extending its functionality.

4.2.3.1 Web Services

Instead of relying on a custom protocol for querying and accessing DicooglesWeb

information and data, the new solution will provide web services, with a well defined API

and standardized protocol, for this purpose.

Implementing said web services, will improve the usability level of the new

DicoogleWebs’ architecture, since now, in the web environment, each client application

(to DicoogleWeb) can easily implement a small logic layer on-top of their client solution

that will allow it to query and obtain data from DicoogleWeb.

This guarantees a high level of interoperability between additional client systems,

as-well as re-usability, since the DicoogleWeb client interface, itself, can make use of said

web services to query for information and obtain data from.

4.2.3.2 Search

The search results, like the previous implementation, will be provided to system

clients in the same fashion of the previous Dicoogle implementation. This means the

system can be queried using the same criteria of the desktop implementation, so a simple

search and advanced search must be implemented.

40

This search interface differentiation was kept in working order since it is a proven

search method that has previously aided the usage of Dicoogle by medical professionals.

For the simple search, there are only two query parameters: the query string itself

and a keywords flag.

The keywords flag notifies Dicoogle of the existence of specific keywords within

the input query string, allowing for faster specialized queries to be made by advanced

system users. If the keywords flag is not set, then the input query string will be treated as

simple text, and a full-text database search will be performed, returning any DICOM file or

study indexed information where at least one of the indexed fields matches the query

string.

As for the advanced search method, it will be used to obtain very specific search

results, that must match on all the criteria defined. An extensible array of fields indicates

which criteria will be used to query the system:

Figure 8: Available fields in the advanced search mode.

These specific fields will greatly improve the search to results, by allowing the

medical professional to filter possible unwanted search results.

Besides presenting the search results in the user friendly web interface, both search

methods are also available for use to external applications via a web service. Accessing

this search web service can be made using the following query schema API:

URI:

/search

41

Parameters:

Name Accepted Values Required and

Default Value

Validity Remarks

method "default", "advanced" Optional,

"default"

Always Searching Method

query * Optional, Empty Always Search Query String

keywords "on", "off" Optional, "off" If method = "default" If the search query should be parsed
taking into account that it might have

potential search keywords

patientName * Optional, Empty If method =

"advanced"

(Part of) The Patient Name

patientID * Optional, Empty If method =

"advanced"

Patient ID

patientGender "all", "male", "female" Optional, "all" If method =

"advanced"

Patient Gender

institutionName * Optional, Empty If method =

"advanced"

Institution Name

physician * Optional, Empty If method =

"advanced"

Physician

operatorName * Optional, Empty If method =

"advanced"

Operator Name

studyDate "exact", "range" Required, "exact" If method =
"advanced"

If the study date should be parsed as
an exact or a ranged date

exactDate date in yyyyMMdd
format, where yyyy is

the year, MM the

month and dd the day

Optional, Empty If method =
"advanced" and

studyDate = "exact"

Exact study date

fromDate "on", "off" Optional, "off" If method =
"advanced" and

studyDate = "range"

Use startDate value in the study date
range?

toDate "on", "off" Optional, "off" If method =
"advanced" and

studyDate = "range"

Use endDate value in the study date
range?

startDate date in "yyyyMMdd"

format, where yyyy is

the year, MM the

month and dd the day

Optional, Empty If method =

"advanced" and

studyDate = "range"

and fromDate = "on"

Study date range start

endDate date in "yyyyMMdd"

format, where yyyy is

the year, MM the

month and dd the day

Optional, Empty If method =

"advanced" and

studyDate = "range"

and toDate = "on"

Study date range end

modCR "on", "off" Optional, "off" If method =

"advanced"

If CR modality studies should be

included in the results

modMG "on", "off" Optional, "off" If method =
"advanced"

If MG modality studies should be
included in the results

modPT "on", "off" Optional, "off" If method =
"advanced"

If PT modality studies should be
included in the results

modXA "on", "off" Optional, "off" If method =
"advanced"

If XA modality studies should be
included in the results

42

modES "on", "off" Optional, "off" If method =

"advanced"

If ES modality studies should be

included in the results

modCT "on", "off" Optional, "off" If method =

"advanced"

If CT modality studies should be

included in the results

modMR "on", "off" Optional, "off" If method =
"advanced"

If MR modality studies should be
included in the results

modRF "on", "off" Optional, "off" If method =
"advanced"

If RF modality studies should be
included in the results

modUS "on", "off" Optional, "off" If method =
"advanced"

If US modality studies should be
included in the results

modDX "on", "off" Optional, "off" If method =

"advanced"

If DX modality studies should be

included in the results

modNM "on", "off" Optional, "off" If method =

"advanced"

If NM modality studies should be

included in the results

modSC "on", "off" Optional, "off" If method =

"advanced"

If SC modality studies should be

included in the results

modOT "on", "off" Optional, "off" If method =

"advanced"

If OT modality studies should be

included in the results

modOthers "on", "off" Optional, "off" If method =

"advanced"

If Other modality studies should be

included in the results

Table 10: Advanced search API request parameters definition.

Usage examples:

• Simple search for all search results currently indexed:

/search

• Advanced search for only CR modalities of Patients named António Novo:

/search?method=advanced&patientName=Antonio&modCR=on

When the server-side database search is finished, the results are re-arranged and

embedded into a XML document that will contain specific information about each search

result. This XML document is then returned to the querying client via the web service

response.

The XML format was chosen since it is an open standard for textual data transfers

between web services, and all browsers support their parsing without the need of external

libraries.

Bellow is the DTD schema containing information about the XML document

contents and data format:

43

Figure 9: DTD schema of the search results API response.

Note that the current external API returns a small amount of information about each

DICOM result, compared to the JSP (web-page) version of the search results. This is by

design, since the remaining information can be queried, on a per result basis, if need by the

external API requesting application.

4.2.3.3 Tags

Each DICOM file contains a list of tags, defined and present on the DICOM file

format specification on PS 3.10 [3], that contains all the relevant information about the

patient, which medical exam was the origin of said file and other relevant information

about the file itself and its contents. It is this information that Dicoogle uses to index each

file within its PACS core.

A doctor might require this extra information to further analyze a search result

and/or before providing a diagnosis to the patient, for instance. But, since some medical

studies/files can be very large in size, it would be better to provide a way, for system

clients, to obtain each DICOM file list of tags, without forcing the clients to fully

download each DICOM file so they can just analyze their tags.

Since the SOPInstanceUID is a globally unique identifier for each DICOM file,

these requests can be made using only this identifier as a parameter to signal DicoogleWeb

44

of the target DICOM file. The value of this parameter can be obtained via each search

results, which is the main premise scenario for these requests. These values and their

functionality will be transparent to typical system users (doctors) since all the functionality

will be provided automatically for each file by the interface, without the user having to

know or enter said parameter values.

Once again, this functionality is available as a web service and can be queried in

like fashion:

URI:

/dictags

Parameters:

Name Accepted Values Required and

Default Value

Validity Remarks

SOPInstanceUID * Required Always The unique identifier of a DICOM file

Table 11: DICOM tags API request parameters definition.

Usage example:

• Return all the tags of the DICOM file A0000000, from patient António Novo:

/dictags?SOPInstanceUID=1.2.392.200036.9107.500.305.691

8.20130326.102128.187.106918

The tags contained on the desired file will then be embedded onto a XML

document and returned to the requesting client via the web services response.

Depicted bellow is the schema information about the XML document contents and

data format:

Figure 10: DTD schema of the DICOM tags API response.

45

4.2.3.4 Frames

As mentioned before, at 3.1.4, not all web clients will have the processing power

needed to promptly parse a DICOM file inner images/frames, making the embedded client

side viewer unresponsive and even unavailable on entry-level smart-phones, due to having

to download and parse the whole DICOM file before rendering.

Furthermore, given the new web architecture, it makes sense to provide such image

data in a open and standard way that can be easily retrieved, parsed (sometimes processed)

and presented to the medical professionals on any device and/or internet browser.

Given these facts, and since most images inside a DICOM file are encoded either

using RAW or JPEG2000 format, both not open web standards and thus unavailable on

most browsers, server side conversion of said frames must be performed before returning it

to the requesting client. And like depicted earlier, at 3.2.4, the PNG image format was

chosen to carry each frames data.

DicoogleWeb will provide these DICOM frames, once again, using a web service

that can also be queried by external systems. Said web service can be queried using this

format:

URI:

/dic2png

Parameters:

Name Accepted Values Required and

Default Value

Validity Remarks

SOPInstanceUID * Required Always The unique identifier of a DICOM file

frame Integer value >= 0 Optional, 0 Always Required frame index within the
selected DICOM file

Table 12: DICOM frame API request parameters definition.

Usage example:

• Get the first, and only frame, on the DICOM file A0000000, from patient António

Novo:

/dic2png?SOPInstanceUID=1.2.392.200036.9107.500.305.691

8.20130326.102128.187.106918

46

• Get the 5
th

 frame from the DICOM file 6.dcm, from patient Camilo Rocha:

/dic2png?SOPInstanceUID=1.3.12.2.1107.5.4.5.35017.4.0.4

94841222911107.512&frame=4

Like the requesting of DICOM Tags, at 4.2.3.3 the SOPInstanceUID parameter,

obtained from a previous search result, is used to uniquely identify the target DICOM file.

The desired frame is then converted to the PNG format and returned to the

requesting client via the web service response.

This web service, simplifies the implementation of both dedicated desktop DICOM

viewers as-well as 3
rd

 party external DICOM viewers, without the clients having to

download each DICOM file just to view the more relevant frames to the diagnosis,

reducing the time the doctor will have to wait before the DICOM frame is presented on

screen.

4.2.3.5 DICOM Files

Like the previous Dicoogle implementation, DICOM files archived within the

internal PACS core, can also be retrieved. Although from now on, instead of relying on a

custom file transfer protocol, the files will be transferred via the HTTP protocol.

Parallel download of multiple files are possible. Also the system user (a medical

professional like a doctor) can continue to use DicoogleWeb normally while the files are

being downloaded by the browser, performing searches, for instance. And when the

download finished, the client will have a copy of the original desired DICOM file that is

archived within the DicoogleWeb PACS.

Requests for this kind of data can be done via the new Web API, using the

following request schema:

URI:

/dcmfile

47

Parameters:

Name Accepted Values Required and

Default Value

Validity Remarks

SOPInstanceUID * Required Always The unique identifier of a DICOM file

Table 13: DICOM file API request parameters definition.

Usage example:

• Download the DICOM file A0000000, from patient António Novo:

/dcmfile?SOPInstanceUID=1.2.392.200036.9107.500.305.691

8.20130326.102128.187.106918

Once again, like the requesting of DICOM Tags, at 4.2.3.3, the SOPInstanceUID

parameter, obtained from a previous search result, is enough to uniquely identify the target

DICOM file.

4.2.4 Configuration

The DicoogleWeb core, as-well as the DicoogleWeb plug-ins, need to retain and

save its internal configuration options, for use between system restarts.

On the previous Dicoogle implementation, only the core settings were saved on the

server, the remaining configuration options, like plug-ins and Dicoogle interface options,

were save on the client computer. But, since the new architecture is aiming at an open and

standard web environment, this means that no Dicoogle plug-ins will be downloaded by

web clients (removing the requirement of Java Web Run-time plug-ins on the client

browser).

Storing the configuration options in a HTTP cookie manner, persisting during

HTTP sessions for each authenticated user, would provide a simple and very similar

structure to the previous Dicoogle versions way of storing plug-in settings, in a per-client

manner. But since DicoogleWeb plug-ins settings and execution will be running solely on

the DicoogleWeb server, at all times, it invalidates the option of storing configuration

options on HTTP cookie form.

48

The other option will be to allow the web interface to access, list and allow users to

input and set values for each configuration option of each plug-in and DicoogleWeb

setting. Although this option is beneficial for the system, by normalizing the current

configuration and interface options, it also carries some implementation problems.

Since the new DicoogleWeb architecture relies on the standard HTTP request and

response protocol, the semantic information of each plug-in setting, like name and data-

type, must be known throughout the HTTP data exchange process between DicoogleWeb

server and web client. And because the Dicoogle core does not know every specific detail,

and allowed values for each setting which are bound to each plug-ins setting, the trouble of

how to parse, set-up and store each plug-in configuration on the server arises.

So a fitting and easily expandable system for managing settings, parsing and

rendering them in a user friendly interface with enough semantic information so system

users can understand each settings purpose, was devised.

A few components make up this system:

• a translation layer (both from Java class to HTML form input element and

from request query parameters to java class object);

• a dynamic page, for each plug-in, that will displaying an HTML form with

input elements, one or more per setting, properly converted and rendered

from their original Java class;

• a web service that will receive a plug-in or service name and a list of setting

names and their new values and applies them as current settings, while also

saving them for further use after server restart;

The DicoogleWeb SDK was also changed, like mentioned at 4.1, in order to, while

still providing all the previous functionality, guarantee that the new web interface could

handle serving, configuring and storing the plug-ins configuration options, leaving the

actual value range of each setting to be validated by the plug-in.

By parsing each Dicoogle plug-in or Dicoogle core/interface setting according to

data type (Java class) the interface is then capable of creating HTML form input elements

that will allow an authorized system administrator to configure each setting, while still

49

providing semantic value on the graphical interface about each of the settings, be it name,

value type and/or range and some help (where needed).

Java Class HTML Input Element Representation

Boolean <input type=”checkbox” />

Integer <input type=”number” />

Float <input type=”number” />

String <input type=”text” />

Object <input type=”text” />

Table 14: Java class to HTML element translation.

More complex data types (Java classes) or custom ones, will however require that

extra information is passed onto DicoogleWeb by the plug-in or setting, in order to

correctly parse the setting information onto a valid HTML form input element(s). A

generic data type, that can be superseded, was created, as-well as a couple of other

pertaining setting data types that were required during the implementation of the new

architecture:

Custom Java Class HTML Input Element Representation

RangeInteger <input type=”range” />

ComboBox <select><option />…</select>

CheckBoxWithHint <label><input type=”checkbox” /></label>

ServerDirectoryPath <select /><input type=”text” />

Table 15: Custom Java class to HTML element translation.

These are the most relevant custom data types implemented to aid in the

development and support of the new web interface.

Extra attention should be pointed at the ServerDirectoryPath one, that allows the

user to remotely browse all the directories (available, accordingly to the running server

system policy) and select one. This is done via consecutive AJAX requests, to the

DicoogleWeb Indexer web-service, upon user selection of a new directory to retrieve its

contents from the server. There was already a standard HTML element for browsing and

selecting a folder in an HTML interface, however it is local to the client workstation.

The Indexer web-service is one of the instances that will accept and apply supplied

requests for configuration. It also allows, as the name implies, the monitoring and

modification of the internal DicoogleWeb DICOM file indexer.

It can be queried/commanded by using the following interface:

50

URI:

/indexer

Parameters:

Name Accepted Values Required and

Default Value

Validity Remarks

action “start”, “stop”, “status”,

“pathcontents”

Required Always Which action is being request

path * Required If action =

“pathcontents”

The path which we want to get the

contents of

Table 16: DicoogleWeb indexer control API request parameters definition.

Usage example:

• Getting the indexer state and percentage of completion:

/indexer?action=status

• Get the contents of the server local directory D:\DCM_Files\:

/indexer?action=pathcontents&path=D%3A%5CDCM_Files

Both these requests, unlike the requests for starting or stopping the indexer, will

return a XML document with content relevant to the request made. Here is the schema of

both action example requests, respectively:

Figure 11: DTD schema of the DicoogleWeb indexer status API response.

Figure 12: DTD schema of the DicoogleWeb indexer directory contents API response.

51

Despite all this backing and forth, parsing, validating and converting data-types of

each settings’ value during the HTTP request and response calls from the client and the

server, which can create a small amount of load on the server, the predicted amount of

times the configuration options will be accessed and changed are minimal during the run-

time of the server in a medical institution, so this extra load on the server can be safely

overlooked.

4.3 Client-less Solution

Unlike the previous Dicoogle version, the new DicoogleWeb architecture will

require no standalone client side implementation to be deployed (installed) on the client

systems. The graphical interface needed to use DicoogleWeb is supplied via HTTP in the

form of a series of HTML5 documents, and can be retrieved, parsed and rendered almost

instantly, by the client web browser, whenever a client visits a DicoogleWeb web-page.

This new interface guarantees that the system can be used by any client computing

system, independently of client-side architecture or installed software, requiring only a

network interface that can reach the DicoogleWeb server and a standards compliant web

browser.

4.3.1 HTML

Most modern browsers support up to version 5 of the HTML standard. This, still

new, version of the HTML standard adds extra extensions to the HTML document model,

versus the “old” version 4 of the standard. These new extensions allow the DicoogleWeb

server to safely offload some parsing and rendering tasks to clients’ browsers, while still

maintaining full compatibility between concurrent web browsers. And since the HTML

standard is cumulative, new HTML versions will still support older versions, meaning

newer versions of the standard will still support the current DicoogleWeb HTML client

interface implementation.

The HTML user interface can also be easily customized to meet medical

professionals’ requirements or implement needed features without creating extra load on

the server since all the parsing and rendering of the interface will be done client-side.

52

4.3.2 Mobile GUI

One of the objectives of this new interface is to support client mobile devices. This

will allow doctors and other medical professional, as-well as system administrators, to use

available smart-phones, for instance, to browse and use DicoogleWeb, without the need of

a typical desktop computer like in the previous implementation.

Most mobile devices, like smart-phones, lack in screen size. Also the typical smart-

phone screen resolution is still a lot lower than the desktop system counter parts, which

would require constant zooming-in/out by the medical professionals when using the

interface in a mobile device.

Including the Bootstrap CSS library in the implementation helped solve this issue

with the interface. Being only CSS based, with a few optional JavaScript additions, it is

client architecture independent, and thus imposes no limitation to the current solution.

With minor changes, adapting the web interface/layout to properly accommodate the

Bootstrap CSS library, the web interface now supports both lower and big screen

resolutions, adapting itself, client-side, according to the client system screen resolution.

Using the Bootstrap CSS library has also increased the coherence level across the

whole web interface, by providing similar layout across distinct pages, effectively

improving the system usability by medical professionals.

Here are a series of screen-shots of the same web-page across various screen sizes:

Figure 13: DicoogleWeb search web-page layout on a large screen.

53

Figure 14: DicoogleWeb search web-page layout on a small screen.

4.3.3 Viewer

A DICOM frame viewer was implemented and integrated within DicoogleWeb.

But, since a concurrent, more complete and complex DICOM viewer implementation, was

already being implemented by another platform developer, the decision to implement only

a simple/example yet functional viewer was made. Later on, the concurrent viewer

implementation can easily be merged with DicoogleWeb without requiring many changes

being made on the merged viewer.

In order to implement this viewer, there is the need to assess how would the client

workstations retrieve and view the DICOM frame/images information.

There is a multitude of web standards, that all major browsers support, that can

help accomplish this feature. For instance, using the HTML5 File API would make

possible the implementation of a web interface with the same behavior of the current

Dicoogle desktop application, meaning that all the parsing and displaying of the DICOM

file would be done by the client workstations, after downloading the DICOM file.

54

Without wanting to emulate the Dicoogle desktop application, where the client

workstation retrieves the DICOM file that contains the desired information and then

analysis and views its contents using 3
rd

 party tools, a complete embedded web-based

solution must implemented and integrated within the DicoogleWeb solution.

One of the target platforms of the web interface are mobile devices, this would

enable doctors to still view medical information without having to be near a regular

desktop PC. The viewer must, then, be as light and less taxing on mobile devices as

possible. So a web-interface to serve all the meta-data and also all the pixel information

(images) present on a DICOM file was implemented.

Since each DICOM file already has a unique identifiable ID, the SOP Instance

UID, the interface can use this value to uniquely identifying each file over client and server

requests and responses. This is very useful because with just an extra parameter, the Frame

Number, a web client can request all the pixel information present on a DICOM file in a

frame-by-frame series of requests.

Wanting to remain open to web standards, instead of serving the pixel information

in the DICOM file, which can be in various formats (including JPEG, JPEG 2000 and

RAW and RLE compresses RAW), directly to the client, a server-side conversion of said

information is being made to one standard image file format: PNG (Portable Network

Graphics). This file/image format is not only open but also a standard in web, and

guarantees loss-less (pixel perfect, without information losses) image conversion between

the DICOM frames pixel information and the resulting PNG image. And as an added

bonus it also implements image compression, so image transfers, between server and

client, tax the network less.

Most of these features are already implemented on the new Web API, so the

Viewer interface will re-use it in order to retrieve all of the required data by the viewer.

As for the client side displaying of DICOM files pixel information, there are a

couple of ways of doing so in a web interface, without requiring external browser plug-ins:

• creating an HTML IMG element on the viewer page for each frame in the

DICOM file and loop though them by using JavaScript on the client side;

• creating an HTML5 CANVAS element on the viewer page that will display

any pixel information;

• creating a WebGL HTML element on the viewer page that will display any

2D/3D information;

55

Wanting to emulate some of the major functionalities that 3
rd

 party DICOM

viewers provide, like changing the brightness or contrast of the displayed images, that the

use of plain HTML IMG elements would not provide, the WebGL or Canvas element must

be used in the viewer implementation.

Despite most mobile devices and browsers having the ability to properly display

and use a WebGL HTML element, some desktop browsers do not support it. Also WebGL

can be very taxing on a mobile device, due to the OpenGL GPU (Graphics Processing

Unit) load necessary to display this HTML element. So the HTML5 Canvas element was

used for the current web implementation of the viewer.

The current viewer was designed to view the contents of a DicoogleWeb indexed

DICOM file, be it just a single frame or a set of frames. It features a small list of

capabilities, implemented mainly for a usage example of the new DicoogleWeb

architecture and web API.

Among these features, is, of-course, the ability to view the set of frames included in

a DicoogleWeb indexed DICOM file, and playing them at the right rate (recording rate), if

needed. It is also possible to view, in a user friendly fashion, the list of tags contained on

the current DICOM file.

Below is a screen-shot of the current viewer implementation:

Figure 15: DicoogleWeb embedded DICOM frame viewer web-page.

56

5 Results

In this section, the resulting software solution, DicoogleWeb, will be discussed.

Some comparassion with the previous solution will also be made, both in terms of

architectural designing and on a performance basis.

5.1 Overall Solution

One of the most advantageous features of the new web-interface is, and since

modern browsers have adopted and support the concept of tabbed browsing, that a medical

professional, like a doctor, can be analyzing multiple resources at the same time, without

having to close each to conduct a new search on the system and/or analyze other resource,

losing the previously collected information. This will greatly improve the usability of the

system by doctors, reducing the time spent loading back to previous resources or

information and reducing extra load on the DicoogleWeb server.

The ability to use the solution on any web-enabled device (with HTML5 support)

and since it is a complete solution (PACS + Search + Viewer) will greatly aid medical

personnel on their diagnosis by providing all the tools necessary to do so (for free), not to

mention the faster system response time compared to other standalone solutions.

5.2 Performance

Besides easiness of use, the performance and response time of the DicoogleWeb

server will contribute immensely for a positive medical professional usage, during periods

of high system usage.

Since, in the new DicoogleWeb architecture, both the RMI interface and the Web

interface are fully functional, a performance comparison of the two can be conducted. The

performance information, presented in this segment, was collected on a wired full-duplex

100Mbps cable network consisting of two, connected, computer systems:

• DicoogleWeb server:

CPU: AMD Athlon Neo MV-40 – 1 Core - 1 Thread @ 1.6GHz

RAM: 2GB DDR2 @ 333MHz CL5 – Single Channel

OS: Windows 7 Home Premium SP1

JRE: build 1.7.0-b147

PACS index size: 11 DICOM files - 34MB

57

• DicoogleWeb client:

CPU: Intel Pentium 4 650 – 1 Core – 2 Threads @ 3.74GHz

RAM: 2GB DDR2 @ 294MHz CL3 – Dual Channel

OS: Windows XP SP2

JRE: build 1.7.0_10-b18

Web Browser: Firefox v22.0 beta

5.2.1 Search

The search performance results were gathered by conducting the same “Default

search” query of “Novo” (un-key-worded) over the two interfaces: RMI and Web

interface. And the server response times, taken to conduct each search, were logged.

The search, independently of the interface used, will return two matches for one

patient. Each interface tests were done in a streaming (continued and consecutive) manner,

with server and client restarts between interface changes. Here are the results:

Figure 16: Comparison of RMI and Web interfaces performance during consecutive searches.

As expected, the searches performed using the web environment provide, on

average, an 80% reduction in the time spend by the server conducting the search and

returning the results to the client. This is mainly due to the removal of the RMI overhead

on the connection between client and server.

58

5.2.2 Viewer

Since the previous version of Dicoogle didn’t provide any DICOM viewer

capabilities, the two cannot be directly compared.

However, the time spent by the client waiting for the Viewer session to be ready,

meaning time taken for DICOM file frames and tags to download, parse and rendering, can

be measured. Here are the results for the same 3.1MB “A0000000” DICOM file,

containing one shoulder X-Ray frame of patient António Novo:

Figure 17: Detailed Web interface performance during the setup of consecutive viewer sessions.

Figure 17 depicts the various stages/procedures of mounting a viewer session and

the time spent by the client retrieving, and the system serving, each one. While these

stages progression is completely transparent to the user, the time spent processing each

can greatly impact the user experience.

When a user requests for a viewer session, of a DICOM file, the first information

retrieved from the server is the web page, “Page” on figure 17. This includes the HTML

file, its CSS and all the linked JavaScript needed by the solution to provide a functional

and user friendly DICOM viewer.

The second stage of this procedure is the request of the DICOM tags of the target

DICOM file, Tags on figure 17. These tags hold pertaining information about which

patient and medical study/series the DICOM file that will be analyzed belongs to.

59

Information about the DICOM file internal structure, like number of DICOM frames, can

also be retrieved by analyzing the DICOM tags of said file.

The last, and the most taxing stage of a viewer session, is the retrieval of the frames

of the DICOM file being analyzed, Frames on figure 17. The client browser will request

as many frames as available on the DICOM file, dictated by the DICOM tags obtained

before, so that the doctor conducting the analysis can view and analyze each one that is

relevant to the diagnosis. The time spent by this stage is the sum of the time that takes the

server to retrieve, convert and then serve, to the client, each DICOM frame of the

DICOM file being analyzed.

While the first request for a viewer session might take more than a second, time

spent by the server retrieving, converting and returning the requested DICOM frame, the

consecutive calls for the same viewer session will take a significantly less amount of time

to setup. This is mainly due to some optimizations made during the development of the

solution (see 5.3), which allows the server and client-side caching of some resources,

thus reducing greatly the time clients spent obtaining resources from the server.

Also, for DICOM files that contain more than one frame, it is now possible for the

doctor to start analyzing frames that have already arrived, from the DicoogleWeb server

to the doctor browser viewer session, before all of the frames have been converted and

served. This is an improvement versus the old solution where doctors needed to wait

before the complete DICOM file was downloaded from DicoogleWeb before they could

conduct the analysis of said file.

5.2.3 DICOM File Transfer

Once again, both solutions continue to support raw DICOM file transfers from

server to client, allowing doctors to download pertaining DICOM files in order to further

analyze them onto another, more specialized, DICOM viewer, or to simply share them with

another, unconnected, workstation.

The next picture, figure 18, presents a comparison of both interfaces performance

in this area during consecutive file transfers:

60

Figure 18: Comparison of RMI and Web interfaces performance during consecutive file transfers.

The, now deprecated, RMI interface still provides better performance in this area,

due to the transfer of raw data packets across the network, without the HTTP protocol

overhead of the web interface. Still, with only 20% less performance on average compared

to the RMI interface, the web solution performance is well within the targeted performance

for the new architecture.

This usage scenario, downloading DICOM files, will now be much less relevant on

the new architecture than it was on the previous one, since now doctors will have the

ability to analyze each DICOM file, by using the embedded DICOM viewer, without

having to download it. This will provide a better overall performance and experience to

system users (doctors).

5.2.4 GUI

One of the strongest points in favor of the web-based GUI is the openness of the

interface, allowing the user to carbon-copy the data rendered on the interface. This was not

possible on the previous interface, and can be very useful to medical staff, due to rather

large DICOM tag values or patient information that might be needed as input values on

other interfaces.

Another positive point is the readiness of said interface, which can be loaded, by

each client, much faster than the previous desktop RMI interface.

This new web interface also allows external applications/tools to include the

DicoogleWeb interface easily within their own interface. Be it a standard desktop or web

61

application, simply including a web-frame pointing to the DicoogleWeb server is sufficient

to provide the full functionality of DicoogleWeb to clients.

5.3 Improvements

Given the current openness of the new platform, some improvements were, easily,

added to the DicoogleWebs’ implementation, that will greatly improve not only system

usability but also decrease server load during high system usage. These will be discussed

on the next points.

5.3.1 Frame Caching
Multiple doctors can be requesting and analyzing the same DICOM frames. This

can happen, for instance, during a cooperative video call between doctors where they

compare notes on the same frames. This will create multiple requests and image

conversions for these same frames.

Since each DICOM frame that gets requested from the DicoogleWeb server must

be first retrieved from the file, then converted to PNG and sent to the client, this creates a

lot of stress on the server. Creating a simple caching mechanism that will keep recently

converted DICOM frames, in a temporary disc folder, will greatly help the system by

eliminating unnecessary and repeated DICOM frame conversions.

The current implementation of the server local caching of converted frames, will

keep these served frames for a maximum non-usage period of time, thus decreasing the

load put on the server during same study access by multiple clients/doctors.

5.3.2 Minimalistic JavaScript

Given JavaScripts’ run-time evaluation and execution, its execution can be very

taxing on client systems, especially mobile devices.

By keeping JavaScript code, and subsequent use of JavaScript libraries, like

jQuery, to a minimum, relying on native browser capabilities and support whenever

possible, we can minimize the loading times and reduce the stress that mobile devices will

be put under when using the DicoogleWeb interface.

62

While this might add a small extra load on the server while creating some specific

interface web pages, this will also greatly improve the overall user experience on mobile

devices, by allowing almost instant page rendering and a lag-free user interface, as well as

better battery life.

5.3.3 HTTP Caching

The HTTP protocol documents and supports client-side caching of previous server

responses, allowing this data to be used by the client on future request copies, without the

need to re-download the same data from the server.

Since most modern browsers are able to keep static content cached client-side, a

small logic layers was implemented on some of the DicoogleWeb services, mainly the

resource export ones, which will allow this data to be cached and managed client-side

on/by each client browser, improving DicoogleWebs’ response when a client re-requests

the same data or information.

Also, since neither DICOM frames nor tags, within the same DICOM files, will be

changed once they are archived within DocoogleWebs’ embedded PACS core, this data,

once returned to the client that requests it, can be cached client-side for future use.

An extra logic layer, that provides extra browser support while still maintaining full

HTTP protocol compatibility, was then added on the DICOM frame and tags web services

of DicoogleWeb. This layer will allow each web service to correctly process and response

browsers HTTP HEAD requests for resource changes. Making the DicoogleWeb server

client-side caching aware and allowing client browsers to cache said the returned

information, if they please.

Unfortunately, since new DICOM files keep will entering the system, this same

logic layer can't be directly linked to the search results web service, since caching these

results can potentially void the ability of web clients to obtain all the valid search results

for each query. Still, with a few modifications to the DICOM indexing mechanism, by

creating a simple flag that will indicate when was the last file indexed, this caching

problem can be bypassed, and thus allowing web clients to parse, for a finite amount of

time, search results. As long as no new DICOM data enters the indexing mechanism, the

system can assure that the clients cached search results will still be valid, until another

63

DICOM file is indexed by the server (this can be accomplished by adding the HTTP

HEADER directive “Cache-Control: must-revalidate” to each search result web

service response).

The HTTP specification also supports request pipe-lining, allowing parallel

requests for resources to be made, instead of the traditional “wait for the previous response

before conducting the next request”.

Figure 19: Comparassion between an HTTP pipelining disabled and enabled client.

Since most modern browsers also support HTTP pipe-lining, multiple DICOM

frames and other resources can be downloaded from the DicoogleWeb server at the same

time, as fast as the server will be capable to provide them, greatly reducing the client

waiting time for resources, be it data or information. This will impact the embedded viewer

greatly, and in a positive way since various DICOM frames can be downloaded in parallel,

the viewer session data will be ready for rendering faster.

64

6 Conclusion

DicoogleWeb now features a GUI agnostic interface, meaning that using standard

web requests, a whole range of various GUIs can be created. This means that 3
rd

 party

desktop applications for using DicoogleWeb can still be created, and will interact with the

server via the defined HTTP request and response API for the various DicoogleWeb web

services. This guarantees a new compatibility level between client systems that the

previous Dicoogle version lacked.

The new revamped web architecture will, not only, allow platform developers to

more easily request and consume information from DicoogleWeb, given the new open-

standards based Web API, but will also allow medical personnel to use the system in a

more streamlined manner. Meaning, doctors will spend less time waiting for resources to

be prepared and presented to then, compared the previous Dicoogle solution, where there

was the need for external tool to be loaded and pointed to each pertaining resource.

While the new DicoogleWeb solution provides the same, basic, functionalities of

previous Dicoogle versions, the system can now be extended easily, without the need to

deploy a new version of the solution across all clients. Meaning only the DicoogleWeb

server needs to be updated to provide all the extra functionalities to any (web) client within

the same medical institution. This will greatly speed up the adoption of

new/improved/updated DicoogleWeb version by medical institutions, since there is no

need to deploy the new version across the multitude of client devices within the institution.

Most of the goals set at the start of the project/paper were met, meaning that the

new implementation is able to provide a complete storage/archiving, searching and

analysis tool for medical imaging, allowing doctors to spend less time waiting till a

solution is ready with the medical data to analyze, improving diagnosis performance. This

will, ultimately, help the institutions were DicoogleWeb will be used. Doctors are now

able to provide diagnosis a bit faster than with the previous solution, given that the solution

can be accessible from any computing device with a network connection, even from

outside of the medical institution. Also by removing the need to acquire other DICOM file

analysis tools, the cost of operations of these institutions will also lower, while doctor and

diagnosis productivity will still improve.

65

While the new architecture is well defined and provides great functionality, there

are still, as with any on-going software solution, some implementation issues to be solved

and further work to be put onto the solution, as with any software solution.

6.1 Implementation Issues

During the development of the new solution, some implementation related issues

arose, most of which were solved. Some remained, mainly due to lack of developing time.

Here is a list of the current implementation issues:

• The main issue with the new implementation, much like the previous one, is

related to the fact that DicoogleWeb relies on a single server architecture,

which make it a perfect target platform for Denial of Service (DoS) attacks.

• Another implementation issue was due to Jetty and the JSPF plug-in system

configuration problems, which invalidated the possibility of implementing a

MVC alike architecture for delivering web content. While this is currently a

minor issue, it is possible that, with proper Jetty configuration options, this

might not be an issue anymore.

6.2 Further Work

Some further work can be put into the current solution, in order to improve it. Here

are some suggestions for what is yet to be implemented:

• Choose one of the available/concurrent interfaces for accessing plug-ins data

export, making it the definitive one.

• Integrate the concurrent, and more complex, viewer onto the current

architecture.

• Create, configure and deploy a certificate that will be used to cipher the Secure

HTTP (HTTPS) connection between DicoogleWeb server and clients.

• Creating a translation layer between GUI injected code and the resulting code

injection, fixing potential unclosed HTML tags and/or interface layout

problems.

• Server-side caching of search results, taking into account the when the last

search was made and if new DICOM files arrived to the PACS core since then.

66

7 References

[1, 3, 6, 9, 16-18]

1. Costa, C., et al., Dicoogle-an open source peer-to-peer pacs. Journal of Digital Imaging, 2011.

24(5): p. 848-856.

2. Huang, H.K., PACS and Imaging Informatics: Basic Principles and Applications2010: Wiley.

3. Association, N.E.M., Digital Imaging and Communications in Medicine (DICOM)1993: The

Association.

4. Anklesari, M., Lindner, Johnson, Torrey & Alberti. The Internet Gopher Protocol. 1993 [cited

2013 06-12]; Available from: http://www.ietf.org/rfc/rfc1436.txt.

5. W3C. Hypertext Transfer Protocol - HTTP/1.1. 1999 [cited 2013 05-06]; Available from:

http://www.w3.org/Protocols/rfc2616/rfc2616.html.

6. Wikipedia. Usage share of web browsers. 2013 [cited 2013 05-06]; Available from:

http://en.wikipedia.org/wiki/Usage_share_of_web_browsers.

7. ISO/IEC, Information technology - Document description and processing languages - HyperText

Markup Language (HTML), 2000.

8. W3C. HTML 4.01 Specification. 1999 1999 [cited 2013 06-06]; Available from:

http://www.w3.org/TR/REC-html40/.

9. Dreyer, K.J., A. Mehta, and J.H. Thrall, PACS: a guide to the digital revolution2002: Springer

Verlag.

10. Biedert, R. jspf - Java Simple Plugin Framework. 2011 [cited 2013 25-01].

11. Foundation, T.A.S. Apache Lucene. 2013 [cited 2013 25-01]; Available from:

http://lucene.apache.org/.

12. Ferreira, C.A.M.V., Peer-to-peer network for medical imaging, 2010, Universidade de Aveiro.

13. Firtman, M. Mobile HTML5 - compatibility. 2013 [cited 2013 03-06]; Available from:

http://mobilehtml5.org/.

14. Hewlett-Packard. License Of Certain Hewlett-Packard Patents Relating To Lossless and Near-

Lossless Image Compression. 1995; Available from:

http://www.hpl.hp.com/research/info_theory/loco/JPEGLSTerms.htm.

15. Go Pivotal, I. Spring Framework. 2013 [cited 2013 05-06]; Available from:

http://www.springsource.org/spring-framework.

16. Costa, C., et al., Indexing and retrieving DICOM data in disperse and unstructured archives.

International journal of computer assisted radiology and surgery, 2009. 4(1): p. 71-77.

17. Koutelakis, G.V. and D.K. Lymperopoulos. PACS through web compatible with DICOM standard

and WADO service: advantages and implementation. in Engineering in Medicine and Biology

Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE. 2006. IEEE.

18. Pianykh, O.S., Digital Imaging and Communications in Medicine (DICOM): A practical

introduction and survival guide2011: Springer.

