
Refinement of AADL models using
early-stage analysis methods – An avionics example

————–
Defining communication parameters during architecture-level design

using jointly AADL and network traversal time analysis methods

Guillaume Brau, Nicolas Navet
Laboratory for Advanced Software Systems

University of Luxembourg
6, rue R. Coudenhove-Kalergi, Luxembourg (Luxembourg)

Jérôme Hugues
Institut Supérieur de l’Aéronautique et de l’Espace

Université de Toulouse
10, avenue Edouard-Belin, Toulouse (France)

TR-LASSY-13-06

Thursday 6th February, 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/19487832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 2

2 Modeling avionics systems with AADL 3
2.1 The Flight Management System . 3
2.2 The Integrated Modular Avionics platform . 4
2.3 The Architecture Analysis & Design Language 5
2.4 Modeling the FMS in AADL . 6

3 Analysis as part of the design process 6
3.1 Lessons learned : there are dependencies between modeling concerns 8
3.2 Example : integration of the Bandwidth Allocation Gap (BAG) parameter into

an incomplete AADL model . 10
3.2.1 Worst-Case Traversal Time evaluation . 10
3.2.2 Network Calculus analysis and tool set . 12
3.2.3 Model refinement . 13

4 Conclusions and perspectives 14

Appendices 16

A Basics for AFDX Worst-Case Traversal Time evaluation 16
A.1 Introduction . 16
A.2 ARINC664 standard : definition and requirement of AFDX latencies 17

A.2.1 End system latencies . 17
A.2.2 Switch latencies . 21

A.3 AFDX (Worst-Case) Traversal Time Evaluation 22

References 24

Date Version Description Author(s)

October 11, 2013 1 Initial document G. Brau, J. Hugues, and N. Navet

February 6, 2014 2 General revision (released) G. Brau, J. Hugues, and N. Navet

Table 1: Revision History

1

Refinement of AADL models using early-stage analysis methods

Guillaume Brau1 Jérôme Hugues2 Nicolas Navet1
1University of Luxembourg, Laboratory of Advanced Software Systems,
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

{guillaume.brau, nicolas.navet}@uni.lu
2Université de Toulouse – ISAE, 10 avenue E. Belin, 31055 Toulouse, France

jerome.hugues@isae.fr

Abstract

Model-Driven Engineering (MDE) is a relevant approach to support the engineer-
ing of distributed embedded systems with performance and dependability constraints.
MDE involves models definitions and transformations to cover most of the system
life-cycle: design, implementation and Verification & Validation activities towards
system qualification. Still, few works evaluate the early integration of performance
evaluation based on architectural models. In this report, we investigate the early-
stage use of analysis in AADL modeling. Precisely, we exemplify on an avionics
case study how to dimension the data flows for an application distributed over an
AFDX network. Based on the insight from this study, we suggest a simple framework
and associated techniques to efficiently support analysis activities in the early-stage
design phases.

1 Introduction

Context of the work. Distributed Real-time Embedded (DRE) systems are present in safety-
critical domains such as transportation, telecommunications, health services, military or space.
These systems have to meet both the functional and non-functional requirements. Hence, DRE
systems encompass specific technologies to realize the required service with the expected perfor-
mance metrics (e.g. time, security or safety) through dedicated networks, processors or real-time
operating systems. In addition, the engineering process has to address efficiently system mod-
eling and evaluation of all metrics. In such context, Model-Driven Engineering (MDE) is a
relevant approach to support the engineering of DRE systems. MDE involves models definitions
and transformations to cover the system life-cycle towards system qualification.

Definition of the problem. Many experiments indicate that the distance between the activ-
ities steps in a classical V-cycle is detrimental and usually slows down the development process
[1]. In practice, a significant part of errors is injected at early-stage of the engineering process,
while being detected during later integration phases. As a consequence, regressions and rework
activities have an important weight on the overall project costs. Designers have to face the fol-
lowing paradox : mastering all the facets of the system and the underlying implementation and
integration problems before the system is actually implemented and the verification activities,
that aim to detect the problems, carried out.

We believe that this paradox can be lifted considering models with sufficient power of ex-
pression to guide the conception phases (e.g. using interface or behavioral models on which
one can both reason and iterate) and supporting early-stage analysis. This “integrate, then
build” approach, also known as virtual integration is promising to support the design of complex
systems.

2

Contributions and objectives. In this paper, we use the Architecture Analysis & Design
Language (AADL) [2] as the pivot to capture the system architecture and derive its performance.
AADL is an Architecture Description Language (ADL) suitable to describe systems, capturing
the functional and non-functional concerns together with the operational platform. As AADL
provides modeling elements with a precise syntax and well-defined semantics, it is possible to :
1) perform analysis and 2) derive implementations thanks to code generation [3].

The focus of this paper is twofold. First, taking a specific example coming from the avionics,
we show how to accurately seize important parameters in the AADL model. As the system that
is modeled includes technologies not supported within the core language, we extend the work in
[4] so as to include in the AADL model the networking elements and capture the overall DRE
system.

Secondly, based on lessons learned during the modeling experience, we propose to jointly
use AADL models and analysis methods in order to gradually refine and verify the model. We
investigate and examplify this strategy one the avionics case study. Taking as example the net-
work communications and the expressed timing constraints, we show that using complementary
analysis methods allows to deduce missing parameters while maintaining the consistency of the
model (i.e. chosen parameters guarantee that non-functional constraints are met).

Related works. There are several related works which deal with early-stage analysis. Consid-
ering scheduling issues, the MoSaRT approach [5] proposes a domain specific language in order
to assist designers to validate their architecture during the design phase, reducing the gap with
analysis tools. MAST [6] is an open environment that allows to describe a real-time system
thanks to a MAST model and to compute a worst-case response time schedulability analysis
using a set of tools developed within the suite. Based on AADL, Delange et al. [4] explain
how to support the scheduling analysis of avionics systems with a transformation tool chain
towards their Cheddar analysis tool. The MASIW project provides an AADL-based tool set [7]
in order to design and integrate avionics systems. It enriches the AADL basics and allow to
perform several analysis in order to check the compliance with constraints. Other dimensions
like security [8] or safety [9] have been addressed using AADL as a root.

The paper is organized as follows: we first introduce the avionics case study and present how
to model it in AADL (Section 2). In Section 3, we illustrate relationships between modeling
concerns, and, using analysis, we explain how to solve those dependencies for some important
communication parameters. Finally, in Section 4, we draw conclusions from this case study and
discuss future work.

2 Modeling avionics systems with AADL

In this section we describe how to jointly capture in the Architecture Analysis & Design Language
the functional description of a Flight Management System (FMS), its temporal constraints and
the target execution platform, called Integrated Modular Avionics (IMA).

2.1 The Flight Management System

The avionics system to model, coming from Lauer et al. [10], is part of an aircraft’s Flight Man-
agement System (FMS). It interacts with the crew and provides static and dynamic information
about the flight plan (i.e. the predefined path between departure and arrival points) : current
location, remaining distance and estimated arrival time.

Functional description. The system is made up of five main functions as depicted in Figure 1.
The Keyboard and cursor control Unit (KU) reads data inputted by the pilot (or copilot) through
the keyboards while the Multi Functional Display (MFD) refreshes the displays consecutively.

3

Crew

KU MFD

FM

ADIRU NDB

Sensors

req disp

wpInfowpId

query

answerspeed

pres

Figure 1: The Flight Management System functional architecture depicts the functions and the
data exchanged as well as the interactions with the actors.

From the KU function, crew requests are forwarded to the Flight Manager (FM) function which
computes the response about the flight plan and returns it to the MFD. For this, it requests
static data to the Navigation Data Base (NDB) function and also relies on dynamic data from
the Air Data Inertial Reference Unit (ADIRU), computed based on sensors measurements.

Temporal constraints. In the avionics context, the system has to conserve a predictable
behavior. Several temporal constraints may be expressed upon different ”locations”. Typically,
temporal constraints concern :

• response times which are the delays needed to carry out the functions,

• traversal times refering to communication delays between functions,

• latencies along functional chains that encompass a succession of response times and traver-
sal times.

2.2 The Integrated Modular Avionics platform

The functions are executed in an Integrated Modular Avionics (IMA) environment. In particular,
this execution platform supports two standards, used in the case study, that defines the use of
the shared hardware and software resources in a deterministic way :

• ARINC653 [11] for computational resources,

• ARINC664 [12] for communication resources.

In the following, we give an overview of the main concepts of these standards. The description
emphasizes the key notions that the AADL architecture model has to capture.

ARINC653. The ARINC653 standard defines the management of the functions hosted by a
same hardware/software platform (referred as an execution module in the following). In this
environment, each function is located in a different partition with a strict access to processing
and memory resources. It means :

4

• a temporal partitioning : partitions are executed during specific time slots defined at
system start-up,

• a spatial partitioning : each partition has its reserved memory space defined at system
start-up.

The temporal and spatial partitioning, as well as the communication channels are hidden to
the functions hosted by a partition. It is the aim of the underlying ARINC653 operating system
to handle partitions scheduling, access to memory resources and communication services. The
static scheduling is directed following four parameters :

• the module Major Frame (MaFm) is the duration of one cycle of the functions executions
– thereafter, the cycle is repeated,

• the module Minor Frame (MiFm) allows to execute several instances of one task during
the MAF,

• the offset (Om,p) of one partition is the gap between the MaFm origin and the start of the
partition execution,

• the duration (Dm,p) is the time allocated to each partition to access the processor.

A function may be implemented by a set of sub-functions or threads, scheduled locally – and
maybe dynamically – to the partition (following a RM policy for example).

ARINC664 The ARINC664 standard defines a predictable communication network called
Avionics Full Duplex-Switched Ethernet (AFDX). It uses full-duplex links to carry the packets
and switches to route a packet from a sender to one or several receiver(s). AFDX implements
the core concept of Virtual Link (VL) to share the network bandwidth while maintaining the
predictability of the communications. A VL is an unidirectional logical connection from one
sender to one or several receiver(s) – unicast or multicast channels. Each VL has :

• a limited bandwidth according to two parameters :

– the Bandwidth Allocation Gap (bagv) is the minimum time elapsed between two frames
sending,

– the maximal allowed packet size (smaxv),

• a predefined and static route (routev) crossing one or several switch(es).

2.3 The Architecture Analysis & Design Language

AADL [13] is an international standard by the Society of Automotive Engineers (SAE), defining
the basics of an architecture description language dedicated to the design of real-time systems.
AADL is component-centric and allows to specify both software and hardware parts of a system.
It allows one to define consistent block interfaces and to separate them from block implementa-
tion.

An AADL model is made out of components. Software components (data, thread, subpro-
gram, process) are distinguished from execution platform components (memory, bus, proces-
sor, device) and hybrid components (system). Each component shares the semantics of its
counterpart in embedded systems terminology.

The behavior of a system (e.g. how functional blocks interact) is fully defined in the stan-
dard by means of properties (attributes with a dedicated semantics) to progressively refine the
semantics of a system (e.g. dispatching invariants, communication patterns, non-functional
properties), interface specifications and how components are interconnected. These have a deep

5

impact on the system’s behavior. Functional aspects (algorithms) can be attached separately as
source code by means of properties. See [2] for a complete presentation of AADL.

AADL proposes several user-defined extension mechanisms through property sets and annex
languages [14]:

• Property sets allow one to define custom properties to extend standard ones. This is the
path taken by the “Data modeling annex document” that allows one to model precisely
data types to be manipulated, or the “ARINC653 annex document” that defines patterns
for modeling ARINC653 systems.

• AADL annex languages offer the possibility to attach additional considerations to an
AADL component like behavioral specification. They bind a domain-specific language
to components.

These extensions mechanisms are of particular interest to attach project-specific concerns
to an architecture for further analysis such as electric power consumption, modeling of precise
performance of buses, or error modeling. It is this combination of core and user-defined languages
and properties that allows in-depth system analysis.

2.4 Modeling the FMS in AADL

The full model of the FMS uses AADLv2 core specifications and the ARINC653 Annex. Figure 2
gives the graphical view of the model made up of 4 modules connected through an AFDX
network. We do not list the full textual models that spans over 770 SLOCs1.

The model follows the initial specifications and AADL guidelines for ARINC653 systems : a
module is a distinct system (containing a global memory and a processor) that hosts partitions
(each is a process) bound to separate memory segments and virtual processors (represent-
ing spatial and temporal partitioning). thread components contained in partitions realize the
avionics functions. Thanks to annex guidelines, we can model precisely the ARINC653 compo-
nents and associated parameters (modules Major Frames, partitions durations, partitions and
functions scheduling policies, etc.).

AADL does not provide specific guidelines for modeling AFDX networks. The AADL concept
of virtual bus defines a connection supported in a bus. We use this concept to define AFDX
virtual links. Switches are represented by device components bound to the virtual links. A
dedicated property set has been defined to model parameters attached to virtual links, end
systems and switches.

From this model, we may now consider further analysis of the full architecture. The current
design could be used to validate a given architecture. Yet, the most challenging part is actually
to guide the designer in finding a suitable definition of the architecture parameters in order to
respect the constraints expressed in the model. This is detailed in the next section.

3 Analysis as part of the design process

We discussed how AADL allows to capture both the FMS functional and non-functional as-
pects as well as the IMA platform description. In this section, we first underline the difficulty
of integrating those three dimensions in the same architecture model. Considering the Flight
Management System, we then address how to derive AADL components and their parameters
from constraints expressed in the model. For instance, we take the question of finding a suit-
able design for virtual links in AFDX networks that can be a difficult problem because of the
interferences between VLs definitions. For further information, the issue is addressed in a more
comprehensive setting in [15] and [16].

1The full AADLv2 textual model is part of the AADLib project, see http://www.openaadl.org for more
details.

6

http://www.openaadl.org

F
ig

u
re

2
:

O
ve

rv
ie

w
o
f

th
e

F
M

S
m

o
d
el

in
A

A
D

L
v
2.

T
h
e

m
o
d
el

is
m

ad
e

u
p

of
A

A
D

L
co

m
po

n
en

ts
th

a
t

d
es

cr
ib

e
th

e
A

R
IN

C
6
53

ex
ec

u
ti

o
n

m
o
d

u
le

s
h
os

ti
n

g
th

e
av

io
n

ic
s

fu
n
ct

io
n

s
a
n

d
th

e
A

F
D

X
n
et

w
or

k
th

at
su

p
p

or
ts

th
e

d
at

a
ex

ch
an

ge
s.

T
h
e

fu
ll

te
x
tu

a
l

m
o
d

el
is

p
ar

t
o
f

th
e

A
A

D
L

ib
p
ro

je
ct

,
se

e
h
t
t
p
:
/
/
w
w
w
.
o
p
e
n
a
a
d
l
.
o
r
g

fo
r

m
o
re

d
et

ai
ls

.

7

http://www.openaadl.org

3.1 Lessons learned : there are dependencies between modeling concerns

Figure 3 summarizes the three traits caught in the architecture model : the functions to realize,
the hardware and software platform hosting the functions and the constraints to comply with.
It implies that the architecture model components and the attached properties have to integrate
and solve the dependencies between these views. In this subsection, we highlight some of the
dependencies involved in a real IMA system that are ”integrated” in its architecture model.

Figure 3: The architecture model captures jointly the system functional, non-functional and
platform concerns and has to integrate the dependencies between these aspects.

Functions-platform allocation. The allocation ”maps” the functional architecture to the
platform, i.e. it defines how to implement the functions and communications within the AR-
INC653/ARINC664 execution platform:

• the MaFm and MiFm of a module are deduced from the periods (Pf) of hosted functions
– there are, respectively, the lcm (less common multiple) of the periods and the shorter
period,

• the duration (Dm,p) of a module partition corresponds to an upper bound of the time
needed (Cf) to the related function (or sub-functions or threads) to execute all its instruc-
tions (Dm,p ≥ Cf),

• the virtual links characterization (bagv and smaxv) depends on several parameters :

– the number of messages (nf) sent during the cycle of a function,

– the size of the messages (mi,f , with i ≤ nf).

Platform components inter-dependencies. The allocation choices and interactions be-
tween platform components directly create temporal delays :

• the execution modules and their characteristics (scheduling policies, execution times, etc.)
determines the functions response times,

• the configuration of the AFDX network components (choice of VLs parameters, topology
and routing strategies) influences the traversal times,

• the interaction between the platform components (executions, communications) has a di-
rect impact on delays belonging to functional chains.

8

system fms end fms;

system implementation fms.impl

subcomponents -- here are declared the fms ’ components

-- modules and devices

module1 : system subsystem :: m1_system.impl;

module2 : system subsystem :: m2_system.impl;

-- ... other modules and devices

-- communication components

afdx_network : bus fms_hardware :: physical_afdx_link.impl;

bus_can : bus fms_hardware ::can;

sw1 : device subsystem :: afdx_switch;

sw2 : device subsystem :: afdx_switch;

sw3 : device subsystem :: afdx_switch;

connections -- connections and busses accesses

nt_wpId : port module1.ph_wpId1 -> module2.ph_wpId1;

--... other connections between modules

flows -- wpId , wpInfo , query , answer , speed flows

wpId_fl : end to end flow module1.wpId_src ->

nt_wpId -> module2.wpId_sink ;

--... other data flows

properties -- here are specified the latency constraints

-- and bindings to VL that have to meet those constraints

Latency => 0ms .. 15 ms applies to wpId_fl;

--... other latency constraints

-- But how to define the bindings? For instance :

-- Actual_connection_binding => (reference (afdx_network .??))

-- applies to nt_wpId;

end fms.impl;

virtual bus VL end VL; -- VL is a subcomponent of afdx_network

virtual bus implementation VL.vl1 -- this is the definition of the VL1

properties -- but VL’s properties (BAG and Smax) are missing ...

-- AFDX_properties :: Bandwidth_Allocation_Gap => ?? ;

-- AFDX_properties :: Allowed_Message_Size => ?? ;

end VL.impl1;

Figure 4: The first AADL model (m1) contains the connections and the data flows between
the FMS components. The bindings to support the connections and the AFDX virtual link
implementations are missing. These parameters have to respect the latency constraints expressed
onto the data flows.

Non-functional dependencies. Most of the time, the dependencies to non-functional aspects
”constrains” the allocation. For instance :

• a function execution may need the observation of a strict period or, conversely, may allow
a jitter,

• a function execution must respect a soft or strict deadline (or no deadline at all),

• a communication between two specific tasks can be subject to timing constraints or not,

• the latency expressed upon a functional chain may be required as temporally bounded.

In the following, we show that it is possible to deal with the dependencies between the
modeling concerns by performing relevant early-stage analysis. Particularly, we show how to
define progressively the VLs parameters taking into account information in the model such as
the constraints expressed upon the communications. From an evaluation perspective, it implies :
1) isolating model input parameters that can be combined to 2) propose a feasible solution

9

which is 3) later assessed. Some parameters are mandatory, while other can be assumed. This
is discussed in the following paragraphs.

3.2 Example : integration of the Bandwidth Allocation Gap (BAG) param-
eter into an incomplete AADL model

In the initial AADL model of the figure 4, we partly know the system definition : the functions
hosted in the modules and their properties as well as the data exchanges between them. We
also know the constraints of the system expressed onto the communications.

At this stage, dimensioning the BAG, which has a direct impact on the respect of timing
constraints and the network load, may be a difficult task because the design space can be huge.
Indeed, as this parameter ought to respect the formula BAG= 2k [ms] with k integer in range 0
to 7 (see [12]), if we take as assumption that one VL is dedicated to one data flow, then there
are solbag = 8f conceivable solutions, with f the number of flows.

To overcome this problem and complete the model, we execute the process pictured on
Figure 5. We propose to:

1. use a pivotal Worst-Case Traversal Time evaluation (WCTT in the following) in order to
identify the set of suitable BAGs,

2. use a complementary analysis method, relying on Network Calculus (NC in the following),
to improve the results of the main WCTT evaluation.

Figure 5: The BAG refinement process includes AADL models (blue-headed shapes), analysis
and assumptions methods (respectively portrayed by green and brown rectangles) and assump-
tions models (purple-headed shapes). The dashed arrows are analysis inputs whilst the solid
arrows stand for analysis results written in the models.

3.2.1 Worst-Case Traversal Time evaluation

Our pivotal Worst-Case Traversal Time analysis aims to assess the delay experienced by each
data flow in the AFDX network (see Appendix A for more information). It amounts to add up
the successive delays suffered by one sent frame throughout the traversed elements : from the
source end system, through the successive switches, up to the sink end system(s). In short, the

10

WCTT evaluation gives the formula of an upper-bounded delay (WLn,v) suffered by the last
frame of the message n in the VL v as a function of several parameters (formulas 15, 16 and
17 of the appendix A). Hence, it is possible to compare the delay against the expressed latency
constraint (WLn,v ≤ LCn) :

bagv × (pn,v − 1 +

n−1∑
k=1

pk,v) +
(
lag + 2× smaxv

BW
× (1 + rv) + jmax

)
+Dsw v ≤ LCn (1)

with


Dsw v =

∑rv
k=1WSCLn,k

lag = 2×WETeL+ r ×WSTeL
subv − 1 = 1 (sub-vl are not considered)

and to calculate the suitable set of BAGs :

bagwctt
v ≤

LCn −Dsw −
(
lag + 2× smaxv

BW × (1 + rv) + jmax
)

pn,v − 1 +
∑n−1

k=1 pk,v
(2)

To figure out the bagwctt
v , the model must contain :

• the maximal number of messages (nf) that the sending function can pass to the virtual
link at each execution,

• the maximal size of each message sent by the function – let mn be the maximum value of
all the messages sent by the function,

• the latency constraints expressed on the messages – in this paper, we assume a latency
constraint expressed on the virtual link (LCv), i.e. that is same for all the messages.

As the communication network is AFDX, the model must contain AFDX-specific parameters,
defined in the standard, such as the bandwidth (BW), technological delays (lag) and a maximal
transmission jitter at end systems outputs (jmax).

However, due to our ignorance of the whole system configuration, some properties may be
still missing, in which case, we have to do assumptions :

• one virtual link is allocated to each data flow with the same source/receiver(s) couple,

• the smaxv is set to :

– smaxv = mv + 67 bytes if mv ≤ 1471 bytes,

– its maximum value smaxv = 1538 bytes else,

• all the messages can be fragmented, that means that pn,v ≥ 1 with
pn,v = d mn

smaxv−67e,

• if the routing strategy is missing, we assume that there is one crossed switch per VL :
rv = Card(routev) = 1.

Using Equation 2, the WCTT evaluation gives a set of suitable BAGs for each VL (bagwctt
v).

Of course, the accuracy of the BAGs sets depends on the precision of the model and of the
assumptions. In addition, at the first stage, there is no NC feedback, i.e. Dsw v = 0.

11

Figure 6: A typical AFDX topology can contain 100+ end systems and 8 switches [18]. The
AFDX switches form the central backbone. The virtual links to study connect the yellow-colored
components : the FMS functions are hosted into 4 modules connected to 3 different switches.
The architecture and background traffic outside the FMS is generated by the NETAIRBENCH
tool.

3.2.2 Network Calculus analysis and tool set

Network Calculus (NC) [17] is an algebra for computing and propagating constraints given in
terms of envelops. NC is commonly used in avionics timing verification, and has been accepted
in certification. The algebra handles incoming flows expressed by an arrival curve α(t) and
server elements offering a minimal service specified through a service curve β(t). Given α(t)
and β(t), at time t, it is possible to estimate the backlog – the amount of bits held in the network
element – and the virtual delay – the delay suffered by a bit to cross the element. The worst
delay experienced by a flow in a server is given by the greater horizontal deviation between the
curves : d = h(α, β). Furthermore, in accordance with the input flows and the offered service
expressions, the resulting output flow α∗(t) is given by α∗(t) = α(t+d). Afterwards, it is possible
to cascade the servers, i.e. to bind the output of one server to the input of one other, in order
to propagate the data flow along its route and to compute the end-to-end delay (Dnc

sw v).

To perform the NC analysis, the model must detail the information needed to set the arrival
curves belonging to each virtual link and the service offered by the end systems and switches :

• αv(t) depends on the bagv and the smaxv,

• βe(t) and βs(t) depend on : smaxv, BW , lag and jmax.

The smaxv, BW , lag and jmax remain same as detailed for the WCTT analysis. Therewith,

12

to obtain the least bandwidth-demanding but still correct VLs configuration, we first perform
the analysis with the greater BAG for each previously refined BAGs set (BAGwctt

v). To compute
a precise analysis, in addition to the VL definition, the NC algebra uses :

• the network topology shaped by the execution modules, switches and links,

• the static routing table.

Either these features are exhaustively detailed in the input model or we can make assumptions
on them. Particularly, we can combine model-defined parameters and assumed parameters. To
use a combination of defined parameters (those of the FMS) and assumed parameters (those of
the ”artificial” surrounding system) has two interests : 1) it is possible to evaluate and refine the
”real” input model within a realistic configuration; 2) it is possible to evaluate several routing
strategies.

The latency analysis in this paper is performed using RTaW-Pegase, which is a commer-
cial product implementing a state-of-the-art network calculus AFDX timing analysis (see http:

//www.realtimeatwork.com/software/rtaw-pegase/). We also use NETAIRBENCH, a mod-
ule of RTaW-Pegase, which allows to generate avionics message sets according to user-defined
parameters [18]. Figure 6 shows one instance generated by NETAIRBENCH where the FMS is
included in an AFDX-realistic topology with a user-defined load.

3.2.3 Model refinement

We can see through the modeling and analysis flow (figure 5) that, as long as the required
analysis inputs are present, the model is enhanced. The model refinements are done in line
with : 1) the model evolution (m1, m2, m3), 2) the analysis methods outputs (BAGwctt and
Dnc

sw) and 3) the feasible assumptions (as1, as2).
The first execution of the pivotal analysis method takes as input the data of the incomplete

model (m1) and the deduced assumptions (as1). Since we assume that one virtual link is
allocated to identical data flows, there are five VLs for the FMS case study. The parameters
and the results of the analysis are summarized in the table 2. The first coarse-grained WCTT
evaluation reduces the space of BAGs solutions for each VL (BAGwctt1

vli
) : solm1

bag − sol
wctt1
bag =

85 − 1440 = 31328 solutions are discarded.

Virtual nm1 sas1max LCm1 BAGwctt1
max BAGwctt1

Link (bytes) (ms) (ms) (ms)

V L1 2 142 15 14,27456 1, 2, 4, 8

V L2 3 692 15 7,04928 1, 2, 4

V L3 2 192 10 9,25856 1, 2, 4, 8

V L4 2 567 35 34,13856 1, 2, 4, 8, 16, 32

V L5 2 567 20 19,13856 1, 2, 4, 8, 16

Table 2: The WCTT evaluation takes needed information in the model (m1), makes feasible
assumptions (as1) for the missing parameters, and computes the maximal proper BAG. AFDX
parameters (BW , lag, jittermax) are set according to the standard, ras1vli

= 1 and Dwctt1
sw vli

= 0

Thanks to the first WCTT computation, the initial model (m1) is enriched with a crucial
missing parameter : the BAG (m2). We are now able to perform the complementary NC analysis
aiming at accurately evaluate the upper delay suffered in the switches for each VL (Dnc1

sw vli
).

The topology is the one described by the figure 6 in accordance with an average utilization
of switches ports set to 25%. The static communication routes follow a classical shortest path
algorithm. Table 3 details the latency results (Dnc1

sw vli
) given by the NC analysis. This latency

is passed as a refinement parameter to the WCTT method in order to precise the BAGs sets
accordingly with the initial LCm1

vli
constraints. We can see that taking into account the calculated

13

http://www.realtimeatwork.com/software/rtaw-pegase/
http://www.realtimeatwork.com/software/rtaw-pegase/

Dnc1
sw vli

reduces the set of eligible BAGs (BAGwctt nc1) for all the VL except V L1 and V L2 :

solwctt1
bag − solwctt nc1

bag = 1440− 720 = 720 solutions do not meet the latency constraints.

Virtual sas1max BAGwctt1 Dnc1
sw LCm1 ras2 BAGwctt nc1

Link (bytes) (ms) (ms) (ms)

V L1 142 8 2,774 15 2 1, 2, 4, 8

V L2 692 4 2,922 15 2 1, 2, 4

V L3 192 8 3,118 10 2 1, 2, 4

V L4 567 32 2,774 35 2 1, 2, 4, 8, 16

V L5 567 16 4,189 20 3 1, 2, 4, 8

Table 3: The NC analysis take into account the maximal packet size and the larger calculated
BAGwctt1

vli
to compute the upper delay in the switches for each VL (Dnc1

sw vli
). This result is

passed for a second WCTT analysis. Apart from the number of crossed switches (ras2vli
), the

other WCTT inputs remains unchanged. The sets of suitable BAGs are precised to meet the
initial latency constraints (LCm1

vli
).

At the third iteration, the model (m3) contains the refined BAGs (BAGwctt nc1
vli

). It is then
necessary to calculate the delay suffered in the switches for each VL (Dnc2

sw vli
) and refine the

BAGs sets (BAGwctt nc2
vli

) if necessary. A new combined execution of WCTT and NC analysis
shows : 1) the delay of each VL does not evolve (Dnc2

sw vli
= Dnc1

sw vli
) and 2) the computed

BAGs subsets remain unchanged (BAGwctt nc1
vli

= BAGwctt nc2
vli

). Consequently, a fixed-point is
reached : the model m3 cannot be refined anymore against the Bandwidth Allocation Gap if
the input parameters and assumptions stay stable.

4 Conclusions and perspectives

Our first contributions (Section 2) dealt with the architectural description of an avionics system
with AADL, combining the functional, non-functional and platform concerns. We extended
existing patterns dedicated to ARINC653 systems to also model AFDX networks.

We then addressed (Section 3) the definition and evaluation of the AADL model components
and their properties. We showed that fixing one parameter upon a component can impact
the overall avionics system definition because of dependencies among them. Actually, to deal
with the architecture description amounts to solve the dependencies between the AADL model
concerns. Starting from an incomplete AADL model, we implemented a process combining two
analysis methods to evaluate and refine the Bandwidth Allocation Gap parameter. This process
combines early and in-depth analysis to help the designer to narrow the design space.

The process used in Section 3 can be generalized by the figure 7 which shows a closed-loop
approach :

1. the AADL model captures the system functional, non-functional and platform concerns
within components defined by their features and implementations,

2. considering a facet of the system (e.g. functions executions, communications, etc.), relevant
data are extracted and converted into parsable models,

3. depending on the point of interest, a pertinent method is used to analyze each model,

4. analysis outcomes are used to complete and refine the initial model.

We believe it is necessary to formalize the use of analysis methods along with modeling
languages in order to tackle the early system architecture definition and evaluation. In a previous
work, we defined REAL [19] – Requirement Enforcement and Analysis Language. It allows one

14

Figure 7: The AADL model details the system components features and implementations. De-
pending on the interest, relevant data are extracted from the model and analyzed following a
pertinent methodology. Analysis outcomes allow to complete and gradually verify the model.

to define a set of predicates, and check whether a system satisfies them2. We plan to extend
REAL to:

• define a library of predicates for tools. Such predicates would define conditions under
which a given analysis becomes feasible. This would guide the designer to trigger analysis
as early as possible in the design flow,

• detect and exploit relationships between analysis. The FMS case study illustrates that
analysis parameters are mutually dependent. To guide the user, one needs some method-
ological support, embedded as part of the modeling framework to favor one analysis and
define associated assumptions. Such relationships are actually higher-order predicates,
indicating whether an analysis dominates another one.

The definition of those predicates, in the context of the FMS, is currently under implementation.

2This language is currently being standardized by SAE AS2-C committee

15

Appendices

A Basics for AFDX Worst-Case Traversal Time evaluation

This appendix gives the basics for evaluating the traversal time experienced by any message in
an Avionics Full-Duplex Switched Ethernet (AFDX) network, i.e the elapsed time between the
moment when the message is available for being transmitted through its dedicated virtual link
and the moment when the message is available for being used by the receiving function(s). The
traversal time evaluation consists in adding up the successive delays suffered by the last fragment
(or frame) of the sent message throughout the traversed elements : from the source end system,
through the successive switches, up to the sink end system(s). From the AFDX requirements and
the definition of the network elements, it is then possible to derive the most unfavorable scenario
under which such message suffers the Worst-Case Traversal Time (WCTT).

A.1 Introduction

Avionics Full-Duplex switched Ethernet. The ARINC664 standard [12] defines a pre-
dictable communication network called Avionics Full Duplex-Switched Ethernet (AFDX). It
uses full-duplex links to carry the packets and switches to route a packet from a sender to one
or several receiver(s). AFDX implements the core concept of Virtual Link (VL) to share the
network bandwidth while maintaining the predictability of the communications. A VL is an uni-
directional logical connection from one sender to one or several receiver(s) – unicast or multicast
channels. Each VL has :

• a limited bandwidth according to two parameters : 1) the Bandwidth Allocation Gap (bagv)
(i.e. the minimum time elapsed between two transmissions of frames) and 2) the maximal
allowed packet size (smaxv),

• a predefined and static route (routev) crossing one or several switch(es).

Traversal Time evaluation. The Traversal Time evaluation aims to assess the delay expe-
rienced by each data flow in the AFDX network. It amounts to add up the successive delays
suffered by the message frames throughout the traversed elements : from the source end system,
through the successive switches, up to the sink end system(s). There are two kinds of delays :
1) incompressible delays and 2) contention delays. Incompressible delays (referred as IL) en-
compass technological delays and times needed to emit the frames bits on the physical link.
End systems and switch(es) contention delays (respectively ECL and SCL) are more difficult
to evaluate : there are due to the competitive access to the medium at both end systems and
switches levels and depend on the overall network configuration. The total delay (TT) can be
expressed by the formula :

TT = IL+ ECL+
∑

SCL

The Worst-Case Traversal Time considers the most unfavorable scenario and the resulting
total delay (WCTT) experienced by a message through its dedicated virtual link. It is obtained
when the last message frame suffers the worst delay in each traversed element.

The WCTT evaluation expressed in this report relies on :

1. an analysis of the AFDX communication stack and the succesive delays involved in the
network components (end systems in emission, switches and end systems in reception)
such as defined in the ARINC664 standard (Section A.2); this analysis neither takes into
account prioritized traffics [20, 21] nor offsets [22],

2. an analytical expression of the Worst-Case Traversal Time that includes the delays ex-
pressed for each AFDX component (Section A.3).

Appendices 16

A.2 ARINC664 standard : definition and requirement of AFDX latencies

This section summarizes the latencies involved in the AFDX components : end systems (emitting
and receiving) and switches. This summary rests on precise latencies definitions and require-
ments expressed in the ARINC664 standard [12] and derives the ”parts” of the traversal time
analytical expression dealt with in Section A.3. Definitions and requirements enumerated in
this section are quotations from the ARINC664 standard document; as well, some figures are
inspired/modified from the same standard.

A.2.1 End system latencies

Latency in emission (definition from [12]). The latency [in emission] is defined as the
duration between the following points of measurement as illustrated in [Figure 8].

• Start - last bit of an hosted partition data is available to the communication services of the
end-system

• End - last bit of the corresponding Ethernet frame is transmitted on the physical media

The latency in emission (EL) is the time needed by a message to go down the emission
protocol stack. It encompasses a technological latency (ETeL), a contention delay (ECL)
and a transmission delay (ETrL).

Figure 8: End system emission protocol stack – modified figure from [12]

Emission technological latency (definition from [12]). [Emission] technological latency is
defined as the time required to accept, process, and begin transmission of application data when
the end system is performing no other task.

Appendices 17

Actually, the technological delay is the irreducible time needed to go through the sending
end protocol stack, i.e. to cross all the “layers” of the emission protocol stack when there is no
other frame in the stack. It includes ”execution times” of UDP-level, IP-level and MAC-level
services as well as redundancy management.

Emission technological latency (requirement from [12]). The technological latency of the
end-system in transmission should be bounded and lower than 150 us [...].

ETeL ≤ 150us (3)

Emission contention delay (definition from [12]). The ”contention delay” is added to cover
the time taken to deliver the frame to the physical layer.

The contention phenomena are located in the scheduler ”layer” of the emission protocol
stack (in the Figure 8) and are due to the scheduling stack pictured on Figure 9. It involves the
following elements :

• the round-robin scheduler that empties the Sub-VL FIFO queues,

• the VL-regulator that processes the virtual link FIFO queue,

• the VL-scheduler that multiplexes the VLs handled by the end system in order to share
the common physical link,

On the one hand, the contention delay suffered by a VL frame down to the physical link
depends on the way on which the message will be fragmented. The fragmentation relies on :

• the maximal frame size fixed for the VL under consideration,

• the type of the used AFDX communication port (sampling or queuing).

Fragmentation (requirement from [12]). (a) [In transmission,] sampling Com Ports should
not use IP fragmentation, therefore the size of each sampling message should be less than or
equal to the payload size of the associated Virtual Link.
(b) [About Queuing Com Ports in transmission,] when fragmentation is used, the fragments
should be transmitted in-order to the AFDX network.

Maximal AFDX frame size (requirement from [12]). The End System should accommodate
VL frames up to a size of 1518 bytes in both transmission and reception.

smax ≤ 1518 [bytes] + headers [20 bytes] = 1538 [bytes] (4)

Based on the message size (mn) to send through the vlv and following requirements A.2.1
and A.2.1, the number of packets (pn,v) is given by Formula 5a for sampling ports and Formula
5b for queuing ports.

sampling ports : pn,v = 1 (5a)

queueing ports : pn,v =

⌈
mn

smaxv − 67

⌉
(5b)

On the other hand, it is worth considering the VL settings :

• the maximal allowed packet size (smaxv, already defined),

• the bandwidth allocation gap (bagv),

• the number of sub-virtual links (subv),

• the maximum transmission jitter (jmaxv).

Appendices 18

Figure 9: ARINC664 scheduling stack

Bandwidth Allocation Gap (requirement from [12]). (a) The [VLs regulators] of the ES
should be able to handle BAG values in range 1 ms to 128 ms. These values should satisfy [the
formula 6].
(b) On a per VL basis the traffic regulator [...] should shape the flow to send no more than one
frame in each interval of BAG milliseconds.

bagv = 2k [ms] with k [integer] ∈ (0, ..., 7) (6)

Sub-virtual links (requirement from [12]). (a) A VL FIFO queue should be able to manage
at most 4 Sub-VL FIFO queues.
(b) Each Sub-VL FIFO queue should be read in round-robin sequence such that if any Sub-VL
FIFO queue has traffic, one frame per BAG is sent to the main VL.

subv ≤ 4 (7)

Transmission jitter (requirement from [12]). In transmission, the maximum allowed jitter
on each VL at the output of the end-system should comply with both of the following formulas:

jmax ≤ 40 [us] +

∑
i∈{set of VLs} smaxi [bytes]× 8 [bits/bytes]

BW [bits/s]
(8a)

jmax ≤ 500 [us] (8b)

The worst contention delay experienced by a frame n of the VL v in the end system in
emission is summarized by :

ECLn,v = jmaxv + (pn,v − 1)× (subv − 1)× bagv︸ ︷︷ ︸
time needed to process the last frame

of the message n in last position

of the VL FIFO queue

+
n−1∑
k=1

pk,v × (subv − 1)× bagv︸ ︷︷ ︸
time needed to process all the frames of

the messages enqueued ahead to the

message n in the Sub-VL FIFO queue

(9)

Appendices 19

Finally, the end system transmission delay is added to cover the time needed to emit the
frame bits on the physical link.

End system transmission delay (requirement from [12]). [The MAC layer of the end-system
should be able] to transmit frames back to back [at full frame rate of the medium].

ETrL =
smaxv
BW

(10)

Latency in reception (definition from [12]). The latency in reception is defined between the
following points of measurement [as shown in Figure 10] :

• Start - last bit of an Ethernet frame is received on the physical media attachment.

• End - last bit of the corresponding data is available to the end-system hosted partition.

The latency in reception (RL) is the time needed by a message to go up the reception
protocol stack. It only includes a technological latency (RTeL).

Figure 10: End system reception protocol stack – modified figure from [12]

The technological delay of the ES in reception is the irreducible time needed to execute
the reception protocol stack (i.e. to cross all the “layers” of the reception protocol stack). It
includes execution times of UDP-level, IP-level and MAC-level services as well as redundancy
management.

Reception technological latency (requirement from [12]). The technological latency of the
end-system in reception should be bounded and lower than 150us.

RTeL ≤ 150us (11)

Appendices 20

A.2.2 Switch latencies

Switch latencies (definition from [12]). [Switch] latency is defined as being the elapsed time
between the reception of the last bit of the frame until the transmission of the last bit of the frame
[as shown in Figure 11].

Figure 11: AFDX switch design

The switch latency (SL) is composed of three main parts:

• the technological latency (STeL) of switching function,

• the contention latency (SCL) due to interferences between packets crossing the same
elements and competing to the same switches output ports,

• the transmission latency (STrL) required to emit the frame on the medium.

Switch technological latency (requirement from [12]). The technological latency of the
switch should be less than 100 us.

STeL ≤ 100us (12)

Switch tranmission latency (requirement from [12]). The MAC layer of each switch output
port should be able to transmit frames at wire speed [100 Mbits/s].

STrLv =
smaxv
BW

(13)

Switch contention latency (definition from [12]). The contention in the switch and the store
and forward capacity results in the need to buffer complete frames. [...] Data contention at the
output ports is resolved by buffering.

In the ARINC664 standard, there are no design constraints expressed upon the switches
contention delays. However, delays suffered in output buffers of the switches obviously contribute
to the traversal time. Hence, switches contention delays must be temporally bounded depending
on the operational needs.

SCLv ≤ B (14)

Appendices 21

A.3 AFDX (Worst-Case) Traversal Time Evaluation

Traversal time The traversal time of a message mn corresponds to the elapsed time between
the message release time and the message reception time. The release time is the moment when
the message is written by the sending function in the emission AFDX port and available for being
transmitted. The reception time is the moment when the message is written in the reception
AFDX port and available for being used by the receiving function.

Figure 12: AFDX network – modified figure from [23]

The traversal time TTn,v experienced by a message mesn through its dedicated virtual link
vlv is :

TTn,v = ELn,e +

rv∑
k=1

SLn,k +RLn,r (15)

where :

• ELn,e is the delay experienced in the sending end system ESe, with ESe ∈ routev,

• SLn,k is the delay experienced in the switch SWk, with SWk ∈ routev,

•
∑r

k=1 SLn,k is the sum of the delays experienced in the switches, with Card(routev) = rv,

• RLn,r is the delay experienced in the receiving end system ESr, with ESr ∈ routev.

and, accordingly with the ARINC664 requirements :

• ELn,e = ETeLe + ECLn,e + ETrLn,e (see Section A.2.1),

• SLn,k = STeLk + SCLn,k + STrLn,k (see Section A.2.2)

• RLn,r = RTeLr (see Section A.2.1)

It is possible to express the traversal time in terms of incompressible and congestion delays :

TTn,v = ILn,e,k,r + ECLn,e +

rv∑
k=1

SCLn,k (16)

where :

Appendices 22

• ILn,e,k,r is the incompressible delay experienced along the network elements ESe, SWk

and ESr with [ESe, SWk, ESr] ∈ routev

• ECLn,e is the contention delay suffered in the sending end system ESe, with ESe ∈ routev,

•
∑r

k=1 SCLn,k is the sum of contention delays experienced in the switches SWk, with
SWk ∈ routev and Card(routev) = rv,

and :

• ILn,e,k,r = ETeLe + ETrLn,e + [
∑r

k=1 STeLk + STrLn,r] +RTeLr

• ECLn,e = jmaxv + (pn,v − 1)× (subv − 1)× bagv +
∑n−1

k=1 pk,v × (subv − 1)× bagv

Worst-case traversal time The worst-case traversal time considers the most unfavorable
scenario and the resulting delay WDn,v that can be experienced by a message mesn using a
virtual link vlv. It is obtained when each term of the formula 16 is upper bounded. Let the
letter W denote the upper bound of the involved terms :

WLn,v = WILn,e,k,r +WECLn,e +

rv∑
k=1

WSCLn,k (17)

where :

• WILn,e,k,r :

– WETeLe = WRTeLr = 150us (see equations 3 and 11),

– WSTeLk = 100us (see Equation 12), and

– WETrLe = WSTrLk = smaxv
BW (see equations 10 and 13); consequently :

WILn,v = 2×WETeLe + rv ×WSTeLk + (1 + rv)×WETrLe

= 0, 3 + rv × 0, 1 + (1 + rv)× smaxv
100

• WECLn,e :

– WECLe = (pn,v−1)× (subv−1)×bagv +
∑n−1

k=1 pk,v× (subv−1)×bagv (see Equation
9), and

∗ jmaxv = 500us (see Equations 8b),

∗ bagv, smaxv and subv depend on the VL configuration,

∗ mn and mk depend on the message(s) to process(es); consequently :

WECLn,v = jmaxv + (pn,v − 1)× (subv − 1)× bagv +
n−1∑
k=1

pk,v × (subv − 1)× bagv

= 0, 5 + (subv − 1)× bagv ×

[
(

⌈
mn

smaxv − 67

⌉
− 1) +

n−1∑
k=1

⌈
mk

smaxk − 67

⌉]
• WSCLn,k :

– defining
∑rv

k=1WSCLk is now well-mastered : several simulation-based and analyt-
ical approaches have been proposed to estimate delays suffered by AFDX frames
along virtual link routes. Considering well-known analytical approaches, analysis
based on Model-Cheking gives an exact worst case delay whilst Network Calculus
and Trajectory approaches compute an upper bound of the worst-case delay. Since
the establishment of fundamental theories, numerous works have been devoted to re-
duce the pessimism of the calculated upper bounds ; interested readers may consult
[24] for more information.

Appendices 23

References

[1] D. Redman, D. Ward, J. Chilenski, and G. Pollari. Virtual Integration for Improved System
Design. In Proceedings of The First Analytic Virtual Integration of Cyber-Physical Systems
(AVICPS) Workshop, San Diego, California, USA, November 2010.

[2] P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language. Addison-Wesley Professional, 1st edition,
2012.

[3] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. Ocarina : An Environment for AADL Mod-
els Analysis and Automatic Code Generation for High Integrity Applications. In Proceedings
of the 14th Ada-Europe International Conference, Brest, France, June 8-12 2009.

[4] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, and F. Kordon. Validate,
simulate, and implement ARINC653 systems using the AADL. In SIGAda annual inter-
national conference on Ada and related technologies, SIGAda ’09, pages 31–44, New York,
NY, USA, 2009.

[5] Y. Ouhammou, Grolleau E., Richard M., and Richard P. From Model-based design to Real-
Time Analysis. In The Fourth International Conference on Advances in System Testing and
Validation Lifecycle (VALID), October 2012.

[6] M. González Harbour, J.L. Medina, J.J. Gutiérrez, J.C Palencia, and J.M. Drake. MAST:
An Open Environment for Modeling, Analysis, and Design of Real-Time Systems. In 1st
CARTS Workshop, Aranjuez, Spain, October 2002.

[7] A. Khoroshilov, D. Albitskiy, I. Koverninskiy, M. Olshanskiy, A. Petrenko, and A. Ugnenko.
AADL-Based Toolset for IMA System Design and Integration. SAE International Journal
of Aerospace, 5:294–299, December 2012.

[8] J. Hansson, B Lewis, J. Hugues, L. Wrage, P.H. Feiler, and J Morley. Model-Based Veri-
fication of Security and Non-Functional Behavior using AADL. IEEE Security & Privacy,
PP(99):1–1, 2009.

[9] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, and M. Roveri. Safety, De-
pendability and Performance Analysis of Extended AADL Models. The Computer Journal,
54(5):754–775, May 2011.

[10] M. Lauer. Une méthode globale pour la vérification d’exigences temps réel - Application
à l’Avionique Modulaire Intégrée. Thèse de doctorat, Institut National Polytechnique de
Toulouse, Toulouse, France, juin 2012.

[11] Aeronautical Radio Incorporated. ARINC Report 653P0 Avionics Application Software
Standard Interface, Part 0, Overview of ARINC 653.

[12] Aeronautical Radio Incorporated. ARINC Report 664P7-1 Aircraft Data Network, Part 7,
Avionics Full-Duplex Switched Ethernet Network.

[13] SAE/AS2-C. Architecture Analysis & Design Language V2 (AS5506A), January 2009.

[14] SAE/AS2-C. Data Modeling, Behavioral and ARINC653 Annex document for the Archi-
tecture Analysis & Design Language v2.0 (AS5506A), October 2009.

[15] F. Frances, C. Fraboul, and J. Grieu. Using network calculus to optimize the AFDX
network. In European Congress on Embedded Real-Time Software, Toulouse France, 2006.

24

[16] A. Al Sheikh, O. Brun, M. Chéramy, and P.-E. Hladik. Optimal design of virtual links in
AFDX networks. Real-Time Systems, 49(3):308–336, 2013.

[17] J.-Y. Le Boudec. Application of network calculus to guaranteed service networks. IEEE
Transactions on Information Theory, 44(3):1087–1096, 1998.

[18] M. Boyer, N. Navet, and M. Fumey. Experimental assessment of timing verification tech-
niques for AFDX. In European Congress in Embedded Real Time Software and Systems
(ERTSS), Toulouse, France, February 1-3 2012.

[19] O. Gilles and J. Hugues. Expressing and enforcing user-defined constraints of AADL models.
In Proceedings of the 5th UML& AADL Workshop, Oxford, United Kingdom, 22-26 March
2010.

[20] H. Bauer, J.-L. Scharbarg, and C. Fraboul. Applying trajectory approach with static priority
queueing for improving the use of available AFDX resources. Real-Time Systems, 48:101–
133, 2012.

[21] M. Boyer, N. Navet, M. Fumey, J. Migge, and L. Havet. Combining static priority and
weighted round-robin like packet scheduling in AFDX for incremental certification and
mixed criticality support. In Proceedings of the 5th European Conference for Aeronautics
and Space Sciences (EUCASS), Munich, Germany, July 1-5 2013.

[22] X. Li, J.-L. Scharbarg, and C. Fraboul. Improving end-to-end delay upper bounds on
an AFDX network by integrating offsets in worst-case analysis. In IEEE Conference on
Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2010.

[23] J.J. Gutiérrez, J.C. Palencia, and M. González Harbour. Response time analysis in AFDX
networks with sub-virtual links and prioritized switches. In XV Jornadas de Tiempo Real,
Santander, Spain, January-February 2012.

[24] J.-L. Scharbarg and C. Fraboul. Methods and tools for the temporal analysis of avionic
networks. In Joo Er Meng, editor, New trends in technologies: control, manage-
ment,computational intelligence and network systems, chapter 21, pages 413–438. InTech -
Open Access Publisher, http://www.intechweb.org, novembre 2010.

25

	Introduction
	Modeling avionics systems with AADL
	The Flight Management System
	The Integrated Modular Avionics platform
	The Architecture Analysis & Design Language
	Modeling the FMS in AADL

	Analysis as part of the design process
	Lessons learned : there are dependencies between modeling concerns
	Example : integration of the Bandwidth Allocation Gap (BAG) parameter into an incomplete AADL model
	Worst-Case Traversal Time evaluation
	Network Calculus analysis and tool set
	Model refinement

	Conclusions and perspectives
	Appendices
	Basics for AFDX Worst-Case Traversal Time evaluation
	Introduction
	ARINC664 standard : definition and requirement of AFDX latencies
	End system latencies
	Switch latencies

	AFDX (Worst-Case) Traversal Time Evaluation

	References

