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In the past decades, advanced probabilistic methods have had significant impact on the field of finance,
both in academia and in the financial industry. Conversely, financial questions have stimulated new research
directions in probability. In this survey paper, we review some of these developments and point to some areas
that might deserve further investigation. We start by reviewing the basics of arbitrage pricing theory, with
special emphasis on incomplete markets and on the different roles played by the “real-world” probability
measure and its equivalent martingale measures. We then focus on the issue of model ambiguity, also called
Knightian uncertainty. We present two case studies in which it is possible to deal with Knightian uncertainty
in mathematical terms. The first case study concerns the hedging of derivatives, such as variance swaps, in
a strictly pathwise sense. The second one deals with capital requirements and preferences specified by
convex and coherent risk measures. In the final two sections we discuss mathematical issues arising from
the dramatic increase of algorithmic trading in modern financial markets.
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1. The coin tossing view of finance and the appearance of
Brownian motion

The systematic use of advanced probabilistic methods in the context of academic Finance begins
in the mid-sixties. It was pioneered at M.I.T. by Paul Samuelson [92] and greatly stimulated
by the rediscovery of “Théorie de la Spéculation”, the doctoral thesis [5] of Louis Bachelier,
that had been defended in Paris in 1900 based on a report by Henri Poincaré. In this thesis,
Brownian motion makes its appearance as a mathematical model for the price fluctuations of
a liquid financial asset. Arguing that prices should remain positive, Samuelson proposed to use
geometric Brownian motion, which soon became a standard reference model. In 1973, Black and
Scholes [9] and Merton [82] derived their seminal formula for the price of a call-option in this
setting.

Why does Brownian motion appear in the financial context? Here is a first rough argument. At
each fixed time, the price of a stock could be seen as a temporary equilibrium resulting from a
large number of decisions to buy or sell, made in a random and more or less independent manner:
Many coins are thrown successively, and so Brownian motion should arise as a manifestation of
the central limit theorem. This is the “Coin-Tossing View of Finance”, as it is called by J. Cassidy
in How Markets Fail [17]. This rough argument can be refined by using microeconomic assump-
tions on the behavior of agents and on the ways they generate a random demand, and then the
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application of an invariance principle typically yields a description of the price fluctuation as a
solution of a stochastic differential equation driven by Brownian motion or, more generally, by a
Lévy process; see, for example, [48] and the references therein.

At this point, however, it is instructive to recall the following caveat of Poincaré in Science et
Méthode [90] as quoted in [71]:

When men are in close touch with each other, they no longer decide randomly and independently of each other,
they react to the others. Multiple causes come into play which trouble them and pull them from side to side. But
there is one thing that these influences cannot destroy and that is their tendency to behave like Panurge’s sheep.
And it is that which is preserved.

Thus we find, right at the beginning of the use of modern probabilistic methods in finance, a warn-
ing sign pointing to interaction and herding effects which may render invalid a straightforward
application of the central limit theorem.

In his “Three essays on Capital Markets” [78], David Kreps uses a different kind of argument,
where geometric Brownian motion appears as a rational expectations equilibrium. Suppose that
agents compute their demand by maximizing expected utility. If their preferences are given by
power utility functions, and if their subjective expectations are described by geometric Brownian
motion, then the resulting price equilibrium would indeed be a geometric Brownian motion. Thus
geometric Brownian motion is described as a fixed point for an aggregation problem based on
the preferences and expectations of highly sophisticated agents. Here again, Poincaré’s caveat
throws some doubt on the assumptions of rationality implicit in such an argument.

Bachelier himself does not invoke the central limit theorem, nor does he argue in terms of
expected utility. Instead he starts out with a simple equilibrium argument: “It seems that the
market, that is to say, the set of speculators, must not believe in a given instant in either a rise
or a fall, since for each quoted price there are as many buyers as sellers”. As a result, “the
mathematical expectation of the speculator is zero”. Stated in modern terms, Bachelier insists
that the price process should be a martingale under a probability measure P ∗ which describes
the market’s aggregate belief. Assuming continuous paths and adding a stationarity requirement
for the increments, it follows that the price process is indeed a Brownian motion.

What is the current mainstream view? To begin with, there is a broad interdisciplinary con-
sensus across departments of Mathematics, Finance, and Economics that the discounted price
fluctuation of a liquid financial asset should be viewed as a stochastic process X = (Xt )0≤t≤T

on some underlying probability space (�, F ,P ). The intuition is typically objectivistic: Such a
probability measure P exists, it can be identified at least partially by statistical and economet-
ric methods, and it should satisfy certain a priori constraints. These constraints correspond to
some degree of market efficiency. In its strongest form, market efficiency would require that X

is a martingale under P . In the mainstream view, however, a weaker and more flexible version
of market efficiency is assumed, namely the absence of safe (and not just statistical) arbitrage
opportunities. In other words, the price process should not admit any trading strategy that pro-
duces a positive expected gain over the risk free return without any downside risk. If this is made
precise in a suitable manner, the absence of arbitrage opportunities can be characterized by the
existence of an equivalent martingale measure, i.e., a probability measure P * equivalent to P

such that the properly discounted price process X is a (local) martingale under P *. This char-
acterization is often called the Fundamental Theorem of Asset Pricing. A preliminary version
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appears in Harrison and Kreps [58], and its definitive form is due to Delbaen and Schachermayer
[27–29]; see also Kabanov [68] and Yan [108].

Thus an economic assumption, namely the absence of arbitrage opportunities, guarantees that

P ∗ �= ∅,

if we denote by P ∗ the set of equivalent martingale measures P ∗. Due to well-known results
of Jacod, Yor and others in the “general theory” of stochastic processes of the 70s and 80s,
this implies that the process X is a semimartingale under the original measure P , and hence
a stochastic integrator in the sense of Bichteler and Dellacherie. This allows one to apply the
techniques of Itô calculus. Moreover it follows, due to a line of arguments initiated by Wolfgang
Doeblin [32] and completed by I. Monroe [84,85], that X is a Brownian motion up to a random
time change. In this way, Brownian motion reappears in the present general setting, although not
necessarily in a very explicit manner.

2. Derivatives and the paradigm of perfect hedging

A derivative, or a contingent claim, specifies a payoff H(ω) contingent on the scenario ω ∈ �

which will be realized. For example, a European call option with strike price c and maturity T

has payoff H(ω) = (XT (ω) − c)+. What is the fair price which should be payed by the buyer
of such a contingent claim H ? In other words, what is the fair deterministic equivalent to the
uncertain outcome H ? This is a classical question, and the standard answer goes back to the
founding fathers of probability theory, in particular to Jacob Bernoulli. It says that you should
assign probabilities to the different scenarios ω and compute the expected value

EP [H ] =
∫

H dP

of the random variable H with respect to the resulting probability measure P . Following Daniel
Bernoulli [6], one might want to add a risk premium in order to take account of risk aversion.
More precisely, one could describe risk aversion by a strictly increasing and concave utility
function u and compute the price π(H) of H as the certainty equivalent u−1(EP [u(H)]). The
difference π(H) − EP [u(H)], which is positive by Jensen’s inequality, is then interpreted as a
risk premium. But in our present financial context and under the following uniqueness assump-
tion (1), the basic insight of Black and Scholes [9] and Merton [82] leads to a quite different
result. In particular there will be no reason to argue in favor of a risk premium because the
following argument shows that there is no intrinsic risk in that case.

Consider a financial market model such that P ∗ �= ∅. In many situations, and in particular for
simple diffusion models such as geometric Brownian motion, the equivalent martingale measure
is in fact unique, that is,

∣∣P ∗∣∣ = 1. (1)
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Uniqueness of the equivalent martingale measure implies that the model is complete in the fol-
lowing sense: Any contingent claim H can be represented, P -almost surely, in the form

H = V0 +
∫ T

0
ξt dXt (2)

with some constant V0 and some predictable process ξ = (ξt )0≤t≤T such that the stochastic
integral makes sense. For simple diffusion models such as geometric Brownian motion, this
representation follows from Itô’s theorem that functionals of Brownian motion can be represented
as stochastic integrals of Brownian motion; see [91] for the general case. Since the expectation
of the stochastic integral under the equivalent martingale measure P ∗ is zero, the constant V0 is
given by V0 = E∗[H ].

In financial terms, the representation (2) amounts to a perfect replication of the contingent
claim by means of a dynamic trading strategy. Indeed, Itô’s non-anticipative construction of the
stochastic integral allows one to interpret the stochastic integral in (2) as the cumulative net gain
generated by the self-financing trading strategy consisting in holding ξt units of the underlying
asset at each time t . The constant amount V0 can now be viewed as the initial capital which is
needed for a perfect replication, or a perfect hedge, of the contingent claim. But this implies that
the unique arbitrage-free price of the claim is given by

π(H) = V0 = E∗[H ], (3)

since any other price would offer the opportunity for a gain without any risk. If, for example, the
actual price were higher then one could sell the claim at that price, use the smaller amount V0 to
implement the hedging strategy which generates the random amount H which has to be paid in
the end, and retain the difference between the price and V0 as a risk-free gain.

Thus, the uniqueness assumption (1) yields a simple answer to the problem of pricing and
hedging financial derivatives. Note that the answer only involves the unique equivalent martin-
gale measure P ∗. The role of the probability measure P ∗ is to serve as a sophisticated consistency
check for the pricing of assets, not for the purpose of prediction. The original probability mea-
sure P was meant to serve that purpose, but here it matters only insofar as it fixes a class of null
sets. As we are going to see in Section 5.1 below, we can actually eliminate P completely if we
are ready to restrict the space of possible scenarios.

3. Incompleteness as a source of new probabilistic problems

As soon as a financial market model becomes more realistic by admitting that there are more
sources of uncertainty than traded financial instruments, the equivalent martingale measure is no
longer unique, and this implies ∣∣P ∗∣∣= ∞.

As a result, the paradigm of a perfect hedge breaks down, and intrinsic risks appear at the level of
derivatives. The model is then called incomplete. From a mathematical point of view, incomplete-
ness has turned out to be a rich source of new problems in Stochastic Analysis. In particular it has
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motivated new versions of probabilistic decomposition theorems such as the Kunita–Watanabe
decomposition and the Doob–Meyer decomposition.

Consider a derivative with non-negative payoff H and maturity date T . An admissible hedg-
ing strategy is given by an initial capital V0 and a predictable process ξ such that the resulting
portfolio process V defined by

Vt = V0 +
∫ t

0
ξs dXs (4)

remains non-negative. At the maturity date T , any such strategy yields a decomposition

H = VT + CT

of the contingent claim into a part which is perfectly hedged, and hence priced by arbitrage as in
the preceding section, and a remaining hedging error CT . Different economic preferences induce
different choices of the strategy, and hence a different decomposition of the claim.

Suppose one wants to minimize the hedging error in a mean-square sense with respect to the
given probability measure P . This will amount to a projection in the space L2(P ) of the contin-
gent claim H onto a sub-space of stochastic integrals. Under the strong form of the efficient mar-
ket hypothesis, that is P ∈ P ∗, this projection problem is solved by using the Kunita–Watanabe
decomposition in the space of square-integrable martingales; see [50]. If one drops this assump-
tion and considers the case P /∈ P ∗, the resulting decomposition problem can often be reduced
to an application of the Kunita–Watanabe representation with respect to a suitable minimal mar-
tingale measure; cf. [47]. More generally, methods of mean-variance hedging for incomplete
financial markets have been a source of new versions of the Kunita–Watanabe decomposition
and of new results on closure properties of spaces of stochastic integrals with respect to a semi-
martingale; see, for example, the surveys [49] and [102].

From a financial point of view, however, the mean-variance approach fails to capture a basic
asymmetry: The main purpose is to control the shortfall, defined as the positive part C+

T = (H −
VT )+ of the hedging error. If one insists on keeping the shortfall down to 0, then one is led
to a remarkable new extension of the Doob–Meyer decomposition. Consider a right-continuous
version U of the process

Ut = ess sup
P ∗∈P ∗

E∗[H |Ft ], 0 ≤ t ≤ T . (5)

Now note that U is a P ∗-supermartingale, that is, a supermartingale under any P ∗ ∈ P ∗. As
shown in increasing generality in [37,42,76], any non-negative P ∗-supermartingale U admits a
decomposition of the form

Ut = U0 +
∫ t

0
ξs dXs − At (6)

with some increasing optional (but in general not predictable) process A. But the stochastic
integral is a P ∗-local martingale, and so (6) can be viewed as a new version of the classical Doob–
Meyer decomposition that holds simultaneously for all P ∗ ∈ P ∗. In the special case (5), this
optional decomposition can be interpreted as a superhedging procedure: Starting with the initial
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capital V0 = U0, applying the trading strategy ξ and sequentially withdrawing the cumulative
amount At from the generated portfolio value Vt defined in (4), one ends up with the final value
UT = H . Dually, Ut can be characterized as the minimal capital that is needed at time t in order
to cover the contingent claim H by a dynamic trading strategy run from time t up to T .

The superhedging approach may tie down a large capital amount in order to stay on the safe
side, and therefore it is usually seen as too conservative. But the mathematics of superhedging
remains important even if zero tolerance for a shortfall is relaxed. Suppose, for example, that
one imposes some bound for the expected loss EP [�(C+

T )], defined in terms of some convex loss
function �. Then the resulting problem of efficient hedging can be split into a statistical decision
problem, which is solved by a randomized test ϕ, and a dynamic superhedging problem for the
modified claim H̃ = ϕH ; see [43].

More generally, the efficient hedging problem can be embedded into a problem of dynamic
portfolio optimization for incomplete financial markets, where the criterion is usually formulated
in terms of expected utility. There is a rich literature on such dynamic optimization problems,
from the point of view of both optimal stochastic control as in [69,70,104] and convex duality as
in [74,75]

Note that in these optimization problems for incomplete financial markets the probability mea-
sure P does come in explicitly, in contrast to the superhedging approach. But it does so at the
level of preferences, namely in the form of expected utility. As soon as one admits model uncer-
tainty and considers robust preferences as described in Section 5.2 below, new problems of robust
optimization arise; see, for example, [40,61,95,96] and the survey [46]. Another new direction
consists in analyzing the temporal dynamics of preference structures as in [86,87].

4. P versus P ∗

As we have seen, the standard setting in mathematical finance is probabilistic, and it involves two
types of probability measures. On the one hand, it assumes that there is an objective probability
measure P , often called “real world” or “historical” probability measure. On the other hand, the
absence of arbitrage implies the existence of an equivalent martingale measure P ∗, which should
be interpreted as a consistent price system that reflects the present “market’s belief”. From a
mathematical point of view, the coexistence of these measures and the explicit description of
their mutual densities is a rich source of technical exercises, and the Girsanov transformation
allows one to move freely back and forth between P and P ∗. At a conceptual level, however,
there is a crucial difference between their roles.

The probability measure P is usually seen as a probabilistic model that tries to capture typical
patterns observed in the past; under implicit stationarity assumptions, it is then used as a forward-
looking prediction scheme. While it is often admitted that any specific choice of P involves a
considerable amount of model risk, it is widely believed that a true probability measure exists,
and that probabilistic models are getting better in approaching that reality. Bruno de Finetti [25,
26], however, would argue that the problem is more fundamental than the issue of model risk.
He would put in doubt that it makes any sense to associate an objective probability P [A] to a
financial event of the following type:

A = {the sovereign bond with ISIN x will not default}.
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On the other hand, a probability P ∗[A], or rather an expectation E∗[H ] of the discounted future
cash flow H generated by the bond, is assigned each day on the financial market, either directly
through the present market price of the bond or by the prices of instruments such as credit default
swaps (CDS) that provide insurance against a default of the bond. Thus the probability measure
P ∗ reflects the aggregate odds of a large number of bets made on the market. This is in accor-
dance with de Finetti’s claim that probability does not exist, but that one can of course take bets
on a given event at certain odds. De Finetti imposes consistency rules for the odds specified for
different bets, and he uses an emphatic “you” to stress the subjective nature of the resulting prob-
ability measure P ∗. At the level of a single agent, these consistency rules may be viewed as an
overly optimistic rationality requirement. But if we replace de Finetti’s “you” by “the financial
market”, this requirement becomes more compelling since the market is more efficient in enforc-
ing consistency via arbitrage than any given individual. In fact, there is a close connection, both
at the conceptual and technical levels, between the fundamental theorem of asset pricing and de
Finetti’s reconstruction of a probability measure P ∗ from a consistent system of bets; see, for
example, [10,94].

Apart from such foundational aspects, the attempts of predicting financial developments in
terms of an “objective” probability measure P can hardly been described as a success story,
especially in view of the recent financial crisis. On the other hand, a lot is known, at any given
time t , about the market’s present predictions of future developments in terms of a martingale
measure P ∗

t . More precisely, the market’s view at time t is given by the conditional probability
distribution

P ∗
t [·|Ft ] on F̂t (7)

where Ft is the σ -field describing the available information at time t , and F̂t is the σ -field gen-
erated by the pay-offs of traded contingent claims with maturities T > t . Present prices of call
or put options with maturity T provide information about the marginal distribution of P ∗

t [·|Ft ]
at time T > t , and present prices of more exotic options provide information about the multidi-
mensional marginals. This forward-looking “lecture du marché” is an important part of current
quantitative analysis.

At any given time t , the market’s present view of the future as expressed in the conditional pric-
ing measure P ∗

t [·|Ft ] is consistent across different claims, and in particular it is time-consistent
across different maturities T > t . But this consistent picture may change from day t to day t + 1,
and it may do so in a manner which is not time-consistent. Time-consistency across different
dates t may of course be desirable from a normative point of view, and it is usually taken for
granted in the mathematical finance literature. In mathematical terms, it amounts to the require-
ment that the conditional distributions in (7) all belong to the same martingale measure P ∗ ∈ P ∗.
In the virtual world of a complete financial market model, time-consistency would thus hold
automatically, due to the fact that the equivalent martingale measure is unique. In the larger
world of incomplete financial market models, and a fortiori in reality, one should expect time-
inconsistency. In our standard framework, this would be described by a flow in the space P ∗ of
martingale measures. This flow could be continuous, but it also could include jumps correspond-
ing to abrupt regime changes.
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Let us denote by P ∗
UI the class of martingale measures P ∗ ∈ P ∗ such that the price fluctuation

X is a uniformly integrable martingale under P ∗. Typically, both P ∗
UI and P ∗

NUI := P ∗ \ P ∗
UI

are nonempty. The behavior of X under a measure P ∗ ∈ P ∗
NUI is often interpreted as a bub-

ble; cf. [66,67]. A regime switch from an initial martingale measure P ∗
0 ∈ P ∗

UI , which does not
exhibit a bubble, to another martingale measure P ∗

1 ∈ P ∗
NUI would thus describe the sudden ap-

pearance of a bubble as in [66]. But the flow in the space P ∗ could also move slowly from P ∗
0 to

P ∗
1 as in [7], and this would induce the slow birth of a bubble as a submartingale.
A deeper economic understanding of the dynamics of P ∗

t would involve the microstructure
of financial markets, i.e., the dynamic behavior of agents with heterogeneous and interacting
preferences and expectations, with special emphasis on the “herding” effects which are driving
bubbles and crashes. So far, there are various toy models, such as [41] and the references therein,
which try to capture some of these effects. But really compelling microstructure models which
offer serious possibilities for real-world prediction are not yet in sight.

There is, however, an increasing need to complement the classical microeconomic picture of
noise traders and information traders by taking into account a variety of trading algorithms which
are actually used on the financial market. In a way, this may make the analysis of the resulting
price dynamics more tractable, since the structure of trading algorithms is more transparent and
easier to model than the behavioral characteristics of individual agents. While the social utility of
such algorithms may be debatable, it is important to understand their effects as clearly as possible
in mathematical terms. In particular, such an understanding is crucial for any attempts to design
an intelligent regulatory framework that does not create new arbitrage opportunities and thereby
new sources of instability in the financial system. In Sections 6 and 7 we are going to describe
some of the simplest mathematical issues which appear in connection with the interaction of
trading algorithms.

5. Knightian uncertainty

In recent years, there has been an increasing awareness, both among practitioners and in
academia, of the problems caused by an excessive reliance on a specific probabilistic model
and by the resulting “control illusion”; see, for example, Section 4.9 in [60]. As a result, there
is a renewed focus on the issue of model uncertainty or model ambiguity, also called Knight-
ian uncertainty in honor of Frank Knight [73], who introduced the distinction between “risk”
and “uncertainty” in the context of economic decision theory. Here, “risk” refers to situations
where something is known about the probability measure P (“known unknowns”), while “un-
certainty” refers to situations where this is not the case (“unknown unknowns”). In its analysis
of the recent subprime crisis, the Turner Review [105] distinguishes between “mathematically
modellable risk” and Knightian uncertainty, and thus seems to suggest that Knightian uncer-
tainty is beyond the scope of mathematical analysis. We do not share this conclusion. To the
contrary, we see Knightian uncertainty as a rich source of new mathematical problems. This is
illustrated by two recent developments, where model uncertainty is taken into account explic-
itly. In Section 5.1, we show how some key hedging arguments in mathematical finance can be
developed without even introducing any probability measure. Another example is the specifi-
cation of capital requirements and of preferences in terms of convex risk measures, described
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in Section 5.2. Here the analysis is not tied to the specific choice of a probability measure. In-
stead, one considers a whole class of probabilistic models and takes a conservative worst-case
approach.

5.1. Probability-free hedging

Consider a financial market with one risky and one riskless asset. In mainstream finance, the price
evolution of the risky asset is usually modeled as a stochastic process defined on some probability
space. Here, however, we are going to work in a strictly pathwise setting. All we assume is that
the evolution of asset prices is given by one single continuous non-negative trajectory (Xt )0≤t≤T .
As before, we will suppose for simplicity that the prices of the riskless asset, or “bond”, are given
by Bt = 1 for all t .

Now we discuss the possibility of dynamic trading in such a market. To this end, consider a
trading strategy (ξt , ηt )0≤t≤T , where ξt describes the number of shares in the risky asset and ηt

the number of shares in the bond held at time t . The value of the portfolio (ξt , ηt ) is given by

Vt = ξtXt + ηtBt = ξtXt + ηt . (8)

To discuss investment or hedging strategies in this framework, it is important to define self-
financing trading strategies. Passing to the continuous-time limit from a discrete-time frame-
work suggests that the strategy (ξt , ηt )0≤t≤T should be called self-financing if the value process
from (8) satisfies the relation

Vt = V0 +
∫ t

0
ξs dXs, 0 ≤ t ≤ T , (9)

where the integral is the limit of nonanticipative Riemann sums:

∫ t

0
ξs dXs := lim

n↑∞
∑
tni ≤t

ξtni−1
(Xtni

− Xtni−1
). (10)

Here we can take for instance tni = i2−n. According to the results in [38], this is possible when
the trajectory X admits a continuous quadratic variation

[X]t = lim
n↑∞

∑
tni ≤t

(Xtni
− Xtni−1

)2, 0 ≤ t ≤ T ,

and if ξ is of the form ξt = g(Xt ,A
1
t , . . . ,A

k
t ) for a continuous function g, which is differentiable

in its first argument, and for continuous trajectories (Ai
t )0≤t≤T of bounded variation. In this case,

it was shown in [38] that Itô’s formula holds for any C2-function f in the following strictly
pathwise sense:

f (Xt ) = f (X0) +
∫ t

0
f ′(Xs) dXs + 1

2

∫ t

0
f ′′(Xs) d[X]s . (11)
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Note that the second integral in (11) can be defined as a classical Stieltjes integral, since [X]t is
a nondecreasing function of t .

As pointed out in [39], it follows immediately that a non-constant trajectory X must have
nontrivial quadratic variation so as to exclude arbitrage opportunities. Indeed, otherwise (11)
reduces to the standard fundamental theorem of calculus, f (Xt ) = f (X0) + ∫ t

0 f ′(Xs) dXs , and
by (9) the self-financing strategy ξt = 2(Xt − X0) and ηt = (Xt − X0)

2 − ξtXt will generate the
strictly positive wealth Vt = (Xt − X0)

2 out of the initial capital V0 = 0.
The probability-free trading framework sketched above can for instance be used to analyze the

hedging error and the robustness of model-specific hedging strategies such as in [36] or [98]. In
some special cases, it is even possible to find completely model-independent hedging strategies.
We will illustrate this now for the case of a variance swap by transferring arguments from [88]
and [33] to our probability-free setting. A variance swap is a path-dependent financial derivative
with payoff

H =
n∑

i=1

(logXti+1 − logXti )
2

at time T , where 0 < t1 < · · · < tn = T are fixed time points. These time points are often chosen
so that Xti is the closing price of the risky asset at the end of the ith trading day; see, e.g., [14,15,
53] for background on variance swaps. When n is large enough, the payoff of the variance swap
can thus be approximated by the quadratic variation of logX, i.e.,

H ≈ [logX]T =
∫ T

0

1

X2
t

d[X]t . (12)

Here, the second identity follows, e.g., from Proposition 2.2.10 in [103]. On the other hand,
applying Itô’s formula (11) to the function f (x) = logx yields

logXT − logX0 =
∫ T

0

1

Xt

dXt − 1

2

∫ T

0

1

X2
t

d[X]t . (13)

Putting (12) and (13) together implies that

H ≈
∫ T

0

1

X2
t

d[X]t = 2 logX0 − 2 logXT + 2
∫ T

0

1

Xt

dXt . (14)

The Itô integral on the right-hand side of (14) can be regarded as the terminal value of the
self-financing trading strategy that has zero initial investment and otherwise consists in holding
ξt = 2/Xt shares of the risky asset at each time t . To interpret the two logarithmic terms in (14),
we apply the Breeden–Litzenberger formula,

h(XT ) = h(X0) + h′(X0)(XT − X0) +
∫ X0

0
(K − XT )+h′′(K)dK

(15)

+
∫ ∞

X0

(XT − K)+h′′(K)dK



1316 H. Föllmer and A. Schied

(e.g., [45], Exercise 1.3.3) to the function h(x) = logx and obtain

H ≈ − 2

X0
(XT − X0) +

∫ X0

0
(K − XT )+ 2

K2
dK +

∫ ∞

X0

(XT − K)+ 2

K2
dK

(16)

+ 2
∫ T

0

1

Xt

dXt .

That is, H can be hedged by selling 2/X0 zero-price forward contracts, holding portfolios con-
sisting of 2/K2 dK “out-of-the-money” put and call options with maturity T for each strike K ,
and using the self-financing trading strategy with ξt = 2/Xt . The most remarkable feature of this
hedging strategy is that it is model-independent. That is, (16) is valid independently of possible
probabilistic dynamics of the price process X. The hedging strategy is therefore not subject to
model risk that might result from a misspecification of such probabilistic dynamics.

Similar results as obtained for variance swaps are valid for so-called Gamma or entropy swaps
with payoff

n∑
i=1

Xti (logXti+1 − logXti )
2

and also for corridor variance swaps with payoff

n∑
i=1

1{A≤Xti
≤B}(logXti+1 − logXti )

2,

for some real numbers A,B , with A < B . See also [24] for further extensions.
Note that the Breeden–Litzenberger formula (15) can be regarded as a simple static, and hence

model-free, hedge for the option h(XT ) in terms of standard “plain vanilla” put and call op-
tions. In some cases, static hedges (or superhedges) can also be constructed for path-dependent
derivatives such as barrier or lookback options; see, e.g., [12,23,62].

If uncertainty is restricted to a suitable class of scenarios, the strictly pathwise approach can
also be used to formulate the crucial hedging argument of Section 2 in a probability-free manner.
To this end, we fix a continuous volatility function σ(x, t) > 0 on [0,∞) × [0, T ] and restrict
the possible scenarios to the set �σ of all nonnegative continuous functions ω on [0, T ] such
that the coordinate process Xt(ω) = ω(t) admits an absolutely continuous quadratic variation
d[X(ω)]t = σ 2(Xt (ω), t)X2

t (ω)dt . Consider a derivative of the form H = h(XT ). As explained
in [8] or [39], we can now use the time-dependent extension of the pathwise Itô formula (11)
to construct a perfect hedge of the form ξt (ω) = Fx(Xt (ω), t), where F solves an appropriate
parabolic equation with boundary condition F(x,T ) = h(x). Moreover, a theorem of Paul Lévy
implies that there is exactly one probability measure P ∗ on the space �σ such that the coordinate
process X becomes a martingale under P ∗. The price of the derivative H , defined as the initial
cost of the perfect hedge, can then be computed as in (3) as the expected value E∗[H ] of H

under the measure P ∗.
In order to extend the preceding construction to more exotic options, one can use a strictly

pathwise version of Malliavin calculus as recently developed in [34] and [21]. For an alternative
pathwise approach in terms of rough paths, see [52,80].
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5.2. Monetary risk measures

The capital requirement associated with the profits and losses, or P&L, of a given financial posi-
tion is specified as the minimal capital that should be added to the position in order to make that
position acceptable from the point of view of a supervising agency. This idea can be formalized
as follows by the notion of a monetary measure of risk.

The P&L describes the uncertain net monetary outcome at the end of a given trading period,
and so it will be modeled as a real-valued measurable function X on a measurable space (�, F )

of possible scenarios. We fix a linear space X of such P&Ls and a nonempty subset A ⊂ X asso-
ciated with those positions that are deemed acceptable. We require that X contains all constants
and that Y ∈ A whenever Y ≥ X for some X ∈ A. The functional ρ on X defined by

ρ(X) := inf{m ∈ R|X + m ∈ A} (17)

is then called a monetary risk measure, and the value ρ(X) is interpreted as the capital require-
ment for the financial position with P&L X.

The standard example of a monetary risk measure is Value at Risk at some level λ ∈ (0,1).
For a given probabilistic model described by a probability measure P on (�, F ), X is deemed
acceptable for Value at Risk if the probability P [X < 0] of a shortfall does not exceed the level λ.
The resulting monetary risk measure (17) is then given, up to a minus sign, by a λ-quantile of
the distribution of X under P . Value at Risk is widely used in practice. But it also has a number
of deficiencies. In particular, it does not account for the size of a possible shortfall and therefore
penalizes diversification while encouraging the concentration of risk. The recognition of these
deficiencies motivated the axiomatic approach to a general theory of monetary risk measures
as initiated by Artzner, Delbaen, Eber, and Heath [3] in the late nineties. But there are also
other drawbacks. For instance, in reaction to the recent financial crisis, The Turner Review –
A regulatory response to the global banking crisis [105] emphasizes an excessive reliance on a
single probabilistic model P and thus raises the issue of Knightian uncertainty.

We are now going to sketch some of the key ingredients in the theory of convex risk measures.
As we will see, this theory does not only address the issue that diversification should not be
penalized by the capital requirement. It also provides a case study on how to deal with Knightian
uncertainty in a mathematical framework.

To capture the idea that diversification should be encouraged rather than penalized by a mone-
tary risk measure, we require that the acceptance set A be convex. In this case, the monetary risk
measure ρ defined via (17) is called a convex risk measure, because convexity of A is equivalent
to convexity of ρ. When A is even a convex cone, ρ is called a coherent risk measure. The notion
of a coherent risk measures was introduced in the seminal paper [3]; the subsequent extension
from coherent to convex risk measures was introduced independently in [59], [51], and [44].
Convex duality implies that a convex risk measure typically takes the form

ρ(X) = sup
Q∈Qρ

{
EQ[−X] − α(Q)

}
, (18)

where Qρ is some class of probability measures and α : Qρ → R ∪ {+∞} is a penalty func-
tion. The capital requirement is thus determined as follows: The expected loss of a position is
calculated for each probability measure Q ∈ Qρ and penalized by the penalty α(Q); then one
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takes the worst penalized expected loss over the class Qρ . This procedure can be interpreted as
follows in the light of model uncertainty. No probability measure is fixed in advance, but prob-
ability measures Q ∈ Qρ do come in via convex duality and take the role of stress tests. The set
Qρ can be regarded as a class of plausible probabilistic models, in which each model Q ∈ Qρ

is taken more or less seriously, according to the size of the penalty α(Q). In this way, model
uncertainty is taken into account explicitly. In the special coherent case the penalty function will
vanish on Qρ , and so the representation (18) reduces to

ρ(X) = sup
Q∈Qρ

EQ[−X], (19)

that is, to the worst case expected loss over the class Qρ .
In the context of an arbitrage-free but possibly incomplete financial market model, the super-

hedging risk measure,

ρ(X) = sup
P ∗∈P ∗

E∗[−X],

is clearly a coherent risk measure. The corresponding acceptance set A consists of all X for
which one can find a dynamic trading strategy with initial capital V0 = 0 and final outcome VT

such that the pay-off of the combined position X + VT is nonnegative with probability one.
In the setting of mathematical finance, the history of coherent and convex risk measures begins

with the seminal paper [3], as mentioned above. In a wider mathematical context, however, there
is a considerable pre-history in areas such as in game theory and Choquet integration [30,99],
robust statistics [63,64], and actuarial premium principles [31,57].

Risk measures have also appeared implicitly in the microeconomic theory of preferences. Pref-
erences on the space X are usually represented by some utility functional U on X . Under the
axioms of rationality as formulated by von Neumann and Morgenstern [106] and Savage [93],
U takes the form of an expected utility, i.e.,

U(X) = EP

[
u(X)

]
(20)

for some increasing continuous function u and some probability measure P on (�, F ). As shown
by Gilboa and Schmeidler [56] in the late eighties, a natural relaxation of the axioms of rationality
implies that the linear risk measure −EP [·] in (20) should be replaced by a general coherent risk
measure ρ:

U(X) = −ρ
(
u(X)

) = inf
Q∈Qρ

EQ

[
u(X)

]
.

More recently, Maccheroni, Marinacci, and Rustichini [81] have relaxed the rationality axioms
even further. In their axiomatic setting, ρ is now a convex risk measure, and so the numerical
representation of preferences takes the form

U(X) = −ρ
(
u(X)

) = inf
Q∈Qρ

{
EQ

[
u(X)

] + α(Q)
}
.

While classical risk aversion is captured by concavity of the utility function u, the concavity of
−ρ corresponds to a behavioral assumption of model uncertainty aversion; see [56], [81], and
also [45].
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6. Price formation, market microstructure, and the emergence
of algorithmic trading

When L. Bachelier and P.A. Samuelson formulated their models of asset price processes, orders
were usually executed by broker signals in trading pits. But in recent years, the way in which
financial markets operate has changed dramatically. We are now going to discuss some of the
new challenges for mathematical finance that are resulting from this change.

In 1971, the world’s first electronic stock exchange, NASDAQ, was opened. In the subsequent
decades, fostered by measures of market deregulation and technological improvements, more
and more trading pits were abandoned and replaced by fully electronic exchanges. Such an elec-
tronic exchange basically operates with two different kinds of orders, limit orders and market
orders. A limit order is an order to buy or sell a certain amount of shares at a specific price. It is
collected in an electronic limit order book until there is a matching sell or buy order. A market
order is an order to buy or sell a certain amount of shares at the best currently available price.
It thus consumes limit orders according to price priority. When the total size of all limit orders
at the best price is larger than the size of the incoming matching order, limit orders are usually
executed according to a first-in first-out rule. On this microscopic level, asset price dynamics
are thus represented not by a one-dimensional diffusion process but by the evolution of the en-
tire limit order book, which, from a mathematical point of view, can be regarded as a complex
queuing system. As such, it can at least in principle be modeled mathematically. With a suitable
model at hand, one can try to “zoom out” of the microscopic picture and characterize the lim-
iting dynamics of the mid price (i.e., the average between the best buy and sell limit orders) on
a mesoscopic diffusion scale. This can either lead to a confirmation of the standard modeling
paradigms of mathematical finance or to the discovery of new types of asset price dynamics.
Initial studies concerned with such questions were conducted in [4,11,19,20,22] with, e.g., [19]
finding a Bachelier-type model in the diffusion limit.

The emergence of electronic trading venues facilitated the use of computers for order place-
ment, and soon the new phenomena of algorithmic and high-frequency trading came into exis-
tence. Today, limit order books are updated in time intervals measured in milliseconds so that no
human being can possibly follow the price evolution of sufficiently liquid assets. The use of com-
puters is hence mandatory for market makers and many other traders. As a consequence, the vast
majority of orders in equity markets is now placed by computer algorithms. A good description
of the current state of electronic markets is given in [79].

The computerization of financial markets led to some effects that can be regarded as poten-
tially beneficial. For instance, the liquidity provided by high-frequency market makers and the
competition between the growing number of electronic trading venues contributed to a signifi-
cant decline of bid-ask spreads, thus reducing transaction costs for ordinary investors. There was
also some hope that computer programs would act more rationally than human investors, in par-
ticular in critical situations, and thus avoid panic and herding behavior. These hopes, however,
were seriously challenged by the Flash Crash of May 6, 2010. On that day, a sell order placed in
a nervous market triggered a “hot-potato game” among the trading algorithms of high-frequency
traders (HFTs), which resulted in the steepest drop of asset prices ever, followed by a sharp re-
covery within 20 minutes. The following quote from [18, page 3] gives some indication that the
Flash Crash was indeed generated by a feedback overflow between several trading algorithms:
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. . . HFTs began to quickly buy and then resell contracts to each other – generating a “hot-potato” volume ef-
fect as the same positions were rapidly passed back and forth. Between 2:45:13 and 2:45:27, HFTs traded over
27,000 contracts, which accounted for about 49 percent of the total trading volume, while buying only about 200
additional contracts net.

It is an interesting challenge to understand the reasons why interacting trading algorithms can end
up in such a “hot-potato game” and to reproduce this phenomenon in a mathematical model. As
we will see in the next section, there are already some preliminary results that may be connected
to this phenomenon.

Besides the possible creation of crash scenarios, there are also other aspects of electronic
trading that are potentially problematic. For instance, certain predatory trading algorithms scan
order signals for patterns resulting from the execution of large trades. Once such a large trade is
detected, the predatory trading algorithm tries to make a profit by building up a position whose
value will be increased by the price impact generated by the large trade; see [13,16,101]. To
escape the adverse effects of price impact and predatory trading, many investors resort to so-
called dark pools, in which orders are invisible to other market participants. But the fact that
many dark pools derive the execution price of orders from the ‘lit’ market facilitates predatory
trading techniques such as ‘fishing’, which are based on manipulating the price in the lit market;
see [72,77,83].

7. Price impact and order execution

The key to understanding algorithmic trading and its potential benefits and risks is the phe-
nomenon of price impact, i.e., the fact that the execution of a large order influences the price
of the underlying asset. It is one of the basic mechanisms by which economic agents interact
with the market and, thus, with each other. Spectacular cases in which price impact played an
important role were the debacle of Metallgesellschaft in 1993, the LTCM crisis in 1998, or the
unwinding of Jérôme Kerviel’s portfolio by Societé Générale in 2008. But price impact can also
be significant in much smaller trades, and it belongs to the daily business of many financial
institutions.

The first step in understanding price impact is the execution of a single trade, a problem at
which one can look on several scales. On a microscopic scale, one considers a trade that is small
enough to be executed by placing a single order in a limit order book. When this order is placed
as a market order, it will impact the limit order book by consuming limit orders and, if it is large
enough, shift the corresponding best price and widen the bid-ask spread; see [1,89,107]. When
it consists in placing or cancelling a limit order, its quantitative impact is not as easy to describe
but it is nevertheless existing. In either case, the impact of a trade is transient and will eventually
diminish, a fact that becomes important on the next, mesoscopic level.

Many trades are too big to be executed in one single order and therefore need to be split in a
series of smaller orders, sometimes called ‘child orders’, which are then spread out over a cer-
tain time interval. On this mesoscopic scale, trading algorithms are used to determine sizes and
timing of each child order. These algorithms are typically based on a market impact model, i.e.,
a stochastic model for asset prices that takes into account the feedback effects of trading strate-
gies. We refer to [55] for a survey on some models that are currently available. The problem of
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determining optimal trade execution strategies for a given cost criterion in a specific model has
a rich structure and often leads to questions that are of intrinsic mathematical interest. It is, for
instance, connected to the mathematical topics of finite-fuel control, Choquet capacity theory,
and Dawson–Watanabe superprocesses. Let us briefly sketch the latter connection as established
in [97]. When formulating the optimal trade execution problem as a stochastic control prob-
lem, the liquidation constraint translates into a singular terminal condition for the correspond-
ing Hamilton–Jacobi–Bellman equation. This equation can be further reduced to a quasilinear
parabolic partial differential equation with infinite terminal condition. But, according to [35],
such equations are related to the Laplace functionals of Dawson–Watanabe superprocesses.

The existence or nonexistence and the structure of optimal trade execution strategies can also
yield information on the viability of the underlying market impact model and perhaps even on
the nature of price impact itself; see, e.g., [2,54,65]. For instance, it was shown in [2] that the
price impact of single orders must decay as a convex function of time to exclude oscillatory trade
execution strategies that are to some extend reminiscent of the “hot-potato game” mentioned
earlier.

It should be pointed out that the market impact models currently available in the literature
are all relatively simple. In particular, there is yet no model that combines both transience and
nonlinearity of price impact in a truly convincing way.

On a macroscopic scale, the execution of the trade is seen in relation to the behavior of other
agents—or algorithms—in the market. As mentioned above, the fact that an agent is executing a
large trade can be betrayed to competitors for instance via the order signals created by the execu-
tion algorithm. When a competitor detects the execution of a large trade, it is generally believed
that predatory trading, as described above, is the corresponding profit-maximizing strategy. This
was also obtained as a mathematical result in [16] by analyzing a game-theoretic setting. By
slightly extending this setting, however, it was found in [101] that predatory trading may become
suboptimal in markets that are sufficiently ‘elastic’ in the sense that the price impact of orders
decays very rapidly. In such markets it is instead beneficial for the competitor to cooperate with
the large trader and to provide liquidity. A completely different pattern occurs, however, when
price impact is transient. Schöneborn [100] showed that in a discrete-time model with linear, ex-
ponentially decaying price impact the large trader and the competitor start a “hot-potato game”
very similar to the one observed in the Flash Crash.
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