
PhD-FSTC-2012-18
The Faculty of Sciences, Technology and Communication

DISSERTATION

Presented on 25/06/2012 in Luxembourg
to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU
LUXEMBOURG

EN INFORMATIQUE

by

Avradip Mandal
Born on 29 August 1982 in Kolkata (India)

Provable Security and
Indifferentiability

Dissertation defense committee
Dr. Alex Biryukov, Chairman
Associate Professor, Université du Luxembourg

Dr. Jean-Sébastien Coron, dissertation supervisor
Associate Professor, Université du Luxembourg

Dr. Yevgeniy Dodis
Associate Professor, New York University

Dr. Volker Müller, Vice Chairman
Associate Professor, Université du Luxembourg

Dr. David Pointcheval
Senior Researcher, CNRS, Head of the Crypto Team at ENS/INRIA CASCADE
Project

ii

iii

Abstract
In this thesis we consider different problems related to provable security and in-
differentiability framework. Ideal primitives such as random oracles, ideal ciphers
are theoretical abstractions of cryptographic hash functions and block ciphers re-
spectively. These idealized models help us to argue security guarantee for various
cryptographic schemes, for which standard model security proofs are not known. In
the first part of this thesis we consider the problems related to ideal primitive con-
struction starting from a different ideal primitive. We adopt the indifferentiability
framework proposed by Maurer et. al. in TCC’04 for this purpose. The indiffer-
entiability framework helps us to preserve the security guarantee of cryptographic
schemes when the ideal primitives are replaced by indifferentiable constructions,
even when the ideal primitives are used in a public manner.

At first, we consider the problem of ideal cipher domain extension. We show
the 3-round Feistel construction, built using n-bit ideal ciphers are actually indif-
ferentiable from a 2n-bit ideal cipher. We also consider other related issues such as,
why 2-round Feistel is not sufficient, security analysis in standard indistinguisha-
bility model for both 2 and 3 round constructions, etc. Afterwards, we consider the
open problem: whether 6-round Feistel construction using random round functions
is indifferentiable from a random invertible permutation or not. We give a partial
positive answer to this question. We show the construction is actually publicly-
indifferentiable (which is a restricted version of full indifferentiability) from an in-
vertible random permutation.

In the later part of the thesis, we concentrate on some issues related to the se-
curity of Probabilistic Signature Scheme (PSS). PSS with RSA trapdoor is a widely
deployed randomized signature scheme. It is known to be secure in Random Oracle
model. However, recently randomized signature scheme such as iso/iec 9796-2 is
shown to be susceptible to hardware fault attacks. In this work we show, PSS is
actually secure against random fault attacks in random oracle model. Afterwards,
we consider the open problem related to standard model security of PSS. We give
a general negative result in this direction. We rule out existence of any black box
proof technique showing security of PSS in standard model.

iv

Dedicated To

Sir Arthur

Conan Doyle

vii

Acknowledgements
This doctoral thesis is not only the result of my own endeavor, but guidance, inspi-
ration and assistance of many people. I am deeply grateful to all of them.

This thesis would not have been possible without the active guidance and advice
of my advisor Jean-Sébastien Coron. He set an excellent example as a world class
researcher and supervisor, gave me academic freedom and encouraged me for inde-
pendent exploration. For the past three and half years, I profoundly enjoyed the
discussions with him, about various open problems in the areas of cryptology. His
valuable insights always guided me to have a better understanding of the problem,
and many times toward a solution.

I am deeply grateful to Volker Müller and David Pointcheval for being doc-
toral committee members, to Yevgeniy Dodis for serving as thesis jury and to Alex
Biryukov for chairing the jury.

I will always be indebted to Alfred Menezes and Mridul Nandi for introducing
me to the exciting world of Cryptography during my masters studies at University of
Waterloo. I greatly appreciate effective collaborations and fruitful discussions with
my external co-authors: Antoine Joux, David Naccache, Valérie Nachef, Jacques
Patarin, Yannick Seurin and Mehdi Tibouchi. I am specially thankful to Rishiraj
Bhattacharyya - my long time friend from school days, with whom I did numerous
collaborative works during the past few years.

My deepest gratitude goes to Ranoj Banik, Prabir Banerjee, my mathematics
teachers in middle school days and Sushmita Banik, my childhood tutor.

My many thanks go to the colleagues at the Laboratory of Algorithmics, Cryp-
tology and Security of the University of Luxembourg for the superb working envi-
ronment. I would like to thank Jean-François Gallais with whom I shared the office
for the last three and half years, for the countless scientific (and non-scientific) dis-
cussions we had. It was a pleasure to be on the team with David Galindo, Johann
Großschädl, Dmitry Khovratovich, Gaëtan Leurent, Zhe Liu, Ivica Nikolić, Arnab
Roy, Deike Priemuth-Schmid, Praveen Kumar Vadnala, Srinivas Vivek Venkatesh,
Ralf-Philipp Weinmann and Bin Zhang. I appreciate the help of LACS secretaries
Ragga Eyjolfsdottir, Mireille Kies and Fabienne Schmitz with administrative tasks
and paperwork.

I am thankful to all my friends in Luxembourg, with whom I shared a wonderful
time.

My deepest appreciation goes to Dia, for her love, patience and support. Lastly,
I would like to thank my parents and my brother Avikarsha, for their unconditional
support and encouragement.

Avradip Mandal, June 2012

viii

Contents

1 Introduction 1
1.1 Cryptography . 1
1.2 Provable security . 5
1.3 Organization . 8

2 Indifferentiability Framework 11
2.1 Introduction . 11
2.2 Indifferentiability . 13
2.3 Other Indifferentiability models . 16

2.3.1 Honest but curious . 17
2.3.2 Public indifferentiability . 18

2.4 Relation among the indifferentiability models 19

3 A domain extender for the ideal cipher 21
3.1 Introduction . 22

3.1.1 Related Work . 24
3.2 Basics . 25
3.3 An Attack against 2 Rounds . 26
3.4 Previous Constructions are not Indifferentiable 27

3.4.1 The CMC construction . 28
3.4.2 The EME construction. 29

3.5 Indifferentiability of 3-round Feistel Construction 30
3.5.1 Practical Considerations . 34
3.5.2 Indifferentiability for 2 Rounds in the Honest-but-curious Model 37

3.6 Domain Extension of Tweakable Block Cipher 40
3.7 Conclusion . 52

4 On the Public Indifferentiability and Correlation Intractability of
the 6-Round Feistel Construction 53
4.1 Introduction . 54
4.2 Preliminaries . 57
4.3 Sequential Indifferentiability . 58

4.3.1 Separation between public and sequential indifferentiability
for Stateful Ideal Primitives 63

4.4 Sequential Distinguisher for the 5-Round Feistel Construction 64

x Contents

4.5 Seq-Indifferentiability of the 6-Round Feistel Construction 65
4.6 Applications to Correlation Intractability 73
4.7 Separating Correlation Intractability and Sequential Indifferentiability 75
4.8 Implications for Chosen-Key and Known-Key Attacks on Block Ciphers 75
4.9 Seq-Indifferentiability Beyond the Birthday Barrier for the Construc-

tion of Chapter 3 . 76
4.9.1 Proof of Theorem 4.7 and Theorem 4.8 81
4.9.2 Upper bound for ∆ij ’s . 86

4.10 Conclusion . 89

5 PSS is Secure against Random Fault Attacks 91
5.1 Introduction . 92
5.2 Security Model . 93

5.2.1 Why Random Faults ? . 95
5.3 PSS is Secure against Random Fault Attacks 96

5.3.1 The PSS Scheme . 96
5.3.2 Security Proof . 97

5.4 PSS-R is Secure against Fault Attacks 102
5.4.1 The PSS-R Scheme . 103
5.4.2 Security Proof . 104

5.5 Conclusion . 104

6 On the Impossibility of Instantiating PSS in the Standard Model105
6.1 Introduction . 106

6.1.1 Our Results . 106
6.1.2 Overview of our Technique 107
6.1.3 Previous Results . 108

6.2 Preliminaries . 109
6.2.1 Notations . 109
6.2.2 Trapdoor Permutations (TDPs) 109
6.2.3 Hard Games . 110
6.2.4 Ideal Trapdoor Permutations 110
6.2.5 Lossy Trapdoor Permutations(LTDPs) 111

6.3 Signature Schemes . 111
6.3.1 Security of a Signature Scheme 111
6.3.2 Probabilistic Signature Scheme(PSS) 111

6.4 No Blackbox Reduction from One way Trapdoor Permutations . . . 113
6.5 No Blackbox Reduction from an Ideal Trapdoor Permutation 116
6.6 No Reduction from Lossy Trapdoor Permutations 122
6.7 No Reduction from Hard Games with Inversion 124
6.8 Conclusion . 124

Bibliography 125

Publications 134

List of Figures

2.1 The Indifferentiability notion: . 14
2.2 Crypto System Models . 15
2.3 Crypto System and Indifferentiability 16
2.4 Indifferentiability in honest-but-curious model 17
2.5 Relation among different indifferentiability models 19

3.1 Construction of a 2n-bit permutation given a n-bit ideal cipher with
n-bit key (left). Construction of a 2n-bit ideal cipher with k-bit key,
given a n-bit ideal cipher with (n+ k)-bit key (right). 24

3.2 The indifferentiability notion and 3-round construction 26
3.3 The 2-round Feistel construction Ψ2(L,R). 27
3.4 Sequence of games for proving indifferentiability. 32
3.5 The tweakable block ciphers Ψ̃2 (left) and Ψ̃3 (right), with key K

and tweak W . 41
3.6 The 3-round Feistel construction Ψ3(L,R). 44

4.1 Notations used for the 6-round Feistel construction. 59
4.2 The sequential indifferentiability notion. The numbers next to query

arrows indicate in which order the distinguisher accesses both oracles.
After its first query to the left oracle, the distinguisher cannot query
the right oracle any more. 60

4.3 Illustration of the proof of Theorem 4.1. The dashed arrow means
that Dseq makes the corresponding queries once Dpub has returned
and compares the answers with the one it computed with C. 61

4.4 Description of the sequential distinguisher for the 5-round Feistel
construction. 66

4.5 Systems used in the seq-indifferentiability proof. 69
4.6 3-round permutation Ψ3(L,R) (left) and 3-round block-cipher Ψ′3(K, (L,R))

(right) . 77

5.1 PSS: the components of the image y = 0‖ω‖r∗‖g2(ω) are darkened.
The signature of m is yd mod N . 96

5.2 PSS-R: Components of image y = 0‖ω‖r∗‖M∗ are darkened. The
signature of M is yd mod N . 103

xii List of Figures

6.1 PSSTDPH : The components of the image y = 0‖ω‖r∗‖g2(ω) are dark-
ened. The signature of m is F−1(td, y) 112

Chapter 1

Introduction

“Cryptography is concerned with the conceptualization, definition, and
construction of computing systems that address security concerns .”
– ‘Foundations of Cryptography’ by Oded Goldreich, 1997

Contents
1.1 Cryptography . 1
1.2 Provable security . 5
1.3 Organization . 8

1.1 Cryptography

Cryptography is the science of securing communications. The fundamental and
classical task of cryptography is to provide confidentiality by encryption methods.
The message to be transmitted – it can be text, numerical data, an executable
program or any other kind of information – is called plaintext. Alice encrypts the
plaintext m and obtains ciphertext c. The ciphertext c is transmitted to Bob. Bob
turns the ciphertext back into the plaintext by decryption. To decrypt, Bob needs
some secret information, a secret decryption key. The adversary Eve still may
intercept the ciphertext. However, the encryption should guarantee secrecy and
prevent Eve from deriving any information about the plaintext from the observed
ciphertext.

Encryption is very old. For example, the Caesar’s shift cipher, where each
plaintext character is replaced by the character 3 to the right modulo 26, (i.e. a is
replaced by d, b by e,..., y by b, and z by c) is more than 2000 years ago. Every
encryption method provides an encryption algorithm E and a decryption algorithm
D. In symmetric-key cryptography both algorithms depend on the same secret key
k. Caesar’s cipher is an example of symmetric-key encryption scheme where the
key is the offset 3. The Data Encryption Standard (DES) is another example of
symmetric-key encryption.

2 Introduction

In 1976 W. Diffie and M.E. Hellman published their famous paper, New direc-
tions in Cryptography [DH76]. There they introduced the revolutionary concept
of public-key cryptography. They also provided a solution to the long standing
problem of key exchange and pointed the way to digital signatures. Public-key en-
cryption methods are asymmetric. Each recipient of messages has his personal key
k = (pk, sk), consisting of two parts: pk is the encryption key and is made public,
sk is the decryption key and is kept secret. If Alice wants to send a message m
to Bob, she encrypts m by use of Bob’s publicly known encryption key pk. Bob
decrypts the ciphertext by use of his decryption key sk, which is known only to
him.

Mathematically speaking public-key encryption is a so-called one-way function
with a trapdoor. Anyone can easily encrypt a plaintext using the public key pk, but
the other direction is difficult. It is practically impossible to deduce the plaintext
from the ciphertext, without knowing the secret key sk (which is called the trapdoor
information).

Public-key encryption methods require more complex computations and are less
efficient than classical symmetric methods. Thus symmetric methods are used for
the encryption of large amounts of data. Before applying symmetric encryption,
Alice and Bob have to agree on a key. To keep this key secret, they need a secure
communication channel. It is common practice to use public-key encryption for this
purpose.

The objectives of cryptography

Providing confidentiality is not the only objective of cryptography. Cryptography
is also used to provide solutions to other problems.

1. Data integrity: The receiver of a message should be able to check whether
the message was modified during transmission, either accidentally or delib-
erately. No one should be able to substitute a false message for the original
message, or for part of it.

2. Authentication: The receiver of a message should be able to verify its origin.
No one should be able to send a message to Bob and pretend to be Alice
(data origin authentication). When initiating a communication, Alice and
Bob should be able to identify each other (entity authentication).

3. Non-repudiation: The sender should not be able to later deny that she sent
a message.

If messages are written on paper, the medium – paper – provides security against
manipulation. Handwritten personal signatures are intended to guarantee authen-
tication and non-repudiation. If electronic media are used, the medium itself pro-
vides no security at all, since it is easy to replace some bytes in a message during
its transmission over a computer network, and it is particularly easy if the network
is publicly accessible, like the Internet.

1.1 Cryptography 3

So, while encryption has a long history, the need for techniques providing data
integrity and authentication resulted from the rapidly increasing significance of
electronic communication.

There are symmetric as well as public-key methods to ensure the integrity of
messages. Digital signatures require public-key methods. As with classical hand-
written signatures, they are intended to provide authentication and non-repudiation.
Note that non-repudiation is an indispensable feature if digital signatures are used
to sign contracts. Digital signatures depend on the secret key of the signer – they
can generated only by him. On the other hand, anyone can check whether a signa-
ture is valid, by a publicly known verification algorithm Verify, which depends on
the public key of the signer. It is common not to sign the message itself, but to apply
a cryptographic hash function first and then sign the hash value. Digital Signatures
depend on the message. Different messages generate different signatures. So they
can also be used to provide message authentication. The symmetric-key method to
ensure integrity of messages is achieved by Message Authentication Codes (MAC).

The primary goal of cryptography is to keep the plaintext secret from eaves-
droppers trying to get some information about the plaintext. As discussed before,
adversaries may also be active and try to modify the message. Then cryptography
is expected to guarantee the integrity of messages. Adversaries are assumed to have
complete access to the communication channel.

Cryptanalysis is the science of studying attacks against cryptographic schemes.
Successful attacks may, for example, recover the plaintext (or parts of the plaintext)
from the ciphertext, substitute parts of the original message, or forge digital sig-
natures. Cryptography and cryptanalysis are often subsumed by the more general
term cryptology.

A fundamental assumption in cryptanalysis was first stated by A. Kerkhoff in the
nineteenth century, and is usually referred to as Kerkhoff’s principle. It states that
the adversary knows all the details of the cryptosystem, including algorithms and
their implementation. According to this principle, the security of a cryptosystem
must be entirely based on the secret keys.

Attacks against Encryption Schemes

Attacks on the secrecy of an encryption scheme try to recover plaintexts from ci-
phertexts, or even more drastically the secret key. In the following we only consider
a passive attacker Eve, who does not try to modify the messages. However the
attacker has access to plaintexts and ciphertexts, and she may have control over
choosing plaintexts and/or ciphertexts. Of course she does not have access to the
secret key. The possible attacks depend on the actual resources of Eve. They are
usually classified as follows:

• Ciphertext-only attack: Eve has the ability to obtain ciphertexts. This
is likely to be the case in any encryption scenario. Even if Eve cannot per-
form other more sophisticated attacks, one must assume that she can get
access to the encrypted messages. An encryption method that cannot resist
a ciphertext-only attack is completely insecure.

4 Introduction

• Known-plaintext attack: Eve has the ability to obtain plaintext-ciphertext
pairs. Using the information from these pairs, she attempts to decrypt a
ciphertext for which she does not have the plaintext.

• Chosen-plaintext attack: Eve has the ability to obtain ciphertexts for
plaintexts of her choosing. Then she attempts to decrypt a ciphertext for
which she does not have the plaintext. Here she has access to the encrypting
device only once. This means after she starts analysis, she cannot access the
encrypting device any more.

• Adaptively-chosen-plaintext attack: This is the same as the previous
attack, except now Eve may do some analysis on the plaintext-ciphertext
pairs, and subsequently, get more pairs. She may switch between gathering
pairs and performing the analysis as often as she likes. This means that
she has either lengthy access to the encrypting device or can somehow make
repeated use of it.

• Chosen-ciphertext and adaptively-chosen ciphertext attack: These
two attacks are similar to the above plaintext attacks. Eve can choose cipher-
texts and gets the corresponding plaintexts. She has access to the decryption
device.

Attacks against Signature Schemes

Attacking a signature scheme usually implies signature forging. Forging means one
has to generate a valid signature for a message of her choice without access to
the secret key. Like encryption schemes, an attacker can mount various types of
attacks depending on the resources she has. Below we describe various kind of
attack models:

• Zero message attack: This is the strongest attack model possible. The
attacker Eve has only access to the public key of the signature scheme. Just
from this information she tries to forge a signature for a message of her choice.

• Chosen message attack: The attacker Eve has the ability to obtain sig-
natures for the messages of her choosing. She has access to a signing oracle.
However, she needs to submit all her queries to the oracle at once, right at
the beginning. afterwards, she does not have access to the oracle anymore. In
the end, Eve is supposed forge a valid signature for a message of her choice
for which she did not make query to the signing oracle. In a variant of this at-
tack model, Eve is allowed to forge signatures for messages which she already
queried to the signing oracle; as long as she outputs a different (message,
signature) pair from the ones she received.

• Adaptively chosen message attack: This is the standard attack model for
signature schemes. This is similar to the previous attack. However, here the
attacker Eve is more powerful. She can use the signature oracle adaptively
by making queries based on the previous answers she received. In the end

1.2 Provable security 5

Eve is supposed to produce a forged signature for a message of her choice, for
which she did not make a query to the signing oracle. As before, one can also
consider a relaxed variant of this attack model.

Fault Attacks

In real world, an adversary can go beyond the theoretical attack models and attack
the implementation rather than the specification. For example in a smart card im-
plementation of a signature scheme, during a signature evaluation an attacker can
gather lots of side channel information such as time required to complete the signa-
ture evaluation, power consumption profile, electro-magnetic radiation profile, etc.
All these data, leak some information about the secret key. Using these informa-
tion an attacker becomes more powerful and might be able to break cryptographic
schemes which are secure against conventional attacks. Moreover, the scope of a
real world attacker is not only limited to passive collection of side channel informa-
tion. It can actively introduce some temporary hardware malfunction forcing the
implementation to release more information about the secret key. These kind of
attacks are called fault injection attacks or fault attacks, as they inject hardware
faults (usually by means of short electro-magnetic impulses or by introducing some
spikes in the power source) during some computation involving the secret key. For
some cryptographic schemes fault attacks can be highly effective, completely break-
ing the security of the scheme by recovering the secret key. We will see more about
fault attacks in Chapter 5.

1.2 Provable security

It is desirable to design cryptosystems that are provably secure. Provably secure
means mathematical proofs show that the cryptosystem resists certain types of
attacks. Pioneering work in this field was done by C.E. Shannon. In his information
theory, he developed a measurement for the amount of information associated with a
message and the notion of perfect secrecy. A perfectly secret cipher perfectly resists
all ciphertext-only attacks. An adversary gets no information whatsoever about
the plaintext, even if his resources in computational power and time are unlimited.
Vernam’s one-time pad which encrypts a message m by XORing it bitwise with a
truly random bit string, is the most famous perfectly secret cipher. It even resists
all the passive attacks mentioned. This can be mathematically proven by Shannon’s
theory. Unfortunately Vernam’s one-time pad and all perfectly secret ciphers are
usually impractical. It is not practical in most situations to generate and handle
truly random bit sequences of sufficient length as required for perfect secrecy.

More recent approaches to provable security therefore abandon the ideal of per-
fect secrecy and the unrealistic assumption of unbounded computing power of ad-
versary. Only attacks that might be feasible are taken into account. Feasible means
that the attacks can be performed by an efficient algorithm. Certainly attacker
algorithms with non-polynomial running times are not efficient. Conversely algo-
rithms with polynomial running times are often considered efficient ones. If the

6 Introduction

attacker uses probabilistic algorithms then average running times are taken into
account.

The security of a public-key cryptosystem is based on the hardness of some
computational problem. For example, the secret keys of an RSA scheme could be
easily deduced if computing the factors of a large integer was possible. However,
it is believed that factoring large integers is infeasible. There are no mathematical
proofs for the hardness of the computational problems used in public-key systems.
Therefore, security proofs for public-key methods are always conditional. They
depend on the validity of underlying assumptions.

Random Oracle and Other idealized models

However, as it turns out the computational assumptions are not always enough to
design efficient and secure cryptographic schemes. To overcome this problem Fiat
and Shamir first proposed the idea of using Random Oracles in cryptographic pro-
tocols. A random oracle is a theoretical black box (ideal primitive) that responds
to every query with a (truly) random response chosen uniformly from its output do-
main. For repeated queries the random oracle always outputs the same response. In
their Crypto ’86 paper [FS86], Fiat and Shamir showed how random oracles can be
used to construct a signature scheme without any need of interactions. Afterwards,
Bellare and Rogaway [BR93, BR96] proposed efficient signature schemes such as
Full Domain Hash (FDH) and Probabilistic Signature Scheme (PSS), as well as
efficient public key encryption schemes such as OAEP [BR94] which are secure in
the random oracle model. They used random oracles as a public primitive which
are available to all parties involved in the scheme including the attacker. Similar to
the random oracle model we also have other idealized models such as ideal cipher
model (an idealized version of a block cipher), random permutation model, etc.

Bellare and Rogaway suggested that for practical purposes random oracles can
be replaced by some well known cryptographic hash function. However, mathemat-
ically speaking a public hash function can never be a random oracle. Hash functions
do not use any random coins, for a fixed input it always gives fixed output. That
is why Canetti et. al. [CGH98, CGH04] argued a security proof in the random
oracle model is heuristic at best. In fact, they showed existence of some contrived
cryptographic schemes which are secure in the random oracle model. However, the
security guarantee completely vanishes whenever the random oracle is replaced by
some real hash function. Hence, from a provable security point of view security
proofs in so called standard model (here one assumes some well studied security
property of cryptographic hash functions such as collision resistance, pre-image re-
sistance, etc.) are always desirable. However, in many cases the standard model
schemes turn out to be inefficient, ruling out their practical applicability. As a
result, till date random oracle remains popular in cryptographic community, after
all a security proof in the random oracle model is better than no proof at all.

1.2 Provable security 7

Equivalence of idealized models and indifferentiability

Following Bellare and Rogaway’s seminal work, many cryptographic schemes were
presented with a proof of security in some idealized model such as the random oracle
model, the ideal cipher model, the random permutation model, etc. Moreover,
they also required different domain and range depending on the application. For
example, for a generalized signature scheme without any bound on the message
space we require a variable input length (VIL) hash function which behaves as a
random oracle; whereas, for some specialized schemes a finite input length (FIL)
hash function might be sufficient.

So a natural question arises, how we should design such hash functions where the
classical security requirements such as collision resistance or pre-image resistance
do not suffice. With the advent of random oracle model cryptographic schemes,
the new security requirement is: the hash functions should behave as a random
oracle (albeit heuristically). Also one might ponder, whether there are any relations
between various idealized models. Would it be possible to implement one ideal
primitive with another ideal primitive, while preserving the security guarantee.

Maurer et. al. in their TCC ’04 paper [MRH04] introduced the notion of in-
differentiability, which extends the well known indistinguishability framework to
public primitives. The indifferentiability framework actually shows the way to an-
swer our second question in previous paragraph. As we will see in Chapter 2, it
is an indispensable tool to show equivalence between two public ideal primitives.
Following Maurer et. al.’s work Coron et. al. in Crypto ’05 [CDMP05] showed
how one should design a hash function which will behave as a variable input length
random oracle. They showed, some restricted version of well known hash function
design methods such Merkle-Damgard mode of operation and Davis-Mayer mode
of operation are actually sufficient. The Merkle-Damgard mode of operation uses
a fixed input length function as building block, where as the Davis-Mayer mode of
operation uses a block cipher as a building block. Coron et. al.’s Crypto ’05 paper
showed that the Merkle-Damgard mode of operation and Davis-Mayer mode of op-
eration are actually good candidates to replace Random Oracles in cryptographic
schemes, provided we are willing to assume that the fixed input length function
and the block cipher behave as fixed input length random oracle and ideal cipher
respectively.

However, we should remember that even if we use an indifferentiable hash func-
tion as suggested by Coron et. al., a security proof in the random oracle model still
remains heuristic at best. An indifferentiable hash function only guarantees that
there is nothing wrong with the selected mode of operation. The scheme can be still
susceptible to an attack if there is any weakness in the underlying fixed input length
function or the underlying block cipher. The indifferentiability framework helps us
to simplify our heuristic security assumptions. Instead of assuming a complex hash
function behaves as a variable input length random oracle we can assume a simpler
to understand fixed input length function or block cipher behave as a random oracle
or an ideal cipher respectively.

8 Introduction

Black Box impossibility of reduction based security proofs

Cryptographic security proofs based on some computationally difficult problem usu-
ally follow a reductionist approach. At first we assume there exists some adversary
which breaks the cryptographic scheme. Then using the initial adversary as a black
box we build a new adversary which can successfully solve the computationally dif-
ficult problem whenever the initial adversary is successful. However, as we believe
the computational problem is hard to solve, by contradiction we deduce the crypto-
graphic scheme is secure. This kind of black box reduction technique is immensely
popular in present day provable security literature. However, not all cryptosystems
can be proven secure in all security models. Not only that, there exist cryptosys-
tems for which neither we can find a security proof, nor we can show a concrete
attack to prove the cryptosystem is insecure. A typical example of this are signature
schemes such as Full Domain Hash (FDH), Probabilistic Signature Scheme (PSS).
Even though they were proven secure in the random oracle model by Bellare and
Rogaway [BR93, BR96], no standard model security proof is known to exist. How-
ever, a successful attack against some implementation of these signature schemes is
actually equivalent to finding a weakness in some well studied hash function; which
is hard.

Hsiao and Reyzin in their Crypto ’04 [HR04b] paper proposed a technique which
partially solves this dilemma. Instead of answering the question whether these
cryptographic schemes are secure in the standard model, their technique helps us
to show: it is impossible to find a black box based reduction strategy to prove the
security of FDH and PSS in the standard model. In Crypto’07 [DOP05], Dodis et.
al. used this technique to argue generic insecurity of FDH in the standard model.
Later, in Eurocrypt ’09 [KP09], Kiltz and Pietrzak adapted the same technique for
Optimal Asymmetric Encryption scheme (OAEP). In Chapter 6, we extend these
generic insecurity results to PSS.

1.3 Organization

This thesis work is primarily based on four papers, previously published in Asi-
acrypt’09, TCC’10, PKC’11 and TCC’12 conference proceedings. In the next three
chapters we present the results related to indifferentiability framework. In the last
two chapters we will see some new security and insecurity results related to the
probabilistic signature scheme (PSS).

• In Chapter 2, we give a formal introduction to the indifferentiability frame-
work [MRH04, CDMP05] and the motivation behind its importance. We
also introduce two other variants of indifferentiability notion, namely indiffer-
entiability in honest but curious model [DP06] and public indifferentiability
[DRS09].

• Chapter 3 is based on the TCC’10 paper A Domain Extender for the Ideal
Cipher, which is a joint work with Jean-Sébastien Coron, Yevgeniy Dodis and
Yannick Seurin [CDMS10]. Over here we consider the problem of extending an

1.3 Organization 9

ideal cipher domain. We show the 3-round Feistel construction based on a n-
bit ideal cipher is actually indifferentiable from a 2n-bit ideal cipher. We also
show 2-rounds are actually not enough by giving a simple attack. Moreover,
we consider our construction in standard indistinguishability model for usage
in secret key scenario. We show 2-rounds are actually enough to build a 2n-bit
tweakable block cipher from a n-bit tweakable block cipher. We also show
with 3-rounds we can get a 2n-bit tweakable block cipher which gives beyond
birthday security guarantee.

• Chapter 4 is based on the TCC’12 paper On the Public Indifferentiability
and Correlation Intractability of the 6-Round Feistel Construction, which is a
joint work with Jacques Patarin and Yannick Seurin [MPS12]. Here, we show
that the Feistel construction with six rounds and random round functions is
publicly indifferentiable from a random invertible permutation (a result not
known to hold for full indifferentiability). To prove this result we introduce a
new and simpler variant of indifferentiability called sequential indifferentiabil-
ity and show this is equivalent to public indifferentiability for stateless ideal
primitives. We then prove that the 6-round Feistel construction based on ran-
dom round functions is sequential indifferentiable from a random invertible
permutation. We also show sequential indifferentiability implies correlation
intractability, a notion introduced by Canetti et. al. in their work on the
limitations of the random oracle model [CGH98, CGH04]. We also show the
3-round domain extender construction from Chapter 3, actually provides be-
yond birthday security guarantee in sequential indifferentiability model.

• Chapter 5 is based on the Asiacrypt’09 paper PSS is Secure against Random
Fault Attacks, which is a joint work with Jean-Sébastien Coron [CM09]. In
this chapter we consider the security of well known Probabilistic Signature
Scheme (PSS) against fault attacks. A fault attack consists in inducing hard-
ware malfunctions in order to recover secrets from electronic devices. One of
the most famous fault attack is Bellcore’s attack against RSA with Chinese
Remainder Theorem (CRT) implementation. The fault attack applies to any
deterministic RSA-CRT based signature scheme, for example FDH. Recently,
the attack was extended to randomized encodings based on the iso/iec 9796-
2 signature standard. Extending the attack to other randomized encodings
remains an open problem. In this chapter we show Bellcore’s attack can not
be applied to PSS; namely we show that PSS is provably secure against ran-
dom fault attacks in the random oracle model, assuming that inverting RSA
is hard.

• Chapter 6 is based on the PKC’11 paper On the Impossibility of Instantiating
PSS in the Standard Model, which is a joint work with Rishiraj Bhattacharyya
[BM11a]. PSS was proven to be secure in The Random Oracle Model by Bel-
lare and Rogaway [BR96]. In Chapter 5 we even showed PSS resists random
fault attacks in the random oracle model. In this chapter, we consider the
problem of securely instantiating PSS in the standard model. Our main result

10 Introduction

is a black-box impossibility result showing that one can not prove unforgeabil-
ity of PSS against chosen message attacks using blackbox techniques, assum-
ing existence of ideal trapdoor permutations [KP09] or lossy trapdoor permu-
tations [PW08]. Moreover, we show onewayness, the most common security
property of a trapdoor permutation does not suffice to prove even the weak-
est security criteria, namely unforgeability under zero message attack. Our
negative results can easily be extended to any randomized signature scheme
where one can recover the random string from a valid signature.

Chapter 2

Indifferentiability Framework

In this chapter we discuss the motivation behind indifferentiability framework, in-
troduced by Maurer et. al. in TCC’04 [MRH04]. We will see what do we formally
mean by indifferentiability and why this might be an important tool for hash func-
tion design.

Contents
2.1 Introduction . 11
2.2 Indifferentiability . 13
2.3 Other Indifferentiability models 16

2.3.1 Honest but curious . 17
2.3.2 Public indifferentiability 18

2.4 Relation among the indifferentiability models 19

2.1 Introduction
Indifferentiability is actually a generalization of indistinguishability. As explained
in [Sho04], indistinguishability is an important concept for reduction based cryp-
tographic security proofs. However, the indistinguishability alone is not always
enough for the security proofs to go through; specially, in the public key settings.
The following two simple examples taken from [MRH04] show when the concept of
indistinguishability is useful, and why it is not always enough.

Example 2.1 Let T be a source of truly random bits (secret between the com-
municating parties), S be a pseudo-random bit generator (with secret key shared
between the communicating parties). C(·) be the XOR based encryption. In other
words, CT denotes the one time pad and CS denotes an additive stream cipher with
key-stream generator S. The security of CS follows from the security of CT and the
fact that, for any efficient distinguisher (or adversary), S behaves essentially like
T , i.e., S and T are (computationally) indistinguishable.

Example 2.2 Let T be a random oracle R, (i.e., a publicly accessible random
function) and let S be a hash function HF , where H is a hash algorithm depending

12 Indifferentiability Framework

on a public component F (can be a block cipher with public key or an S-Box). In
contrast to pseudo-randomness (where the component is secret), no hash function
can implement a random oracle in the above sense, as proved by Canetti, Goldreich,
and Halevi [CGH04]. In other words, there exists a cryptosystem C(·) such that
CR is secure while CHF is insecure for any hash algorithm H and any public real
life component F . However, one crucial observation is if we are willing to model
F as an public ideal component such as, fixed domain random function, random
permutation, ideal cipher, etc; CHF might still be secure. Even though, the security
of CR and indistinguishability of HF and R in secret key setting are not enough to
guarantee such security.

Indistinguishability and Indifferentiability

Two systems S and T are said to be indistinguishable if no (efficient) algorithm D
connected to either S or T , is able to decide whether it is interacting with S or T .
The security of a cryptosystem CS involving a component S is typically proven by
considering the cryptosystem CT (replacing S by an idealized component T). As
we have seen in Example 2.1 the original system CS is secure if,

1. the system CT is secure and

2. the component S is indistinguishable from the component T .

The notion of reducibility and indistinguishability are in fact closely related. A
system U is said to be reducible to system V if the system V can be used to construct
a new system BV which is indistinguishable from U . The notion of reducibility is
really useful for cryptographic security proofs. If U is reducible to V, then for any
cryptosystem CU using U as a component, there is another cryptosystem CBV using
V as a component, having the same functionality and the same security as CU .

However, these security reductions are all subject to the assumption that the
cryptosystem C retains exclusive rights to the components (U or V). All other
parties, including the possible adversary, are unable to directly influence the com-
ponent’s behavior. Only way they can interact with the components is via the
cryptosystem C. As explained in Example 2.2, this is not always the case. If we
have a cryptosystem CR provably secure for a random oracle R, the provable se-
curity always gets lost whenever we instantiate the random oracle R by a real life
public hash function H. Moreover, even if we consider an idealized hash function
HF (based on an ideal but public component F), the notion of indistinguishabil-
ity does not really help us to infer anything about the security of the cryptosystem
CHF .

In order to extend the definition of indistinguishability such as to include these
type of systems Maurer et. al. proposed the notion of indifferentiability [MRH04].
In particular, if a component HF based on an ideal component F , is indifferen-
tiable from a component R; then the security of any1 cryptosystem CR based on

1Recently, Ristenpart et. al. actually showed this is not true for any cryptosystem [RSS11].
However, indifferentiability framework still includes a large number of present day cryptosystems.

2.2 Indifferentiability 13

ideal component R implies the security of the cryptosystem CHF based on ideal
component F .

The next section describes the formal definition of indifferentiability. We will
also go through a short proof of our previous claim, i.e. indifferentiability extends
the notion of indistinguishability from a secret world to the public world.

2.2 Indifferentiability
Before going to the formal definition of indifferentiability, let us see what do we
formally mean by ideal primitives. We define ideal primitive as a probabilistic
algorithmic entity which receives inputs from one of the parties and deliver its
output immediately to the querying party. Random oracles, random permutations
and ideal ciphers are three ideal primitives that we will encounter through out this
work.

A random oracle is an ideal primitive which provides a random output for each
new query. Identical input queries are given the same answer. By random oracle
we normally imply a variable input length random oracle RO : {0, 1}∗ → {0, 1}n.
We can also have a fixed input length random oracle RO : {0, 1}k → {0, 1}n.

A random permutation is an ideal primitive which models a randomly chosen
permutation E over {0, 1}n. This is similar to a fixed input length random oracle
RO : {0, 1}n → {0, 1}n, with the added restriction - different input queries must
provide different answers. Moreover, it provides oracle access to both E and E−1;
that is on query (0,m) the primitive answers c = E(m), and on query (1, c) the
primitive answers m such that c = E(m).

An ideal cipher is an ideal primitive which models a randomly chosen block-
cipher E : {0, 1}k × {0, 1}n. Each key k ∈ {0, 1}k defines a random permutation
Ek = E(k, ·) on {0, 1}n. The ideal cipher provides to E and E−1; that is on query
(0, k,m), the primitive answers c = Ek(m), and on query (1, k, c), the primitive
answers m such that c = Ek(m).

The indifferentiability notion in [MRH04] is given in the framework of random
systems providing interfaces to other systems. However following Coron et. al.
[CDMP05], here we consider the equivalent notion of indifferentiability for interac-
tive Turing Machines.

Let Fi, Gi be probabilistic oracle algorithms. We define the advantage of the
adversary A at distinguishing (F1, F2) from (G1, G2) as

AdvA((F1, F2), (G1, G2)) = |Pr[AF1,F2 = 1]− Pr[AG1,G2 = 1]|.

Given a distinguisher D, the total oracle query cost of D is the number of queries
received by the oracle E when D interacts with (HE , E). Hence this is the sum of
the number of direct queries of D to E and the number of queries made by H to E
to answer D’s queries.

Definition 2.1 (Indifferentiability [MRH04, CDMP05]). A Turing machine H with
oracle access to an ideal primitive E is said to be (q, t, σ, ε) indifferentiable from an
ideal primitive G if there exists a simulator S making at most σ many queries to

14 Indifferentiability Framework

the oracle G and running time at most t, such that for any adversary D, it holds
that

AdvD((HE , E), (G, SG)) < ε.

The total query cost of the distinguisher is at most q. HE is said to be (computationally)
indifferentiable from G if running time of D as well as S is bounded above by some
polynomial in the security parameter k and ε is a negligible function of k.

H E G S

D

Figure 2.1: The Indifferentiability notion: - The distinguisher D either interacts
with algorithm H and ideal primitive E, or with ideal primitive G and simulator S.
Algorithm H has oracle access to E, while simulator S has oracle access to G.

As illustrated in Figure 2.1, the role of the simulator is to simulate the ideal
primitive E, so that no distinguisher can tell whether it is interacting with H and
E or G and S. The simulator output should look “consistent” with the G output.
Note, the simulator can not see the distinguisher’s query to G; however it can query
G when needed. The following example illustrates the notion of indifferentiability
in more details.

Example 2.3 HE be a hash function based on a block cipher E, which is modeled
as a randomly chosen block cipher or ideal cipher. The ideal primitive G represents
a random oracle that the hash function HE should emulate. Therefore, one obtains
the following setting: the distinguisher has oracle access to both the block-cipher
and the hash function. These oracles are implemented in one of the following two
ways: either the block cipher E is chosen at random and the hash function is
constructed from it, or the hash function is chosen at random and the block-cipher
is implemented by a simulator S with oracle access to H. If HE is indifferentiable
from a random oracle, these two cases are in fact indistinguishable.

Maurer et. al. [MRH04] showed, if HE is indifferentiable from G, then CG can
securely replace F in any cryptosystem.2 The resulting cryptosystem is at least as
secure in the E model as in G model. For example, if a block cipher based hash
function is indifferentiable from a random oracle in the ideal cipher model, then the
hash function can replace the random oracle in any cryptosystem. The resulting

2Ristenpart et. al. [RSS11] showed, indifferentiability framework only covers cryptosystems
which are secure against single entity stateful adversary. However, in this chapter by “any” cryp-
tosystem we actually mean any cryptosystem which is secure against single entity stateful adversary.

2.2 Indifferentiability 15

cryptosystem remains secure in the ideal cipher model if the original scheme was
secure in the random oracle model.

Following [CDMP05], we formally describe what it means for a cryptosystem to
be at least as secure in the E model as in the G model. A cryptosystem is modeled
as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment E . The environment E
also runs adversary A and provides a binary output in the end. In the E model
(left), P has oracle access to H whereas A has oracle access to E. In the G model
(right), both P and A′ has oracle access to G. The definition is illustrated in Figure
2.2.

E

P A

H E

0/1

E

P A′

G

0/1

Figure 2.2: Crypto System Models - The environment E interacts with cryp-
tosystem P and attacker A. In the E model (left), P has oracle access to H whereas
A has oracle access to E. In the G model (right), both P and A′ has oracle access
to G.

Definition 2.2. A cryptosystem P is said to be at least as secure in the E model
with algorithm H as in the G model, if for any environment E and any attacker A
in the E model, there exists an attacker A′ in the G model, such that

|Pr[E(PH ,AE)→ 1]− Pr[E(PG ,A′G)→ 1]|

is a negligible function of the security parameter k. Similarly, the models preserve
the computational security when E, A and A′ are polynomial time in k.

The following theorem from [MRH04, CDMP05] shows that security is preserved
when an ideal primitive is replaced by an indifferentiable one.

Theorem 2.1. P be a cryptosystem with oracle access to an ideal primitive G. Also,
H be an algorithm such that HE is indifferentiable from G. Then cryptosystem P
is at least as secure in the E model with algorithm H as in the G model.

Proof. E be an environment interacting with the cryptosystem P. A be any attacker
in the E model, where P has oracle access to H and the attacker A has oracle access

16 Indifferentiability Framework

E

P A

H E

0/1

D

E

P A

G S

0/1

D

A′

Figure 2.3: Crypto System and Indifferentiability - Construction of attacker
A′ from attacker A and simulator S.

to E. The environment E interacts with both P and A. This is illustrated in left
part of Figure 2.3.

Since HE is indifferentiable from G (Figure 2.1), one can replace (H,E) by
(G, S) with only a negligible modification of environment’s output distribution.3
As illustrated in Figure 2.3, by merging attacker A and simulator S one obtains an
attacker A′ in the G model.

Remark 2.1 There is a minute difference between the indifferentiability definitions
in Coron et. al. [CDMP05] and Maurer et. al. [MRH04]. The Definition 3.2 is
actually taken from [CDMP05], where there is an universal simulator which works
against any adversary (distinguisher). Where as in Maurer et. al. framework,
a construction is indifferentiable as long as for any adversary there exists some
simulator which can fool the adversary. That way in Maurer et. al’s model, we might
have different simulators which work against different adversaries. In this work,
when we show a construction is indifferentiable, we always consider Definition 3.2;
this implies the construction is also indifferentiable in Maurer et. al’s framework.
However, while showing a construction is not indifferentiable we consider Maurer
et. al’s definition; this implies the construction is also not indifferentiable in Coron
et. al’s framework as well.

2.3 Other Indifferentiability models

In this section we introduce a few variants of the indifferentiability model; in par-
ticular indifferentiability in honest-but-curious model by Dodis and Puniya [DP06]
and public indifferentiability by Dodis et. al. [DRS09].

3The environment E , along with the cryptosystem P and attacker A acts like an indifferentia-
bility distinguisher D.

2.3 Other Indifferentiability models 17

2.3.1 Honest but curious

The indifferentiability in the honest-but-curious model is a variant of general indif-
ferentiability, which is considerably stronger than the classical notion of indistin-
guishability. For a special type of constructions called transparent constructions,
this notion is equivalent to general indifferentiability. In this notion of indifferentia-
bility, the distinguisher effectively has access to only one oracle. In the E model, the
distinguisher can only query the construction HE , not the primitive E. In addition,
it also has access to the queries made by the construction H to E, which we will
denote as the communication transcript TH↔E . Thus the role of the simulator S
in the G model changes from trying to simulate E in the general indifferentiability
(Definition 3.2) to trying to simulate the communication transcript TH↔E in the G
model. In the E model, the distinguisher’s queries can be divided into two types.
Those for which it does not observe the queries of H to E and for which it does. In
the G model, the former queries (Type-I) are sent directly to the G oracle and the re-
sponses of G are sent back. While the latter queries (Type-II) are made through the
simulator S, which forwards the same query to the G oracle. However, in addition
to sending G’s response to the distinguisher, it also sends a simulated communica-
tion transcript TS . This is explained in Figure 2.4. The following definition is taken
from [DP06].

H E G S

D

Type-II

TH↔E TS

Type-I

Figure 2.4: Indifferentiability in honest-but-curious model - The distin-
guisher D either interacts with H and gets the transcript TH↔E or it interacts
with G and gets the simulated transcript TS .

Definition 2.3. A Turing machine H with oracle access to an ideal primitive E is
said to be (q, t, ε) indifferentiable from an ideal primitive G in the honest-but-curious
model if there exists a simulator S such that for any distinguisher D it holds that∣∣Pr[DH,TH↔E = 1]− Pr[DG,TS = 1]

∣∣ < ε.

The simulator S simulates the transcript TS for Type-II queries made by the distin-
guisher to it and runs in at most time t . The total query cost of the distinguisher
is at most q. HE is said to be computationally indifferentiable in the honest-but-
curious model from G if running time of D as well as S is bounded above by some
polynomial in the security parameter k and ε is a negligible function of k.

18 Indifferentiability Framework

Remark 2.2 Over here, the simulator S can not make any extra G queries, apart
from forwarding the queries made by the distinguisher D.

2.3.2 Public indifferentiability

In many applications, hash functions are applied only to public messages. Such
public-use occurs in many signature schemes such as, Full Domain Hash (FDH)
[BR93], Probabilistic FDH [Cor02], Fiat-Shamir [FS86], Probabilistic Signature
Scheme (PSS) [BR96], BLS [BLS01, BLS04]. Even some encryption schemes such
as a variant of Boneh-Franklin IBE [CHK03, CHK07] and Boneh-Boyen IBE [BB04]
restrict the hash function usage only to public messages. Yoneyama et al. [YMO09]
and Dodis et al. [DRS09] independently realized that for these kind of cryptosys-
tems, the random oracle model is much stronger than needed. Yoneyama et al.
and Dodis et al. both proposed a weaker random oracle model which is sufficient to
guarantee security of such cryptosystems; they called the weaker model as leaky ran-
dom oracle and public-use random oracle respectively. Dodis et. al. introduced the
notion of indifferentiability for public-use ideal primitives or public indifferentiabil-
ity (pub-indifferentiability in short). In case of pub-indifferentiability, the simulator
is more powerful compared to ordinary indifferentiability. For an public ideal prim-
itive G, the simulator S has access to the queries made by the distinguisher D to
the primitive G.

Formally, given an ideal primitive G, we define the augmented ideal primitive G
as the primitive exposing two interfaces: the first (regular) one is same as G, and
the second is an interface Reveal that, when queried, returns the ordered sequence
of all (regular) queries and corresponding answers made so far by any party to the
regular interface. The second interface can only be used by the simulator, not by
the distinguisher.

Definition 2.4. A Turing machine H with oracle access to an ideal primitive E
is said to be (q, t, σ, ε) pub-indifferentiable from an ideal primitive G if there exists
a simulator S, making at most σ oracle queries to the augmented ideal primitive G
and running time at most t, such that for any adversary D, it holds that

AdvD((HE , E), (G, SG)) < ε.

The total query cost of the distinguisher is at most q. HE is said to be (computa-
tionally) pub-indifferentiable from G if running time of D as well as S is bounded
above by some polynomial in the security parameter k and ε is a negligible function
of k.

The composition theorem from [MRH04] (Theorem 2.1) still holds with public
indifferentiability for cryptosystems where all messages queried by the cryptosys-
tems to G can be inferred from the adversary’s query during the security experi-
ment. All the cryptosystems mentioned in the beginning of this section falls into
this category.

2.4 Relation among the indifferentiability models 19

2.4 Relation among the indifferentiability models

Public Indifferentiability is actually a weaker notion compared to general indifferen-
tiability. In other words if H is indifferentiable from G, that would imply H is also
publicly indifferentiable from G. Where as the reverse is not necessarily true. In fact,
Dodis et. al. [DRS09] in their Eurocrypt ’09 paper showed that the plain Merkle-
Damgard mode of operation is publicly indifferentiable from a random oracle, a
result which does not hold for general indifferentiability [CDMP05]. This implies
that the public indifferentiability is actually a strictly weaker notion compared to
the general indifferentiability.

However, the relation between honest-but-curious model indifferentiability and
the general indifferentiability is not so simple. In the honest-but-curious model
the power of the adversary as well as the simulator are restrictive compared to
the general indifferentiability model. As a result, we have constructions which are
indifferentiable in honest-but-curious model, but not in the general model and vice
versa. Holenstein et. al. [HKT11] showed the 14-round feistel construction with
random round functions is indifferentiable from a invertible random permutation.
Where as, Coron et. al. [CPS08] have previously shown the feistel construction
with a constant number of rounds is not sufficient for honest-but-curious model
indifferentiability. In Chapter 3 we will provide a separation result from the other
direction. The 2-round feistel construction as an ideal cipher domain extender
is actually indifferentiable from a bigger (double domain size) ideal cipher in the
honest-but-curious model. Moreover, by providing a concrete attack (Section 3.3)
we will show that for the general indifferentiability only 2-rounds are not sufficient.
The attack shown in Section 3.3 also hold in public indifferentiability model. Hence,
honest-but-curious model indifferentiability does not necessarily imply public indif-
ferentiability as well. Figure 2.5 illustrates the relationship among the three notions
of indifferentiability.

General Indifferentiability

Public Indifferentiability

Honest-but-Curious Indifferentiability

Figure 2.5: Relation among different indifferentiability models - General
Indifferentiability implies Public Indifferentiability. However, honest-but-curious
model indifferentiability do not necessarily imply general/public indifferentiability
and vice versa

20 Indifferentiability Framework

Chapter 3

A domain extender for the ideal
cipher

We describe the first domain extender for ideal ciphers, i.e. we show a construction
that is indifferentiable from a 2n-bit ideal cipher, given a n-bit ideal cipher. Our
construction is based on a 3-round Feistel, and is more efficient than first building
a n-bit random oracle from a n-bit ideal cipher (as in [CDMP05]) and then a 2n-bit
ideal cipher from a n-bit random oracle (as in [HKT11], using a 14-round Feistel).
We also show that 2 rounds are not enough for indifferentiability by exhibiting a
simple attack. We also consider our construction in the standard model: we show
that 2 rounds are enough to get a 2n-bit tweakable block-cipher from a n-bit tweak-
able block-cipher and we show that with 3 rounds we can get beyond the birthday
security bound. This is a joint work with Jean-Sébastien Coron, Yevgeniy Dodis
and Yannick Seurin [CDMS10].

Contents
3.1 Introduction . 22

3.1.1 Related Work . 24

3.2 Basics . 25

3.3 An Attack against 2 Rounds 26

3.4 Previous Constructions are not Indifferentiable 27

3.4.1 The CMC construction 28

3.4.2 The EME construction. 29

3.5 Indifferentiability of 3-round Feistel Construction 30

3.5.1 Practical Considerations 34

3.5.2 Indifferentiability for 2 Rounds in the Honest-but-curious
Model . 37

3.6 Domain Extension of Tweakable Block Cipher 40

3.7 Conclusion . 52

22 A domain extender for the ideal cipher

3.1 Introduction

A block cipher is a primitive that encrypts a n-bit string using a k-bit key. The
standard security notion for block-ciphers is to be indistinguishable from a random
permutation, for a polynomially bounded adversary, when the key is generated at
random in {0, 1}k. A block-cipher is said to be a strong pseudo-random permutation
(or chosen-ciphertext secure) when computational indistinguishability holds even
when the adversary has access to the inverse permutation.

When dealing with block-ciphers, it is sometimes useful to work in an idealized
model of computation, in which a concrete block-cipher is replaced by a publicly
accessible random block-cipher (or ideal cipher); this is a block cipher with a k-bit
key and a n-bit input/output, that is chosen uniformly at random among all block
ciphers of this form; this is equivalent to having a family of 2k independent random
permutations. All parties including the adversary can make both encryption and
decryption queries to the ideal block cipher, for any given key; this is called the
Ideal Cipher Model (ICM). Many schemes have been proven secure in the ICM
[BRS02, Des00, EM91, EM97, Gra02, Jon02, KR01, PP03]; however, it is possible
to construct artificial schemes that are secure in the ICM but insecure for any
concrete block cipher (see [Bla06]). Still, a proof in the ideal cipher model seems
useful because it shows that a scheme is secure against generic attacks, that do not
exploit specific weaknesses of the underlying block cipher.

It was shown in [CDMP05, HKT11] that the Ideal Cipher Model(ICM) and the
Random Oracle Model are equivalent; the random oracle model is similar to the ICM
in that a concrete hash function is replaced by a publicly accessible random function
(the random oracle). The authors of [CDMP05] proved that a random oracle (taking
arbitrary long inputs) can be replaced by a block cipher-based construction, and
the resulting scheme will remain secure in the ideal cipher model. Conversely, it
was shown in [HKT11] that an ideal cipher can be replaced by a 14-round Feistel
construction, and the resulting scheme will remain secure in the random oracle
model. Both directions were obtained using an extension of the classical notion
of indistinguishability, called indifferentiability, introduced by Maurer et al. in
[MRH04].

Since a block cipher can only encrypt a string of fixed length, one must consider
the encryption of longer strings. A mode of operation of a block-cipher is a method
used to extend the domain of applicability from fixed length strings to variable
length strings. Many modes of operations have been defined that provide both
privacy and authenticity (such as OCB [RBB03]). A mode of operation can also
be a permutation; in this case, one obtains an extended block cipher that must
satisfy the same property as the underlying block-cipher, i.e. it must be a (strong)
pseudo-random permutation. Many constructions of domain extender for block-
ciphers have been defined that satisfy this security notion, for example PEP [CS06b],
XCB [MF07], HCTR [WFW05], HCH [CS06a, CS08] and TET [Hal07].

However, it is easy to see that none of those constructions provide the indif-
ferentiability property that enables to get a 2n-bit ideal cipher from a n-bit ideal
cipher. This is because these constructions were proposed with privacy concerns in

3.1 Introduction 23

mind (mainly for disk encryption purposes) and proven secure only in the classical
pseudo-random permutation model. Therefore, these constructions cannot be used
when security must hold under the random permutation model (or ideal cipher
model). Consider for example the public-key encryption scheme described by Phan
and Pointcheval in [PP03]. The scheme requires a public random permutation with
the same size as the RSA modulus, say 1024 bits. In order to replace a 1024-bit
random permutation by a construction based on a smaller primitive (for example a
128-bit block cipher), indifferentiability with respect to a 1024-bit random permu-
tation is required. Given a 128-bit block-cipher, none of the previous constructions
can provide such property; therefore if one of these constructions is plugged into
the Phan and Pointcheval scheme, nothing can be said about the security of the
resulting scheme.

In this work we construct the first domain extender for the ideal cipher; that
is we provide a construction of an ideal cipher with 2n-bit input from an ideal
cipher with n-bit input. Given an ideal cipher with n-bit input/output, one could
in principle use the construction in [CDMP05] to get a random oracle with n-bit
output, and then use the 14-round Feistel in [HKT11] to obtain an ideal cipher
with 2n-bit input/output, but that would be too inefficient. Moreover the security
bound in [HKT11] is rather loose, which implies that the construction only works
for large values of n.1 Over here, we describe a more efficient construction, based
on a 3-round Feistel only, and with a better security bound. More precisely, we
show that the 3-round construction in Figure 3.1 (left) is enough to get a 2n-bit
random permutation from a n-bit ideal cipher, and that its variant in Figure 3.1
(right) provides a 2n-bit ideal cipher. We also show that 2 rounds are not enough by
providing a simple attack. Interestingly, in the so called honest-but-curious model
of indifferentiability [DP06], we show that 2 rounds are sufficient.

Our construction is similar to that of Luby-Rackoff [LR88]. However we stress
that the “indifferentiable construction” security notion is very different from the
classical indistinguishability notion. The well known Luby-Rackoff result that 4
rounds are enough to obtain a strong pseudo-random permutation from pseudo-
random functions [LR88], is proven under the classical indistinguishability notion.
Under this notion, the adversary has only access to the input/output of the Luby-
Rackoff construction, and tries to distinguish it from a random permutation; in
particular it does not have access to the input/output of the inner pseudo-random
functions. On the contrary, in our setting, the distinguisher can make oracle calls
to the inner block-ciphers Ei’s (see Fig. 3.1); the indifferentiability notion enables
to accommodate these additional oracle calls in a coherent definition.

The indifferentiability security notion still requires a (small) ideal component.
We stress that it is unknown how to instantiate such ideal component (be it a
random oracle or an ideal cipher, as opposed to a PRF or a PRP) and that the
security guarantee does not hold anymore once that component is instantiated.
Moreover the recent related-key attacks on AES [BKN09, BK09] show that AES-

1The security bound in [HKT11] for the 14-round Feistel random oracle based construction is
q16/2n, where q is the number of distinguisher’s queries. This implies that for q = 264, one must
take at least n = 1024, which corresponds to a 2048-bit permutation.

24 A domain extender for the ideal cipher

192 and AES-256 do not behave as ideal ciphers; as of 2009 it is unclear if we have
a candidate block-cipher with key-size larger than block-size that behaves like an
ideal cipher.

E1

E2

E3

L R

X

S

S T

E1

E2

E3

L R

X

S

S T

K

K

K

Figure 3.1: Construction of a 2n-bit permutation given a n-bit ideal cipher with
n-bit key (left). Construction of a 2n-bit ideal cipher with k-bit key, given a n-bit
ideal cipher with (n+ k)-bit key (right).

Finally, we also analyze our construction in the standard model. In this case, we
use a tweakable block-cipher as the underlying primitive. Tweakable block-ciphers
were introduced by Liskov, Rivest and Wagner in [LRW02, LRW11] and provide an
additional input - the tweak - that enables to get a family of independent block-
ciphers; efficient constructions of tweakable block-ciphers were described in [LRW02,
LRW11], given ordinary block-ciphers. Over here, we show that our construction
with 2 rounds enables to get a 2n-bit tweakable block-cipher from a n-bit tweakable
block-cipher. Moreover we show that with 3 rounds we achieve a security guarantee
beyond the birthday paradox.

3.1.1 Related Work

At FSE 2009, Minematsu [Min09] provided two constructions of a 2n-bit block-
cipher from an n-bit tweakable block-cipher :

1. A 3-round Feistel construction with universal hashing in the 1st round and
tweakable block ciphers in the 2nd and the 3rd rounds. This construction is
a secure pseudo-random permutation beyond the birthday bound.

2. A 4-round Feistel with universal hashing in the 1st and the 4th rounds and
tweakable block ciphers in the 2nd and the 3rd rounds. This construction is
a secure strong pseudo-random permutation beyond the birthday bound.

On the other hand, our construction in this section is a 3-round Feistel, with
tweakable block ciphers in every round, and it gives a secure (tweakable) strong

3.2 Basics 25

pseudo-random permutation beyond the birthday bound. Therefore, the construc-
tion in [Min09] is more efficient as only 2 calls are required to the underlying tweak-
able block-cipher, instead of 3 calls in our construction (this is assuming very fast
universal hashing, e.g. [Kro06]). However, we stress that the constructions in
[Min09] are secure only in the symmetric-key setting; it is easy to see that none of
the two constructions from [Min09] can achieve the indifferentiability property (the
attack is similar to the attack against 2-round Feistel described in Section 3.3).

3.2 Basics
In this section we briefly recall a few notions regarding ideal primitives and indif-
ferentiability from Chapter 2 (Section 2.2), which would be useful in this chapter.
We first recall the notion of indifferentiability of random systems, introduced by
Maurer et al. in [MRH04]. This is an extension of the classical notion of indis-
tinguishability, where one or more oracles are publicly available, such as random
oracles or ideal ciphers.

Ideal primitive is an algorithmic entity which receives inputs from one of the
parties and delivers its output immediately to the querying party. In this chapter,
we consider ideal primitives such as random oracle, random permutation and ideal
cipher. A random oracle [BR93] is an ideal primitive which provides a random
output for each new query; identical input queries are given the same answer. A
random permutation is an ideal primitive that provides oracle access to a random
permutation P : {0, 1}n → {0, 1}n and to P−1. An ideal cipher is a generalization
of a random permutation that models a random block cipher E : {0, 1}k×{0, 1}n →
{0, 1}n. Each key k ∈ {0, 1}k defines an independent random permutation Ek =
E(k, ·) on {0, 1}n. The ideal primitive also provides oracle access to E and E−1;
that is, on query (0, k,m), the primitive answers c = Ek(m), and on query (1, k, c),
the primitive answers m such that c = Ek(m). We stress that in the ideal cipher
model, the adversary has oracle access to a publicly available ideal cipher and must
send both the key and the plaintext in order to obtain the ciphertext; this is different
from the standard model in which the key is privately generated by the system.

The notion of indifferentiability of random systems, introduced by Maurer et
al. in [MRH04], is an extension of the classical notion of indistinguishability, where
one or more oracles are publicly available, such as random oracles or ideal ciphers.
Indifferentiability enables us to show that an ideal primitive P (for example, a
random permutation) can be replaced by a construction C that is based on some
other ideal primitive E; for example, C can be the Feistel construction illustrated
in Fig. 3.1 (left). The formal definition of indifferentiability was given in Chapter
2 (Definition).

The indifferentiability notion is illustrated in Figure 3.2, where C is our 3-round
construction of Figure 3.1 (left), E is an ideal cipher, P is a random permutation
and S is the simulator. In this chapter, for a 3-round construction, we denote these
ideal ciphers by E1, E2, E3 (see Fig. 3.1). Equivalently, one can consider a single
ideal cipher E and encode in the first 2 key bits which round ideal cipher E1, E2, or
E3 is actually called. The distinguisher has either access to the system formed by

26 A domain extender for the ideal cipher

E1

E2

E3 E P S

D 0/1

Figure 3.2: The indifferentiability notion and 3-round construction

the construction C and the ideal cipher E, or to the system formed by the random
permutation P and a simulator S. In the first system (left), the construction C
computes its output by making calls to the ideal cipher E (equivalently the 3 ideal
ciphers E1, E2 and E3); the distinguisher can also make calls to E directly. In the
second system (right), the distinguisher can either query the random permutation
P , or the simulator that can make queries to P . If the distinguisher first makes a
call to the construction C, and then makes the corresponding calls to ideal cipher E,
he will get the same answer. This must remain true when the distinguisher interacts
with permutation P and simulator S. The role of simulator S is then to simulate
the ideal ciphers Ei’s so that 1) the output of S should be indistinguishable from
that of ideal ciphers Ei’s and 2) the output of S should look “consistent" with what
the distinguisher can obtain independently from P . We note that in this model
the simulator does not see the distinguisher’s queries to P ; however, it can call P
directly when needed for the simulation.

The indifferentiability notion is the “right” notion for substituting one ideal
primitive with a construction based on another ideal primitive. That is, if CE is
indifferentiable from an ideal primitive P, then CE can replace P in any cryptosys-
tem, and the resulting cryptosystem is at least as secure in the E model as in the
P model (Chapter 2, Theorem 2.1).

3.3 An Attack against 2 Rounds

In this section we show that 2 rounds are not enough when the inner ideal ciphers
are publicly accessible, that is we exhibit a property for 2 rounds that does not
exist for a random permutation.

Formally, the 2 round construction is defined as follows (see Fig. 3.3). Let
E1 : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher, where c = E1(K,m) is the n-
bit ciphertext corresponding to n-bit key K and n-bit input message m; let E2 be

3.4 Previous Constructions are not Indifferentiable 27

E1

E2

L R

S

S T

Figure 3.3: The 2-round Feistel construction Ψ2(L,R).

defined similarly. We define the permutation Ψ2 : {0, 1}2n → {0, 1}2n as:

Ψ2(L,R) :=
(
E1(R,L), E2(E1(R,L), R)

)
It is easy to see that this defines an invertible permutation over {0, 1}2n. Namely,
given a ciphertext (S, T) the value R is recovered by “decrypting” T with block-
cipher E2 and key S, and the value L is recovered by “decrypting” S with block-
cipher E1 and key R.

The attack against permutation Ψ2 is straightforward; it is based on the fact
that the attacker can arbitrarily choose both R and S. More precisely, the attacker
selects R = 0n and S = 0n and queries L = E−1

1 (R,S) and T = E2(S,R). This
gives Ψ2(L,R) = (S, T) as required. However, it is easy to see that with a random
permutation P and a polynomially bounded number of queries, it is impossible to
find L,R, S, T such that P (L‖R) = S‖T with both R = 0n and S = 0n, except
with negligible probability. Therefore, the 2-round construction cannot replace a
random permutation.

Theorem 3.1. The 2-round Feistel construction Ψ2 is not indifferentiable from a
random permutation.

In Section 3.4 we also analyze existing constructions of domain extender for
block ciphers and show that they are not indifferentiable from an ideal cipher; more
precisely, we show that the CMC [HR03] and EME [HR04a] constructions are not
indifferentiable from an ideal cipher. We stress that our observations do not imply
anything concerning their security in the standard pseudo-random permutation
model.

3.4 Previous Constructions are not Indifferentiable
We analyze previous constructions of domain extender for block ciphers and show
that they are not indifferentiable from an ideal cipher. This is not surprising as
all these constructions were proposed with privacy concerns in mind (mainly for
disk encryption purposes) and proven secure in the classical Luby-Rackoff model.

28 A domain extender for the ideal cipher

Most of this constructions use two layers of keyed universal hashing and can-
not be analyzed in the indifferentiability framework: this is the case for exam-
ple of PEP [CS06b], XCB [MF07], HCTR [WFW05], HCH [CS06a, CS08] and
TET [Hal07].

Other constructions however use nothing more than the underlying block cipher.
The two most prominent of them are CMC [HR03] and EME [HR04a] proposed by
Halevi and Rogaway. We now show that these two constructions are not indiffer-
entiable from an ideal cipher.

3.4.1 The CMC construction

CMC was proposed by Halevi and Rogaway [HR03] and uses two layers of CBC
and an intermediate mixing layer. This is a tweakable mode but we don’t consider
the tweak in our description (that is we set the tweak to T = 0n) since it is not
relevant for our attack.

CMC uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n and turns it into a
tweakable block cipher E with tweak space {0, 1}n, key space {0, 1}k×{0, 1}k, and
message space

⋃
m≥2{0, 1}mn. A message P1 · · ·Pm of m n-bit blocks is encrypted

under key K,K ′ and tweak T as follows:

1. T← EK′(T)

2. PPP0 ← T

3. for i = 1 to m do PPPi ← EK(Pi ⊕ PPPi−1)

4. M ← 2(PPP1 ⊕ PPPm)

5. for i = 1 to m do CCCi ← PPPm+i−1 ⊕M

6. CCC0 ← 0n

7. for i = 1 to m do Ci = EK(CCCi)⊕ CCCi−1

8. C1 ← C1 ⊕ T

9. return C1 · · ·Cm

The attack on CMC proceeds as follows (we describe the attack for two blocks
only, it can be easily extended to any number of blocks).

If first fixes two arbitrary keys K ′ and K, and computes T = EK′(T). It
then simply consists in computing P1 = E−1

K (0n). One can then verify that the
encryption of (P1⊕T)|P1 is EK,K′((P1⊕T)‖P1) = EK(0)‖(EK(0)⊕T). Hence one
has been able to find to values A and B such that EK,K′((A⊕T)‖A) = B‖(B ⊕T)
for some fixed value T, which would be possible with only negligible advantage for
a random permutation.

3.4 Previous Constructions are not Indifferentiable 29

3.4.2 The EME construction.

EME was proposed as CMC by Halevi and Rogaway [HR04a], and improves on
CMC since it is parallelizable. It uses to layers of ECB and an intermediate mixing
layer. As CMC it is tweakable but we will set the tweak to 0n in our attack.

CMC uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n and turns it into a
tweakable block cipher E with tweak space {0, 1}n, key space {0, 1}k, and message
space

⋃
m≥2{0, 1}mn. A message P1 · · ·Pm of m n-bit blocks is encrypted under key

K and tweak T = 0n as follows:

1. L← 2EK(0n)

2. for i = 1 to m do PPPi = Ek(Pi ⊕ 2i−1L)

3. MP ← PPP1 ⊕ PPP2 ⊕ · · · ⊕ PPPm

4. MC ← EK(MP)

5. M ←MP ⊕MC

6. for i = 2 to m do CCCi = PPPi ⊕ 2i−1M

7. CCC1 ←MC ⊕ CCC2 ⊕ · · · ⊕ CCCm

8. for i = 1 to m do Ci ← EK(CCCi)⊕ 2i−1L

9. return C1 · · ·Cm

The attack on EME for two-blocks messages proceeds as follows:

1. choose an arbitrary key K and compute L = 2EK(0n)

2. compute the value MP corresponding to MC = 0n, MP = E−1
K (0n); note

that consequently M = MP ⊕MC = MP

3. fix P1 = 0n and compute PPP1 = EK(P1 ⊕ L)

4. compute PPP2 = MP ⊕ PPP1 and deduce P2 = E−1
K (PPP2)⊕ 2L

5. compute CCC1 = CCC2 = PPP2 ⊕ 2MP

6. compute C1 = EK(CCC1)⊕L and C2 = EK(CCC2)⊕2L = EK(CCC1)⊕2L

Hence this attack enables to find P1, P2, C1, C2 such that EK(P1‖P2) = C1‖C2,
P1 = 0n and C1⊕C2 = L⊕ 2L for some fixed value L. This would be possible with
only negligible advantage for a truly random permutation.

30 A domain extender for the ideal cipher

3.5 Indifferentiability of 3-round Feistel Construction

We now prove our first main result: the 3-round Feistel construction is indifferen-
tiable from a random permutation. To get an ideal cipher, it suffices to prepend a
key K to the 3 ideal ciphers E1, E2 and E3; one then gets a family of independent
random permutation, parametrised by K, i.e. an ideal cipher (see Fig. 3.1 for an
illustration).

Formally, the 3 round permutation Ψ3 : {0, 1}2n → {0, 1}2n is defined as fol-
lows, given block ciphers E1, E2 and E3 with n-bit key (first variable) and n-bit
input/output (second variable):

X = E1(R,L)
S = E2(X,R)
T = E3(S,X)

Ψ3(L,R) := (S, T)

The 3 round block cipher Ψ′3 : {0, 1}k×{0, 1}2n → {0, 1}2n is defined as follows,
given block ciphers E1, E2 and E3 with (k + n)-bit key and n-bit input/output:

X = E1(K‖R,L)
S = E2(K‖X,R)
T = E3(K‖S,X)

Ψ′3(K, (L,R)) := (S, T)

Theorem 3.2. The 3-round Feistel construction Ψ3 is (q, t, σ, ε)-indifferentiable
from a random permutation, with t = O(qn), σ = O(q) and ε = 5q2/2n. The 3-
round block-cipher construction Ψ′3 is (q, t, σ, ε)-indifferentiable from an ideal cipher,
with t = O(qn), σ = O(q) and ε = 5q2/2n.

Proof. We only consider the 3-round permutation Ψ3; the extension to block-cipher
Ψ′3 is straightforward. We must construct a simulator S such that the two systems
formed by (Ψ3, E) and (P,S) are indistinguishable (see Fig. 3.2).

Our simulator maintains an history of already answered queries for E1, E2
and E3. Formally, when the simulator answers X for a E1(R,L) query, it stores
(1, R, L,X) in history; the simulator proceeds similarly for E2 and E3 queries. We
write that the simulator “simulates” E1(R,L)← X when it first generates a random
X ∈ {0, 1}n \ B, where B is the set of already defined values for E1(R, ·), and then
stores (1, R, L,X) in history, meaning that E1(R,L) = X; we use similar notations
for E2 and E3. The distinguisher’s queries are answered as follows by the simulator:

3.5 Indifferentiability of 3-round Feistel Construction 31

E1(R,L) query: E−1
1 (R,X) query

1. Simulate E1(R,L)← X 1. Simulate E−1
1 (R,X)← L

2. (S, T)← Adapt(L,R,X) 2. (S, T)← Adapt(L,R,X)
3. Return X 3. Return L

E2(X,R) query: Adapt(L,R,X):
1. Simulate E−1

1 (R,X)← L 1. S‖T ← P (L‖R)
2. (S, T)← Adapt(L,R,X) 2. Store E2(X,R) = S in history
3. Return S 3. Store E3(S,X) = T in history.

4. Return (S, T).

The procedure for answering the other queries is essentially symmetric; we pro-
vide it for completeness:

E−1
3 (S, T) query: E3(S,X) query
1. Simulate E−1

3 (S, T)← X 1. Simulate E3(S,X)← T
2. (L,R)← Adapt−1(S, T,X) 2. (L,R)← Adapt−1(S, T,X)
3. Return X 3. Return T

E−1
2 (X,S) query: Adapt−1(S, T,X):
1. Simulate E3(S,X)← T 1. L‖R← P−1(S‖T)
2. (L,R)← Adapt−1(S, T,X) 2. Store E2(X,R) = S in history.
3. Return R 3. Store E1(R,L) = X in history.

4. Return (L,R)

Finally, the simulator aborts if for some Ei and some key K, it has not defined
a permutation for Ei(K, ·); that is the simulator aborts if it has defined Ei(K,X) =
Ei(K,Y) for some X 6= Y or it has defined E−1

i (K,X) = E−1
i (K,Y) for some

X 6= Y . This completes the description of the simulator.
As a consistency check, it is easy to see that if the distinguisher makes a single

query for P (L‖R) and then queries the simulator for X ← E1(R,L), S ← E2(X,R)
and T ← E3(S,X), then the distinguisher obtains S‖T = P (L‖R) as required.

We now proceed to prove that the systems (Ψ3, E) and (P,S) are indistinguish-
able. We consider a distinguisher D making at most q queries to the system (Ψ3, E)
or (P,S) and outputting a bit γ. We define a sequence Game0, Game1, . . . of mod-
ified distinguisher games. In the first game the distinguisher interacts with the
system (Ψ3, E). We incrementally modify the system so that in the last game the
distinguisher interacts with the system (P,S), where S is the previously defined
simulator. We denote by Si the event that in game i the distinguisher outputs
γ = 1.

• Game0: the distinguisher interacts with Ψ3 and the ideal ciphers Ei.

• Game1: we modify the way Ei queries are answered, without actually changing
the value of the answer. We also maintain an history of already answered queries
for E1, E2 and E3. We proceed as follows:

32 A domain extender for the ideal cipher

P S

D

EΨ
3

D

E

S’

T

Ψ
3 P

D

E

P S’

T’

D

Game 1Game 0 Game 2 Game 3

Figure 3.4: Sequence of games for proving indifferentiability.

E1(R,L) query: E−1
1 (R,X) query

1. Let X ← E1(R,L) 1. Let L← E−1
1 (R,X)

2. (S, T)← Adapt′(L,R,X) 2. (S, T)← Adapt′(L,R,X)
3. Return X 3. Return L

E2(X,R) query: Adapt′(L,R,X):
1. Let L← E−1

1 (R,X) 1. S‖T ← Ψ3(L‖R)
2. (S, T)← Adapt′(L,R,X) 2. Store E2(X,R) = S in history.
3. Return S 3. Store E3(S,X) = T in history.

4. Return (S, T)

The queries to E−1
2 (X,S), E3(S,X) and E−1

3 (S, T) are answered symmetrically.
For example, when given a query to E1(R,L), we first query ideal cipher E1

for X ← E1(R,L); then instead of X being returned immediately as in Game0,
we let S‖T = Ψ3(L‖R), which gives S = E2(X,R) and E3(S,X) = T ; we then
store (2, X,R, S) and (3, S,X, T) in history. Therefore, the value that get stored
in history is exactly the same as the value from ideal ciphers E2 and E3; the
only difference is that this value was obtained indirectly by querying Ψ3 instead of
directly by querying E2 and E3. It is easy to see that this holds for any query made
by the distinguisher, who receives exactly the same answers in Game0 and Game1;
this implies:

Pr[S1] = Pr[S0]

As illustrated in Fig. 3.4, we have actually constructed a simple simulator S ′ that
makes queries to a subsystem T that comprises the construction Ψ3 and the ideal
ciphers E1, E2 and E3. The difference between S ′ in Game1 and the main simulator
S defined previously is that 1) S ′ calls ideal cipher E1(R,L) instead of simulating
it and 2) S ′ makes calls to Ψ3(L‖R) instead of P (L‖R).
• Game2: we modify the way the permutation queries are answered. Instead of using
Ψ3 as in system T , we use the random permutation P in the new system T ′ (see
Fig. 3.4).

We must show that the distinguisher’s view has statistically close distribution in
Game1 and Game2. For this, we consider the subsystem T with the 3-round Feistel
Ψ3 and the ideal ciphers Ei’s in Game1, and the subsystem T ′ with the random

3.5 Indifferentiability of 3-round Feistel Construction 33

permutation P and ideal ciphers Ei’s in Game2. We show that the output of systems
T and T ′ is statistically close; this in turn shows that the distinguisher’s view has
statistically close distribution in Game1 and Game2. Note that the indistinguishability
of T and T ′ only holds for the particular set of queries made by the distinguisher
and the simulator; it could not hold for any possible set of queries.

In the following, we assume that the distinguisher eventually makes a sequence
of Ei queries corresponding to all previous Ψ3 queries that he has made. More
precisely, if the distinguisher has made a Ψ3(L,R) query, then eventually the
distinguisher makes the sequence of queries X ← E1(R,L), S ← E2(X,R) and
T ← E3(S,X) to the simulator; the same holds for Ψ−1

3 (S, T) queries. This is with-
out loss of generality, because from any distinguisher D we can build a distinguisher
D′ with the same output that satisfies this property.

The outputs to Ei queries provided by subsystem T in Game1 and by subsystem
T ′ in Game2 are the same, since in both cases these queries are answered by ideal
ciphers Ei. Therefore, we must show that the output to P/P−1 queries provided
by T and T ′ have statistically close distribution, when the outputs to Ei queries
provided by T or T ′ are fixed.

We consider a forward permutation query L‖R made by either the distinguisher
or the simulator S ′. If this L‖R query is made by the distinguisher, since we have
assumed that the distinguisher eventually makes the Ei queries corresponding to
all his permutation queries, this L‖R query will also be made by the simulator S ′,
by definition of S ′. Therefore we can consider L‖R queries made by the simulator
S ′ only.

We first consider the answer to S‖T = Ψ3(L‖R) in Game1. In this case the
answer S‖T is computed as follows:

X = E1(R,L)
S = E2(X,R)
T = E3(S,X)

By definition of the simulator S ′, when the simulator S ′ makes a query for Ψ3(L‖R),
it must have made an ideal cipher query to E1(R,L) before, or an ideal cipher query
to E−1

1 (R,X) before, with L = E−1
1 (R,X).

If the simulator S ′ has made an ideal cipher query for E1(R,L) to subsystem
T , then from the definition of the simulator a call to Adapt′(L,R,X) has occurred,
where X = E1(R,L); in this Adapt′ call the values E2(X,R) and E3(S, T) are
defined by the simulator; therefore the simulator does not make these queries to
sub-system T . This implies that the values of E2(X,R) and E3(S,X) are not
included in the subsystem T output; therefore these values are not fixed in the
probability distribution that we consider; only the value X = E1(R,L) is fixed.

Moreover, for fixed X,R the distribution of S = E2(X,R) is uniform in {0, 1}n \
B, where B is the set of already defines values for E2(X, ·). Since there are at most
q queries, the statistical distance between the distribution of E2(X,R) and the
uniform distribution in {0, 1}n is at most 2q/2n; the same holds for the distribution
of T = E3(S,X). Therefore, we obtain that for a fixed X, the distribution of (S, T)

34 A domain extender for the ideal cipher

is statistically close to the uniform distribution in {0, 1}2n, with statistical distance
at most 4q/2n.

If the simulator has made an ideal cipher query for E−1
1 (R,X), then the same

analysis applies and we obtain that for a fixed L = E−1
1 (R,X) the distribution of

(S, T) is statistically close to the uniform distribution in {0, 1}2n, with statistical
distance at most 4q/2n. Therefore we obtain that in Game1 the statistical distance
of S‖T = Ψ3(L‖R) with the uniform distribution is always at most 4q/2n.

In Game2, the output to permutation query L‖R is S‖T = P (L‖R); since there
are at most q queries to P/P−1, the statistical distance between P (L‖R) and the
uniform distribution in {0, 1}2n is at most 2q/22n.

Therefore the statistical distance between Ψ3(L,R) in Game1 and P (L‖R) in
Game2 is at most 4q/2n + 2q/22n ≤ 5q/2n. The same argument applies to inverse
permutation queries. This holds for a single permutation query; since there are
at most q such queries, we obtain that the statistical distance between outputs of
systems T and T ′ to permutation queries and Ei queries, is at most 5q2/2n; this
implies:

|Pr[S2]− Pr[S1]| ≤ 5q2

2n

• Game3: eventually the distinguisher interacts with system (P,S). The only differ-
ence between the simulator S ′ in Game2 and the simulator S in Game3 is that instead
of querying ideal ciphers Ei in Game2, these ideal ciphers are simply simulated in
Game3, while the answer to permutation queries are exactly the same. Therefore,
the distinguisher’s view has the same distribution in Game2 and Game3, which gives:

Pr[S2] = Pr[S3]

and finally:

|Pr[S3]− Pr[S0]| ≤ 5q2

2n
which terminates the proof of Theorem 4.4.

We note that the security bound in q2/2n for our 3-round ideal cipher based
construction is much better than the security bound in q16/2n obtained for the
14-round Feistel construction in [HKT11] (based on random oracles).

3.5.1 Practical Considerations

Extending the Key. So far, we showed how to construct an ideal cipher Ψ3
with 2n-bit message and k-bit key from three ideal ciphers E1, E2, E3 on n-bit
message and (n+k)-bit key. As already mentioned, we can actually implement E1,
E2, E3 from a single n-bit ideal cipher E whose key length is n+ k + 2.

However, if only a block-cipher with n-bit key and n-bit message is available
(for example AES-128), we need a procedure to extend the key size. To handle such
cases, we notice that it suffices to first hash the key using a random oracle, and the
resulting block cipher remains indifferentiable from an ideal cipher.

3.5 Indifferentiability of 3-round Feistel Construction 35

Lemma 3.1. Assume E : {0, 1}k × {0, 1}n → {0, 1}n is an ideal cipher and
H : {0, 1}t → {0, 1}k is a random oracle. Define E′ : {0, 1}t × {0, 1}n → {0, 1}n by
E′(K ′, X) = E(H(K ′), X), E′−1(K ′, Y) = E−1(H(K ′), Y). Then E′ is (tD, tS , q, ε)-
indifferentiable from an ideal cipher, where tS = O(q(n+ t)) and ε = O(q2/2k).

Proof. We need to construct a simulator S for H and E, such that the two systems
formed by (E′, (H,E)) and (E ′,S) are indistinguishable, where E ′ is an ideal cipher
with t-bit key and n-bit message.

Our simulator maintains an “H-table” of pairs (K ′,K) corresponding to an-
swered queries K = H(K ′); it also maintains an “E-table” of triples (K,X, Y) of
answered queries Y = E(K,X). Our simulator S answers the distinguisher’s queries
as follows:

1. H(K ′) query: pick a random K ← {0, 1}k, record the pair (K ′,K) in the
“H-table” and return K.

2. E(K,X) query: if there exists a tuple (K,X, Y) in the E-table, return Y .
Else, if there exists a tuple (K ′,K) in the “H-table”, query the value Y =
E ′(K ′, X), record (K,X, Y) in the “E-table” and return Y . Else, pick a
random Y ← {0, 1}n, record (K,X, Y) in the “E-table”, while making sure
that no collision is created for E(K, ·); otherwise, a new Y is generated. The
simulator returns Y .

3. E−1(K,Y) query: if there exists a tuple (K,X, Y) in the E-table (see below),
return X. Else, if there exists a tuple (K ′,K) in the “H-table”, query the
value Y = E ′−1(K ′, Y), record (K,X, Y) in the “E-table” and return X. Else,
pick a random X ← {0, 1}n, record (K,X, Y) in the “E-table”, while making
sure that no collision is created for E−1(K, ·), and return X.

This completes the description of the simulator. Now we show that the system
(E′, (H,E)) is indistinguishable from the system (E ′,S), where:

E′(K ′, X) = E(H(K ′), X)

is the construction with extended key-size. We consider a distinguisher D making
at most q queries and outputting a bit γ. We define a sequence Game0, Game1, . . . of
modified distinguisher games. In the first game Game0, the distinguisher interacts
with the system formed by (E ′,S). We denote by Si the event in game i that the
distinguisher outputs γ = 1.
Game0: the distinguisher interacts with the simulator S and the ideal cipher E ′.
Game1: we slightly modify the way H and E queries are answered by the simulator.
In Game1, given a query K ′ for H, instead of letting K ← {0, 1}k, the new simulator
S ′ makes a query for random oracle H and returns K = H(K ′). Similarly, for a
E(K,X) query, instead of generating a random Y ← {0, 1}n, the simulator queries
ideal cipher E and returns E(K,X); similarly for E−1. Since we have simply
replaced one set of random variables by a different, but identically distributed, set
of random variables, we have:

Pr[S0] = Pr[S1]

36 A domain extender for the ideal cipher

Game2: we modify the way E ′ queries are answered by the system. Instead of return-
ing E ′(K ′,m) with ideal cipher E ′, the system returns E′(K ′,m) = E(H(K ′),m)
by calling ideal cipher E and random oracle H.

We must show that the distinguisher’s view has statistically close distribution
in Game1 and Game2. For this, we consider the subsystem T with the ideal cipher
E ′ and ideal cipher E and random oracle H in Game1, and the subsystem T ′ with
construction E′ and ideal cipher E and random oracle H in Game2. We show that
the output of systems T and T ′ is statistically close; this in turn shows that the
distinguisher’s view has statistically close distribution in Game1 and Game2.

The outputs to E queries provided by subsystem T in Game1 and by subsystem
T ′ in Game2 are the same, since in both cases these queries are answered by ideal
cipher E. Therefore, we must show that the output to E ′ queries provided by T
and T ′ have statistically close distribution, when the outputs to E and H queries
provided by T or T ′ are fixed.

We consider a E ′(K ′,m) query made either by the distinguisher or by the simu-
lator (the argument for a E ′−1 query is similar). In Game2 the answer c is computed
as E(H(K ′),m); we have that conditioned on the event that no collision occurs
for H, the output distribution of E(H(K ′),m) in Game2 is exactly the same as the
distribution of E ′(K ′,m) in Game1. Let denote by Bad the event that a collision
occurs for H; since there are at most q queries from the distinguisher, we have:

Pr[Bad] ≤ q2

2k

and we obtain:
|Pr[S2]− Pr[S1]| ≤ Pr[Bad] ≤ q2

2k

Game3: the distinguisher interacts with system (E′, (H,E)). We have that the
system (E′, (H,E)) provides the same output as the system in Game2, which gives:

Pr[S3] = Pr[S2]

From the previous inequalities, we obtain the following upper bound on the distin-
guisher’s advantage:

|Pr[S3]− Pr[S0]| ≤ q2

2k
which terminates the proof of Lemma 3.1.

Using this observation, given a single ideal cipher E on n-bit messages and k-bit
key and a random oracle H with output size k bits, we can first build an ideal cipher
E′ with n-bit message and (n+ k′ + 2)-bit key, and then from Theorem 4.4 we can
obtain an ideal cipher Ψ3 on 2n-bit messages and k′-bit key. It remains to remove
the assumption of having random oracle H; this can easily be accomplished by
sacrificing 1 key bit from E, and then using one of the two resulting (independent)
ideal ciphers to efficiently implement H using any of the methods from [CDMP05].

3.5 Indifferentiability of 3-round Feistel Construction 37

Going Beyond Double? Another natural question is to extend the domain of
the ideal cipher beyond doubling it. One way to accomplish this task is to apply our
3-round construction recursively, each time doubling the domain. However, in this
case it is not hard to see that, to extend the domain by a factor of t, the original
block cipher E will have to be used O(tlog2 3) times.2 This makes the resulting
constructions somewhat impractical for large t.

In contrast, assume that we use the 2-step construction: first build a length-
preserving random oracle H on nt/2 bits (using [CDMP05]), and then use the
14-round Feistel construction [HKT11] to get a nt-bit permutation. To construct
a random oracle from nt/2-bit to nt/2-bit, only O(t) calls to the n-bit ideal cipher
are required (first hash from nt/2-bit to n-bit using [CDMP05], then expand back
to nt/2-bits using counter mode). Therefore the 2-step construction requires only
O(t) calls to E, instead of O(tlog2 3) when iterating our construction. This implies
that for large t, the 2-step construction is more efficient.

To give a practical example, let us consider the applications of [Gra02, PP03],
where one needs to apply a random permutation to the domain of an RSA modulus.
We take the length of modulus N to be 1024 bits and the underlying block-cipher
E to be n = 128 with 128-bit key (as in AES-128). One can see that to obtain a
1024-bit permutation from E, only 14×(1024/128) = 112 calls to E are required for
the 2-step construction, instead of 243 when iterating our construction. However
for 1024-bit, the exact security of the 2-step construction is dominated by the term
O(q16/2512) from [HKT11], which requires q � 232, whereas the exact security of
the recursive construction is O(q2/2128), which requires q � 264. Therefore, for
a 1024-bit permutation our recursive construction still provides a better security
bound; however, for any size larger than 2048 bits, the two constructions have the
same q � 264 bound 3.

To summarize, our construction is more efficient than the 2-step construction
when doubling only once (t = 2). However for a large expansion factor t the 2-step
construction is more efficient than the recursive method.

3.5.2 Indifferentiability for 2 Rounds in the Honest-but-curious
Model

In this section we also consider the honest-but-curious model of indifferentiability
introduced by Dodis and Puniya [DP06], which is a variant of the general indif-
ferentiability model. We show that in the honest-but-curious model, 2 rounds as
depicted in Fig 3.3 are actually sufficient to get indifferentiability.

First, we briefly recall the model; for more details we refer to [DP06]. In the
honest-but-curious model of indifferentiability, the distinguisher cannot make direct

2In essence, this is because we call E three times for each doubling. Actually, this is not
counting the calls to the independent variable length random oracle H to hash down the key, as
above. However, because the constructions of such an H in [CDMP05] are so efficient, it is not
hard to see that, even when implementing H using E itself, the dominant term remains O(tlog2 3)
(although the constant is slightly worse).

3The length-preserving random oracle used in the 14-round Feistel has the birthday bound of
q2/2128

38 A domain extender for the ideal cipher

queries to the inner primitive E. Instead it can only query the global construction
C and get the results of the internal queries made by the construction to the inner
primitive E. There are actually two types of queries made by the distinguisher:
those for which it asks for the transcript of the queries made by the construction to
the primitive E, and those for which it does not. When the distinguisher interacts
with (P,SP), the second queries are sent directly to P (and are not seen by the
simulator), while the first ones are sent to the simulator S, which must simulate
the transcript of the construction’s inner queries to E. Another important differ-
ence with general indifferentiability is that here the simulator cannot make its own
additional queries to P.

Theorem 3.3. The 2-round construction is (q, t, ε)-indifferentiable in the honest-
but-curious model from a random permutation, with t = O(qn) and ε = 2q2/2n,
where q is the total number of distinguisher queries and n is the domain size of the
inner ciphers.

Proof. We restrict ourself to distinguishers which do not make twice the same query
(or the inverse query corresponding to a previous query). Note however that the
distinguisher could query L‖R first as a type I query (i.e. without asking for the
transcript, and not seen by the simulator) and then as a type II query (when asking
for the transcript, and sent to the simulator).

We first describe our simulator S. It maintains an history of already defined
values for E1 and E2. Upon a query of the distinguisher, it runs as follows:

• on input a direct query (+, L‖R):

1. query P (L‖R) = S‖T
2. if E1(R,L) or E−1

1 (R,S) is already defined, abort
3. else E1(R,L)← S and add E1(R,L) = S to the history
4. if E2(S,R) or E−1

2 (S, T) is already defined, abort
5. else E2(S,R)← T and add E2(S,R) = T to the history
6. return E1(R,L) = S, E2(S,R) = T

• on input an inverse query (−, S‖T):

1. query P−1(S‖T) = L‖R
2. if E2(S,R) or E−1

2 (S, T) is already defined, abort
3. else E−1

2 (S, T)← R and add E2(S,R) = T to the history
4. if E1(R,L) or E−1

1 (R,S) is already defined, abort
5. else E−1

1 (R,S)← L and add E1(R,L) = S to the history
6. return E−1

2 (S, T) = R, E−1
1 (R,S) = L

We prove the indifferentiability through a sequence of games Gamei. We will
note Si the event that the distinguisher outputs 1 in Gamei. We start with:
Game0: the distinguisher D interacts with (P,S)

3.5 Indifferentiability of 3-round Feistel Construction 39

Game1: it is similar to Game0 except that P now returns uniformly random answers.
Looking at D and S as a distinguisher D′ making at most q queries to P , it is easy
to see that

|Pr[S1]− Pr[S0]| ≤ q2

2 · 22n .

Game2: we modify the way the answers to type I queries (those not seen by the
simulator S) are computed. Instead of being asked directly to the permutation P ,
they are “intercepted” by an algorithm M which forwards them to the simulator
S. M then computes the answer to D using the values returned by S.

As long as the simulator does not abort, the output ofM in Game2 is the same
as the output of P in Game1. Moreover as long as the simulator does not abort,
its output is also the same in Game2 as in Game1 since it does not depend on the
additional queries made byM. Hence:

|Pr[S2]− Pr[S1]| ≤ Pr
Game2

[S aborts].

Let bad denote the event that there exists 1 ≤ j < i ≤ q such that the i-th and
j-th queries of the distinguisher are such that

(Ri = Rj) ∧ (Si = Sj) ∧ (Li 6= Lj ∨ Ti 6= Tj).

It is easy to see that as long as bad does not happen, the simulator does not abort
since it is always able to define the values of the internal ciphers. Therefore:

Pr
Game2

[S aborts] ≤ Pr
Game2

[bad]

Moreover, defining badi as the event that bad happens exactly at the i-th query of
the distinguisher, we get:

Pr
Game2

[bad] =
q∑
i=1

Pr
Game2

[badi]

Assume that the i-th query is a direct one: (+, Li|Ri); the argument for inverse
queries is similar. Note that this query cannot have been done to P yet. Since
there are at most i− 1 values Sj in the history of P and since P returns uniformly
random answers, we obtain:

Pr
Game2

[badi] ≤ i− 1
2n

which gives:

Pr
Game2

[bad] =
q∑
i=1

Pr
Game2

[badi] ≤ q2

2 · 2n

and eventually:

|Pr[S2]− Pr[S1]| ≤ q2

2 · 2n .

40 A domain extender for the ideal cipher

Game3: we remove the permutation P and modify the simulator into a new simulator
S ′ which, upon reception of a direct query L‖R, defines S = E1(R,L) uniformly
at random and T = E2(S,R) uniformly at random, and symmetrically for inverse
queries. Looking at D andM as a distinguisher D′, one can see that the output of
S in Game2 and S ′ in Game3 are exactly the same, which gives:

Pr[S3] = Pr[S2]

Game4: the distinguisher interacts with the construction and the ideal ciphers E1, E2.
We have that Game3 and Game4 are identical unless some collision happens in Game3
when defining two values for the same key. Hence:

|Pr[S4]− Pr[S3]| ≤ 2 q2

2 · 2n = q2

2n .

Putting everything together yields

|Pr[S4]− Pr[S0]| ≤ 2 q2

2 · 22n + q2

2n ≤
2q2

2n .

Remark 3.1 Indifferentiability in the honest-but-curious model has been shown
to imply indifferentiability in the general model for so-called transparent construc-
tions [DP06]. A construction is said to be transparent if there exists an efficient
algorithm which can compute the value of the inner primitive E on any input x by
making a polynomial number of queries to the construction and receiving the tran-
script of the inner queries of the construction to E. Since the 2-round construction
is not indifferentiable in the general model, this shows that it is also not transparent:
namely it is impossible to efficiently compute E2(S,R) for some arbitrary value S,
or E−1

1 (R,S) for some arbitrary value R, given only oracle access + transcript to
Ψ2(L,R) and Ψ−1

2 (S, T).

3.6 Domain Extension of Tweakable Block Cipher
In this section, we also analyse our construction in the standard model, and we
use a tweakable block-cipher as the underlying primitive. The main result of this
section is that a 3-round Feistel enables to get a security guarantee beyond the
birthday paradox.

Tweakable block-ciphers were introduced by Liskov, Rivest andWagner in [LRW02,
LRW11] and provide an additional input - the tweak - that enables to get a family of
independent block-ciphers. Efficient constructions of tweakable block-ciphers were
described in [LRW02, LRW11], given ordinary block-ciphers.

Definition 3.1. A tweakable block-cipher is an efficiently computable function Ẽ :
{0, 1}k × {0, 1}ω × {0, 1}n → {0, 1}n that takes as input a key K ∈ {0, 1}k, a tweak
W ∈ {0, 1}ω and a message m ∈ {0, 1}n and returns a ciphertext c ∈ {0, 1}n. For
every K ∈ {0, 1}k and W ∈ {0, 1}ω, the function Ẽ(K,W, ·) is a permutation over
{0, 1}n.

3.6 Domain Extension of Tweakable Block Cipher 41

The security notion for a tweakable block-cipher is a straightforward exten-
sion of the corresponding notion for block-ciphers. A classical block-cipher E
is a strong pseudo-random permutation if no adversary can distinguish E(K, ·)
from a random permutation, where A can make calls to both E and E−1, and
K ← {0, 1}k. For tweakable block-ciphers, the adversary can additionally choose
the tweak, and E(K, ·, ·) should be indistinguishable from a family of random per-
mutations, parametrised by W ∈ {0, 1}ω:

Definition 3.2. A tweakable block-cipher is said to be (t, q, ε)-secure if for any
adversary A running in time at most t and making at most q queries, the adversary’s
advantage in distinguishing Ẽ(K, ·, ·) with K ← {0, 1}k from a family of independent
random permutation Π̃(·, ·) is at most ε, where A can make calls to both Ẽ and Ẽ−1.

Ẽ1K

Ẽ2K

L R

S

S T

W

W

Ẽ1K

Ẽ2K

Ẽ3K

L R

X

S

S T

W

W

W

Figure 3.5: The tweakable block ciphers Ψ̃2 (left) and Ψ̃3 (right), with key K and
tweak W

We first show that 2 rounds are enough to get a 2n-bit tweakable block-cipher
from a n-bit tweakable block-cipher (see Fig. 3.5, left). Formally, our 2-round
domain extender for tweakable block-cipher works as follows. Let E1 and E2 be
two tweakable block-ciphers with the same signature:

Ẽi : {0, 1}k × {0, 1}ω × {0, 1}n → {0, 1}n

The tweakable block cipher Ψ̃2 : {0, 1}k × {0, 1}ω−n × {0, 1}2n → {0, 1}2n is then
defined as follows; the difference with Fig. 3.3 is that the R and S inputs go to the
tweak (concatenated with the main tweak W) instead of the key.

S = E1(K,W‖R,L)
T = E2(K,W‖S,R)

Ψ̃2(K,W, (L,R)) = (S, T)

42 A domain extender for the ideal cipher

Theorem 3.4. The tweakable block-cipher Ψ̃2 is a (t′, q, ε′)-secure tweakable block-
cipher, if Ẽ1 and Ẽ2 are both (t, q, ε)-secure tweakable block-ciphers, where ε′ =
2 · ε+ q2/2n + q2/22n and t′ = t−O(qn).
Proof. We consider an adversary making a sequence of exactly q queries. There
are two types of queries A can make: either (+,W,L,R) which is a query to
Ψ̃2(K,W,L‖R), or (−,W, S, T) which is a query to Ψ̃2

−1(K,W,S‖T). For the
i-th query, we denote the by (W,Li, Ri, Si, Ti) the corresponding 5-uple.
Game0: the queries are answered using Ψ̃2, as illustrated in Fig. 3.5.
Game1: we replace the tweakable block-ciphers E1 and E2 by 2 independent family
of random permutations. From an attacker against Ψ̃2 running in time t′, we can
construct an attacker against E1 or E2 running in time at most:

t = t′ +O(qn)

Since by assumption E1 and E2 are both (t, q, ε)-secure, we must have:

|Pr[S1]− Pr[S0]| ≤ 2 · ε

Game2: the queries are now answered using the following process R. Given the i-th
query:

1. If (+,W,L,R) is queried and for some 1 ≤ j < i the j-th 4-uple is (W,L,R, S, T),
then S‖T is answered.

2. If (−,W, S, T) is queried and for some 1 ≤ j < i the j-th 4-uple is (W,L,R, S, T),
then L‖R is answered.

3. If neither 1 nor 2 holds, then a uniformly distributed 2n-bit string is returned.
We denote by Bad the following event: there exists 1 ≤ i < j ≤ q such that the

i-th answer (Wi, Li, Ri, Si, Ti) and the j-th answer (Wj , Lj , Rj , Sj , Tj) satisfy one
of the following conditions:

1. Wi = Wj and Ri = Rj and Li 6= Lj and Si = Sj

2. Wi = Wj and Li = Lj and Ri = Rj and Si 6= Sj

3. Wi = Wj and Si = Sj and Ti = Tj and Ri 6= Rj

We have that conditioned on ¬Bad, the output of R in Game2 has the same distri-
bution as the output of Ψ̃2 in Game1, which gives:

Pr[S2|¬Bad] = Pr[S1]

Moreover we have that Pr[Bad] ≤ q2/2n, which gives using the Difference Lemma [Sho04]:

|Pr[S2]− Pr[S1]| ≤ Pr[Bad] ≤ q2

2n

Game3: the adversary interacts with a family of random permutation Π̃′. We con-
sider the following event Bad′ in Game2: there exists 1 ≤ i < j ≤ q such that the
i-th answer (Wi, Li, Ri, Si, Ti) and the j-th answer (Wj , Lj , Rj , Sj , Tj) satisfy one
of the following conditions:

3.6 Domain Extension of Tweakable Block Cipher 43

1. Wi = Wj and (Li, Ri) = (Lj , Rj) and (Si, Ti) 6= (Sj , Tj)

2. Wi = Wj and (Li, Ri) 6= (Lj , Rj) and (Si, Ti) = (Sj , Tj)

We have that conditioned on ¬Bad′, the distribution of R in Game2 and the distri-
bution of P in Game3 are the same; therefore:

Pr[S2|¬Bad′] = Pr[S3]

Moreover, we have Pr[Bad′] ≤ q2/22n, which gives:

|Pr[S3]− Pr[S2]| ≤ Pr[Bad′] ≤ q2

22n

Combining the previous inequalities, we get:

|Pr[S3]− Pr[S0]| ≤ 2 · ε+ q2

2n + q2

22n

Therefore we can take ε′ = 2 · ε + q2/2n + q2/22n, which terminates the proof of
Theorem 3.4.

Now we consider the 3 round tweakable block cipher Ψ̃3, defined in a similar
manner as Ψ̃2 (see Fig. 3.5 for an illustration). The 3-round construction enables
to go beyond the birthday security bound. Namely instead of having a bound in
q2/2n as in the 2-round construction, the bound for the 3-round construction is now
q2/22n, which shows that the construction remains secure until q < 2n instead of
q < 2n/2.

Theorem 3.5. The 3-round block-cipher construction Ψ3 (see Figure 3.6) is ε-
indistinguishable from an ideal cipher with ε = (q

2n)2 for an attacker making q
block-cipher queries with q < 2n.

Proof. Ei’s are actually random permutation such that Ei : Y × Y → Y . So,
Ψ3, Π̃′ : Y × Y → Y × Y . Here Y = {0, 1}n. The (i + 1)th query can either be
a forward permutation query or a backward permutation query. Without loss of
generality we can assume if (i+1)th query is a forward query (Li+1, Ri+1) is distinct
from (L,R) tuples in previous queries (responses), and similarly for a backward
query (Si+1, Ti+1) is distinct from (S, T) tuples in previous queries (responses).
Whether the attacker interacts with Ψ3 or ideal cipher Π̃′, input collision means
output collision and output collision means input collision. So we can also assume
(i + 1)th output pair (si+1, ti+1) is distinct from previous output pairs, previous
input pairs are distinct among themselves and previous output pairs are distinct
among themselves.

When the attacker interacts with Ψ3 after i queries the underlying permutations
E1, E2, E3 have been fixed at some points, and at other points E1, E2, E3’s behave
randomly. Also input-output of jth query is actually a 4-tuple (Lj , Rj , sj , tj). We

44 A domain extender for the ideal cipher

let Vi = ((L1, R1, s1, t1), · · · , (Li, Ri, si, ti)) be the attacker view after making the
ith query.

To prove Theorem 3.5 we will use the following lemma which shows for i =
1, · · · , q − 1 the advantage for (i+ 1)th query is actually bounded by 2i

|Y |2−i .

Lemma 3.2. For i ∈ {1, · · · , q−1}, Advi+1 be the distinguishing advantage for the
(i+ 1)th query, then,

Advi+1 = 1
2

∑
(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi]− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣

≤ 2i
|Y |2 − i

where OP i = {(s1, t1), · · · , (si, ti)}.

If for any attacker making q queries Adv(q) is the distinguishing advantage, then
it is not hard to show that Adv(q) ≤

∑q−1
i=1 Advi+1. Hence by Lemma 3.2 we get,

Adv(q) ≤
q−1∑
i=1

Advi+1 ≤
q−1∑
i=1

2i
|Y |2 − i

<
q−1∑
i=1

2i
|Y |2 − q

= q2 − q
|Y |2 − q

<
q2

|Y |2

As q < |Y | = 2n

E1

E2

E3

L R

X

S

S T

Figure 3.6: The 3-round Feistel construction Ψ3(L,R).

Proof of Lemma 3.2

We will give a proof when the (i + 1)th query is forward permutation query, for
backward permutation query the proof works in a similar fashion. From the attacker
point of view

X̄ = (X1, · · · , Xi) = (E1(R1, L1), · · · , E1(Ri, Li))

3.6 Domain Extension of Tweakable Block Cipher 45

is actually a random variable which satisfies Vi.
Now we say any i-tuple x̄ = (x1, · · · , xi) is feasible if Pr[X̄ = x̄|Vi] is non zero.

F be the set of all feasible x̄. Now we will state another lemma, loosely speaking
which gives an estimate of Advi+1 for an fixed x̄ ∈ F .

Lemma 3.3. For all x̄ ∈ F ,∑
(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) =(s, t)|Vi ∧ X̄ = x̄]

− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣ ≤ 4i
|Y |2 − i

Lemma 3.3 actually almost immediately proves Lemma 3.2 as follows,

Advi+1

= 1
2

∑
(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi]− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣

≤ 1
2

∑
(s,t)∈Y 2\OPi

∑
x̄∈F

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]

− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣× Pr[X̄ = x̄|Vi]

= 1
2
∑
x̄∈F

∑
(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]

− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣× Pr[X̄ = x̄|Vi]

≤ 1
2
∑
x̄∈F

4i
|Y |2 − i

× Pr[X̄ = x̄|Vi] = 2i
|Y |2 − i

Proof of Lemma 3.3

At first we would like define some notations and state some important observations.
For a feasible i-tuple x̄ = (x1, · · · , xi) we define

X jx̄ = {α ∈ Y |α appears in x̄ exactly j times }.

Note,
i∑

j=1
j|X jx̄ | = i (3.1)

Similarly considering the tuple s̄ = (s1, · · · , si), we define

Sj = {α ∈ Y |α appears in s̄ exactly j times }.

Also we have,
i∑

j=1
j|Sj | = i (3.2)

46 A domain extender for the ideal cipher

When the attacker is making (i+ 1)th query the tuple s̄ is already fixed. So we
do not include the subscript s̄ in the definition of Sj . We define,

Xx̄ =
i⋃

j=1
X jx̄ and S =

i⋃
j=1
Sj

Hence we also have,

|Xx̄| =
i∑

j=1
|X jx̄ | and |S| =

i∑
j=1
|Sj | (3.3)

For the query (Li+1, Ri+1), we say Xi+1 is new with respect to x̄ if Xi+1 /∈ Xx̄.We
also say Xi+1 is k-collision with respect to x̄ if Xi+1 ∈ X kx̄ .

Now for a fixed x̄ = (x1, · · · , xi), depending on the value of Xi+1 we define
S ′x̄(Xi+1) ⊆ S as follows.

S ′x̄(Xi+1) = {α ∈ Y |α = sj and xj = Xi+1 for some j ∈ [1, i]}

Intuitively S ′x̄(Xi+1) is the set of fixed outputs for E2(Xi+1, .). If Xi+1 is new
then S ′x̄(Xi+1) is empty, and if Xi+1 ∈ X kx̄ then |S ′x̄(Xi+1)| = k. This is true
because if |S ′x̄(Xi+1)| < k, then we would have xj1 = xj2 = Xi+1 and sj1 = sj2
for some j1, j2 ∈ [1, i] and j1 6= j2. As E2(Xi+1, .) is a permutation this implies
Rj1 = Rj2 = r. E1(r, .) being a permutation this implies Lj1 = Lj2 as well, which
is a contradiction because we have assumed previous input tuples are distinct.

Now we partition S ′x̄(Xi+1) as follows,

S ′x̄(Xi+1) = (S ′x̄(Xi+1) ∩ S1) ∪ (S ′x̄(Xi+1) ∩ S2) ∪ · · · ∪ (S ′x̄(Xi+1) ∩ Si)

If we denote |S ′x̄(Xi+1) ∩ Sj | = kj , and if Xi+1 ∈ X kx̄ then clearly
∑i
j=1 kj = k.

We state this result as Lemma 3.4.

Lemma 3.4. If Xi+1 is new, then S ′x̄(Xi+1) is empty, and if Xi+1 ∈ X kx̄ then
k = |S ′x̄(Xi+1)| =

∑i
j=1 kj, where kj = |S ′x̄(Xi+1) ∩ Sj |.

Say Bi+1 ⊆ [1, i] be the set such that for all j ∈ Bi+1 we have Ri+1 = Rj . As
all the previous input tuples are distinct all xj ’s are also distinct for any feasible
x̄ = (x1, · · · , xi) and j ∈ Bi+1. Hence we get the following Lemma.

Lemma 3.5. If Bi+1 ⊆ [1, i] be the set such that for all j ∈ Bi+1 we have Ri+1 =
Rj, then |Bi+1| ≤ |Xx̄|.

Proof.

|Bi+1| ≤ number of distinct elements in any feasible tuple x̄ = |Xx̄|

3.6 Domain Extension of Tweakable Block Cipher 47

Now we will break the expression∑
(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]−Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣

in some separate terms so it will help us to compute the desired bound.∑
(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣

≤
∑

(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is new]

− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣× Pr[Xi+1 is new |Vi ∧ X̄ = x̄]

+
i∑

k=1

∑
(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is k-collision]

− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣× Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]

= A× Pr[Xi+1 is new |Vi ∧ X̄ = x̄] +
i∑

k=1
Ck × Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]

(3.4)
Where,

A =
∑

(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is new]

− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣ (3.5)

Ck =
∑

(s,t)∈Y 2\OPi

∣∣Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is k-collision]

− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]
∣∣ (3.6)

Now our goal is to find good upper bound of A,Ck and Pr[Xi+1 is k-collision|Vi∧
X̄ = x̄] for k = 1, · · · , i. Clearly,

Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄] = |X kx̄ |
|Y | − |Bi+1|

(3.7)

For upper bounding A,Ck, we will use the following lemma which states the value
of Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is new] and Pr[Ψ3(Li+1, Ri+1) =
(s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is k-collision] for k = 1, · · · , i.
Lemma 3.6. For any Vi = ((L1, R1, s1, t1), · · · , (Li, Ri, si, ti)) and x̄ ∈ F , Ψ3(Li+1, Ri+1)
has the following conditional probability distribution

Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is new]

=
{ 1
|Y | ×

1
|Y | if (s, t) ∈ (Y \ S)× Y. Note |(Y \ S)× Y | = (|Y | − |S|)|Y |

1
|Y | ×

1
|Y |−j if (s, t) ∈ (Sj × Y) \ OP i. Note |(Sj × Y) \ OP i| = |Sj |(|Y | − j)

48 A domain extender for the ideal cipher

Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is k-collision]

=

1
|Y |−k ×

1
|Y | if (s, t) ∈ (Y \ S)× Y. Note |(Y \ S)× Y | = (|Y | − |S|)|Y |

1
|Y |−k ×

1
|Y |−j if (s, t) ∈ ((Sj \ S ′x̄(Xi+1))× Y) \ OP i. Note |((Sj \ S ′x̄(Xi+1))× Y) \ OP i|

= (|Sj | − kj)(|Y | − j)
0 if (s, t) ∈ (S ′x̄(Xi+1)× Y) \ OP i. Note |(S ′x̄(Xi+1)× Y) \ OP i|

= k|Y | −
∑i
`=1 `k`

where OP i = {(s1, t1), · · · , (si, ti)}, Sj = {α ∈ Y |α appears in (s1, · · · , si) exactly j times },
S =

⋃i
j=1 Sj, S ′x̄(Xi+1) = {α ∈ Y |α = sj and xj = Xi+1 for some j ∈ [1, i]} and

kj = |S ′x̄(Xi+1) ∩ Sj |.

Also we know, Π̃′ being a random permutation,

Pr[Π̃′(Li+1, Ri+1) = (s, t)] = 1
|Y |2 − i

for all (s, t) ∈ |Y |2 \ OP i. Now we are ready to estimate A and Ck.
By Equation (3.5), we have:

A = (|Y | − |S|)|Y | ×
(1
|Y |2 − i

− 1
|Y |2

)
+

i∑
j=1
|Sj |(|Y | − j)×

(1
|Y |(|Y | − j) −

1
|Y |2 − i

)

= (|Y | − S)i
|Y |(|Y |2 − i) +

i∑
j=1

(j|Y | − i)|Sj |
|Y |(|Y |2 − i)

By Equation (3.2) and (3.3), we have
∑i
j=1 j|Sj | = i and

∑i
j=1 |Sj | = |S|; this

gives:

A = (|Y | − S)i
|Y |(|Y |2 − i) + i|Y | − i|S|

|Y |(|Y |2 − i) ≤
2i

|Y |2 − i

By Equation (3.6), we have:

Ck =
(
k|Y | −

i∑
`=1

`k`
)
×
(1
|Y |2 − i

− 0
)

+ (|Y | − |S|)|Y | ×
(1

(|Y | − k)|Y | −
1

|Y |2 − i

)

+
i∑

j=1
(|Sj | − kj)(|Y | − j)×

(1
(|Y | − k)(|Y | − j) −

1
|Y |2 − i

)

≤ k|Y |
|Y |2 − i

+ (k|Y | − i)(|Y | − |S|)
(|Y | − k)(|Y |2 − i) +

i∑
j=1

(|Sj | − kj)(k|Y |+ j|Y | − i− kj)
(|Y | − k)(|Y |2 − i)

= k|Y |
|Y |2 − i

+ (k|Y | − i)(|Y | − |S|)
(|Y | − k)(|Y |2 − i) +

i∑
j=1

(|Sj | − kj)(k|Y | − i)
(|Y | − k)(|Y |2 − i) +

i∑
j=1

j(|Sj | − kj)
|Y |2 − i

3.6 Domain Extension of Tweakable Block Cipher 49

By Equation (3.2) and (3.3), we have
∑i
j=1 j|Sj | = i and

∑i
j=1 |Sj | = |S|, and by

Lemma 3.4, we have
∑i
j=1 kj = k; this gives:

Ck ≤
k|Y |
|Y |2 − i

+ (k|Y | − i)(|Y | − |S|)
(|Y | − k)(|Y |2 − i) + (k|Y | − i)(|S| − k)

(|Y | − k)(|Y |2 − i) + i

|Y |2 − i

= k|Y |
|Y |2 − i

+ k|Y | − i
|Y |2 − i

+ i

|Y |2 − i

= 2k|Y |
|Y |2 − i

Now putting the upper bounds of A and Ck in Equation (3.4) we get,

∑
(s,t)∈Y 2\OPi

|Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃′(Li+1, Ri+1) = (s, t)|Vi]|

≤ 2i
|Y |2 − i

× Pr[Xi+1 is new |Vi ∧ X̄ = x̄]

+
i∑

k=1

2k|Y |
|Y |2 − i

× Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]

= 2i
|Y |2 − i

(
Pr[Xi+1 is new |Vi ∧ X̄ = x̄] +

i∑
k=1

Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]
)

+
i∑

k=1

2(k|Y | − i)
|Y |2 − i

× Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]

= 2i
|Y |2 − i

+
i∑

k=1

2(k|Y | − i)
|Y |2 − i

× |X kx̄ |
|Y | − |Bi+1|

By Equation (3.7)

= 2i
|Y |2 − i

+ 2|Y |
∑i
k=1 k|X kx̄ | − 2i

∑i
k=1 |X kx̄ |

(|Y |2 − i)(|Y | − |Bi+1|)

= 2i
|Y |2 − i

+ 2i
|Y |2 − i

× |Y | − |Xx̄|
|Y | − |Bi+1|

By Equation (3.1) & (3.3) ,
i∑

k=1
k|X kx̄ | = i and

i∑
k=1
|X kx̄ | = |Xx̄|

≤ 4i
|Y |2 − i

By Lemma 3.5 we have |Xx̄| ≥ |Bi+1|

Proof of Lemma 3.6

Note Ψ3(Li+1, Ri+1) = (s, t) actually means,

s = E2(Xi+1, Ri+1)
t = E3(s,Xi+1)

50 A domain extender for the ideal cipher

We know E2, E3 are random permutations. That means if at some point of time,
for some particular key K, (I1, O1), · · · , (I`, O`) input-output pairs have already
been fixed for the random permutation E2(K, .), then at the next invokation of
E2(K, .),

Pr[E2(K,x) = y] = 1
|Y | − `

for all x ∈ Y \ {I1, · · · , I`} and y ∈ Y \ {O1, · · · , O`}. The same is true for E3
random permutation.
Hence if Xi+1 is new, then

Pr[E2(Xi+1, Ri+1) = s] = 1
|Y |

for all s ∈ Y .
If Xi+1 is k-collision, then

Pr[E2(Xi+1, Ri+1) = s] = 1
|Y | − k

for all s ∈ Y \ S ′x̄(Xi+1). And

Pr[E2(Xi+1, Ri+1) = s] = 0

for all s ∈ S ′x̄(Xi+1), because otherwise we have a duplicate query.
Similarly, if s ∈ Y \ S, then

Pr[E3(s,Xi+1) = t] = 1
|Y |

for all t ∈ Y .
And if s ∈ Sj , then

Pr[E3(s,Xi+1) = t] = 1
|Y | − j

for all t ∈ Y \ Set of t values corresponding to s in Vi. Using the above probability
values it is easy to see why Lemma 3.6 holds.

Theorem 3.6. The tweakable block-cipher Ψ̃3 is a (t′, q, ε′)-secure tweakable block-
cipher, if Ẽ1, Ẽ2 and Ẽ3 are all (t, q, ε)-secure tweakable block-ciphers, where ε′ =
3 · ε+ q2/22n and t′ = t−O(qn).

Proof. Theorem 3.5 and the following sequence of games completes the proof of
Theorem 3.6. We denote Si the event that the distinguisher outputs 1 in Gamei.
Game0: the queries are answered using Ψ̃3, as illustrated in Fig. 3.5.
Game1: we replace the tweakable block-ciphers E1, E2, E3 by 3 independent family
of random permutations. From an attacker against Ψ̃3 running in time t′, we can
construct an attacker against E1, E2 or E3 running in time at most:

t = t′ +O(qn)

3.6 Domain Extension of Tweakable Block Cipher 51

Since by assumption E1, E2 and E3 are all (t, q, ε)-secure, we must have:

|Pr[S1]− Pr[S0]| ≤ 3 · ε

Game2: the adversary interacts with a family of random permutation Π̃′. By Theo-
rem 3.5 we must have:

|Pr[S2]− Pr[S1]| ≤ q2

22n

One drawback of our construction is that it shrinks the tweak size from ω bits
to ω − n bits. We show a simple construction that extends the tweak size, using a
keyed universal hash function; this construction can be of independent interest.

Definition 3.3. A family H of functions with signature {0, 1}ω′ → {0, 1}ω is said
to be ε-almost universal if Prh[h(x) = h(y)] ≤ ε for all x 6= y, where the probability
is taken over h chosen uniformly at random from H.

Let Ẽ be a tweakable block-cipher with tweak in {0, 1}ω. Given a family H
of hash functions h with signature {0, 1}ω′ → {0, 1}ω and ω′ > ω, our tweakable
block-cipher Ẽ with extended tweak length ω′ is defined as:

Ẽ′((K,h),W ′,m) = Ẽ(K,h(W ′),m)

Theorem 3.7. The tweakable block cipher Ẽ′ is a (q, t′, ε′)-secure tweakable block
cipher if Ẽ is a (q, t, ε1)-secure tweakable block cipher and the hash function family
H is ε2-almost universal, with ε′ = ε1 + q2 · ε2 and t′ = t−O(q).

Proof. We consider a (q, t′, ε′)-adversary A′ against our construction Ẽ′. We must
describe a (q, t, ε1)-adversary A against the original tweakable block cipher Ẽ. Our
adversary A has oracle access to F and F−1, where either F = Ẽ(K, ·, ·) or F =
Π̃(·, ·); it must output a bit γ, representing its guess as to whether F = Ẽ(K, ·, ·)
or F = Π̃(·, ·).

We first generate a random h ∈ H. When A′ queries for F ′(W ′,m), we compute
h(W ′) and return F (h(W ′),m), and similarly for a F ′−1 query. Eventually, A′
outputs a bit γ, which is returned by our adversary A.

When F = Ẽ(K, ·, ·), we have that adversaryA′ interacts with F ′ = Ẽ′((K,h), ·, ·),
exactly as in the security definition, which gives:

Pr[γ = 1|F = Ẽ(K, ·, ·)] = Pr[γ = 1|F ′ = Ẽ′((K,h), ·, ·)]

When F = Π̃(·, ·) we must show that the view of adversary A′ is statistically
close to that of A′ in the original security definition. In the security definition, A′
interacts with a family Π̃′ of independent random permutation parametrised with
W ′. Here instead the adversary A′ interacts with Π̃(h(·), ·). The key observation
is that if no collision occurs for h, then the distribution seen by A′ is exactly the
same as the one obtained from Π̃′. Let denote by Bad the event that such collision

52 A domain extender for the ideal cipher

occurs; since H is a family of ε2-almost universal hash functions and there are at
most q queries, we have:

Pr[Bad] ≤ q2 · ε2

Moreover we obtain:

Pr[γ = 1|F = Π̃ ∧ ¬Bad] = Pr[γ = 1|F ′ = Π̃′]

which gives:

|Pr[γ = 1|F = Π̃]− Pr[γ = 1|F ′ = Π̃′]| ≤ Pr[Bad] ≤ q2 · ε2

Eventually denoting:

δ = |Pr[γ = 1|F = Ẽ(K, ·, ·)]− Pr[γ = 1|F = Π̃]|
δ′ = |Pr[γ = 1|F ′ = Ẽ′((K,h), ·, ·)]− Pr[γ = 1|F ′ = Π̃′]|

we obtain:
δ′ ≤ δ + q2 · ε2

Since by assumption δ ≤ ε1, we obtain δ′ ≤ ε1 + q2 · ε2; therefore we can take:

ε′ = ε1 + q2 · ε2

We note that many efficient constructions of universal hash function families
are known, with ε2 ' 2−ω. Therefore the new tweakable block-cipher can have the
same level of security as the original one, up to the birthday bound for the tweak,
i.e. for q ≤ 2ω/2.

3.7 Conclusion
We have described the first domain extender for ideal ciphers, i.e. we have showed
a construction that is indifferentiable from a 2n-bit ideal cipher, given a n-bit ideal
cipher. Our construction is based on a 3-round Feistel, and is more efficient and
more secure than first building a n-bit random oracle from a n-bit ideal cipher (as
in [CDMP05]) and then a 2n-bit ideal cipher from a n-bit random oracle (as in
[CPS08]). We have also shown that in the standard model, our construction with 2
rounds enables to get a 2n-bit tweakable block-cipher from a n-bit tweakable block-
cipher and that with 3 rounds we get a security guarantee beyond the birthday
paradox.

Chapter 4

On the Public Indifferentiability
and Correlation Intractability of
the 6-Round Feistel
Construction

We show that the Feistel construction with six rounds and random round func-
tions is publicly indifferentiable from a random invertible permutation (a result
that is not known to hold for full indifferentiability). Public indifferentiability
(pub-indifferentiability for short) is a variant of indifferentiability introduced by
Yoneyama et al. [YMO09] and Dodis et al. [DRS09] where the simulator knows
all queries made by the distinguisher to the primitive it tries to simulate, and is
useful to argue the security of cryptosystems where all the queries to the ideal
primitive are public (as e.g. in many digital signature schemes). To prove the
result, we introduce a new and simpler variant of indifferentiability, that we call
sequential indifferentiability (seq-indifferentiability for short) and show that this
notion is in fact equivalent to pub-indifferentiability for stateless ideal primitives.
We then prove that the 6-round Feistel construction is seq-indifferentiable from a
random invertible permutation. We also observe that sequential indifferentiability
implies correlation intractability, so that the Feistel construction with six rounds
and random round functions yields a correlation intractable invertible permutation,
a notion we define analogously to correlation intractable functions introduced by
Canetti et al. [CGH98]. We also show the 3-round domain extender construction
from the previous section (Section 3) actually guarantees beyond birthday security
against sequential indifferentiability (which in turn implies public indifferentiability)
attackers. This is a joint work with Jacques Patarin and Yannick Seurin [MPS12].

Contents
4.1 Introduction . 54
4.2 Preliminaries . 57
4.3 Sequential Indifferentiability 58

54
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

4.3.1 Separation between public and sequential indifferentiabil-
ity for Stateful Ideal Primitives 63

4.4 Sequential Distinguisher for the 5-Round Feistel Con-
struction . 64

4.5 Seq-Indifferentiability of the 6-Round Feistel Construc-
tion . 65

4.6 Applications to Correlation Intractability 73
4.7 Separating Correlation Intractability and Sequential In-

differentiability . 75
4.8 Implications for Chosen-Key and Known-Key Attacks

on Block Ciphers . 75
4.9 Seq-Indifferentiability Beyond the Birthday Barrier for

the Construction of Chapter 3 76
4.9.1 Proof of Theorem 4.7 and Theorem 4.8 81
4.9.2 Upper bound for ∆ij ’s . 86

4.10 Conclusion . 89

4.1 Introduction

The Feistel construction with public round functions. The Feistel construc-
tion turns a function F from n-bit strings to n-bit strings into an (efficiently invert-
ible) permutation on 2n-bit strings. It is computed as ΨF (L,R) = (R,L⊕ F (R)).
In their seminal paper [LR88] which triggered a lot of subsequent work [Mau92,
NR99, Pat90, Pat91, Pat98, Pat03, Pat04, Vau03], Luby and Rackoff showed that
three (resp. four) rounds of the Feistel construction, with independent pseudoran-
dom functions in each round, yields a pseudorandom permutation (resp. strong
pseudorandom permutation). The core of this result is in fact purely information-
theoretic [Mau92], meaning that the Feistel construction with three (resp. four)
rounds and random round functions is indistinguishable from a random permuta-
tion (resp. an invertible random permutation) by any computationally unbounded
distinguisher limited to a polynomial number of oracle queries. The Luby-Rackoff
theorem crucially relies on the secrecy of the round functions. A few papers studied
what happens when the round functions are made public. In particular, Ramzan
and Reyzin [RR00] have shown that the Feistel construction with four rounds re-
mains strongly pseudorandom even when the distinguisher has oracle access to the
two middle round functions (but not to the first or the fourth round function).
Dodis and Puniya [DP07] have studied various properties of the Feistel construc-
tion (unpredictability, pseudorandomness) when all intermediate round values of
the Feistel computation are leaked to the adversary and shown that in that case a
super-logarithmic number of rounds was necessary and sufficient for the property
to be inherited by the Feistel construction from the round functions.
Indifferentiability of the Feistel construction. Coron et al. [CDMP05] showed
that a number of variants of the Merkle-Damgård construction [Dam89, Mer89],

4.1 Introduction 55

used with an ideal cipher in Davies-Meyer mode [PGV93, BRS02], are indifferen-
tiable from a random oracle. Hence, it is possible to securely instantiate a random
oracle in the ideal cipher model. A natural question is whether the other direction
holds, namely whether there is a construction using a random oracle that securely
implements a random invertible permutation.1 Given its numerous cryptographic
properties, the Feistel construction (with public random round functions) appears
as an obvious candidate for this task. Again, this question can be rigorously for-
mulated in the indifferentiability framework: namely, is the Feistel construction
with sufficiently many rounds, and public random round functions, indifferentiable
from a random invertible permutation? Dodis and Puniya [DP06] considered the
problem in the so-called honest-but-curious model, where the distinguisher only sees
the queries made by the Feistel construction to the random round functions, but
is not allowed to make arbitrary queries to the round functions. In this setting,
they showed that a super-logarithmic number of rounds is sufficient to securely
realize a random invertible permutation. However, since full indifferentiability is
not implied in general by indifferentiability in the honest-but-curious model (these
two notions are in fact incomparable [CPS08]), they were not able to conclude in
the general setting. Coron, Patarin, and Seurin [CPS08] gave a first proof that
the Feistel construction with six rounds is indifferentiable from a random invert-
ible permutation. The proof was rather involved, and Künzler [K0̈9] later found a
distinguishing attack against the simulator given in [CPS08], therefore invalidating
the indifferentiability proof.2 Only recently, Holenstein et al. [HKT11] gave a new
proof that the Feistel construction with fourteen rounds is indifferentiable from a
random invertible permutation, which was inspired from a previous proof for ten
rounds that appeared in the PhD thesis of Seurin [Seu09] but had some gaps.
Public indifferentiability. Yoneyama et al. [YMO09] and Dodis et al. [DRS09]
independently realized that indifferentiability was sometimes stronger than needed
to argue security of cryptosystems. In particular, when all queries made to the ideal
primitive are public (like in many digital signature schemes such as FDH [BR93],
probabilistic FDH [Cor02], PSS [BR96]. . . , where all queries to the hash function
can be revealed to the attacker without affecting the security), the weaker notion of
public indifferentiability is sufficient. [YMO09, DRS09] were both concerned with
indifferentiability from a random oracle and respectively called this notion leaky
random oracle and public-use random oracle. Public indifferentiability is defined
similarly to indifferentiability, but the task of the simulator is made easier by letting
it know all queries made by the distinguisher to the ideal primitive G.
Correlation intractability. Correlation intractability was introduced by Canetti
et al. [CGH98] as an attempt to capture as many security properties of the random
oracle as possible. A family of functions is said to be correlation intractable if for a
random function of the family it is hard to find a sequence of inputs that together
with their image satisfy a relation that would be hard to satisfy for a uniformly ran-

1Such a construction easily implies a secure ideal cipher by simply prepending the key of the
block cipher to the input of each random oracle queries.

2We stress that this does not mean that the 6-round Feistel construction is not indifferentiable
from a random invertible permutation, but only that no one is able to give a proof at the moment.

56
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

dom function (a so-called evasive relation). Correlation intractability in particular
implies collision resistance, pre-image resistance and many other security properties
usually required for cryptographic hash functions. Unfortunately, Canetti et al. also
showed that in the standard model, no correlation intractable hash function family
exists. A consequence of this non-existence result is that there are cryptosystems
that are secure in the random oracle model, but insecure when the random oracle
is instantiated by any function family. Though correlation intractability was pri-
marily defined in the standard model, it is easily transformable to idealized models.
As we will see our result establishes a connection between correlation intractability
and public indifferentiability.
Contributions of this work. We define a new and weaker notion of indifferen-
tiability that we call sequential indifferentiability (seq-indifferentiability for short).
This new definition only restricts the order in which the distinguisher can query the
two oracles it is granted access to: it can first query the primitive F (or the simula-
tor S), and then the construction CF (or the ideal primitive G), but not F /S again.
We show that when the ideal primitive G is stateless (which is the most usual case),
this notion is equivalent to public indifferentiability introduced by [DRS09, YMO09]
where all queries to the primitive G are public. However the seq-indifferentiability
notion has the advantage of being simpler and easier to use in proofs. This simple
restriction on the queries of the distinguisher enables to give a relatively simple
proof that the 6-round Feistel construction with random round functions is seq-
indifferentiable (and hence also publicly indifferentiable) from a random invertible
permutation, a result whose analogue for full indifferentiability seems out of reach
at the moment. Our result in particular implies that any scheme proven secure in
the random invertible permutation model or the ideal cipher model and where all
queries to the ideal primitive can be made public without affecting the security (e.g.
signature schemes like OPSSR [Gra02] and subsequent variants [KW03, CMPP05])
remains secure in the random oracle model when using a 6-round Feistel construc-
tion (while the best generic replacement previously to our work was the 14-round
Feistel construction [HKT11]).

Though weaker than full indifferentiability, we also show that seq-indifferentiabil-
ity is still sufficiently strong to imply correlation intractability. In particular, our
result shows that the 6-round Feistel construction with random round functions
yields a correlation intractable invertible permutation (we note that previous ob-
servations [CPS08] already implied that the 5-round Feistel construction fails to
provide a correlation intractable invertible permutation). We discuss the implica-
tions of this result for chosen-key and known-key attacks on block ciphers [KR07].

On a slightly different topic, we also analyze the Feistel-like domain extension
construction for ideal ciphers proposed by Coron et al. [CDMS10] and show that
in the seq-indifferentiability model one can obtain a security bound beyond the
birthday barrier.
Open problems. The most challenging open question is of course whether the
6-round Feistel construction is fully indifferentiable from a random invertible per-
mutation, and if not, what is the minimal number of rounds needed to achieve this
property. We hope that our result will constitute a first step towards a finer un-

4.2 Preliminaries 57

derstanding of this question. In particular, our result implies that if the 6-round
Feistel construction is not fully indifferentiable from a random invertible permuta-
tion, then this cannot be shown by proving that it is not correlation intractable as
was done for five rounds. Another interesting problem is to weaken the assump-
tions on the round functions and see which property would continue to hold: e.g.
is the 6-round Feistel construction with correlation intractable round functions still
a correlation intractable invertible permutation? A related question is whether our
result could be a first step towards proposing plausible constructions of (restricted)
correlation intractable function families in the standard model, a question left open
by [CGH98, Section 5.1].
Organization. In Section 4.2, we start by giving the definition of sequential indif-
ferentiability and prove that it is equivalent to public indifferentiability for stateless
ideal primitives. In Section 4.5, we prove the main result of this section, namely
that the 6-round Feistel construction is sequentially (and hence publicly) indiffer-
entiable from a random invertible permutation. In Section 4.6, we apply this result
to prove the correlation intractability of the 6-round Feistel construction.

4.2 Preliminaries

Ideal primitives. We recall the notion of ideal primitives from Chapter 2. Given
two sets Dom ⊂ {0, 1}∗ and Rng ⊂ {0, 1}∗, we denote F(Dom, Rng) the set of all
functions from Dom to Rng. A primitive G is a sequence G = (Domn, Rngn,Gn)n∈N
where Gn ⊂ F(Domn, Rngn). The ideal primitive G associated with G is the sequence
of random variables (Gn)n∈N where Gn is uniformly distributed over Gn. We will
often adopt the lazy sampling view [BR06] to describe ideal primitives queried as
oracles.

A random function F = (Fn)n∈N is the ideal primitive associated to the set of
all functions from {0, 1}n to {0, 1}n. Queried as an oracle it returns a uniformly
random string in {0, 1}n if x was never queried, or the same answer as before if x
was previously queried.

A random invertible permutation P = (Pn)n∈N is the ideal primitive associated
with the sequence P = (Domn, Rngn,Pn)n∈N where Domn = {0, 1} × {0, 1}n, Rngn =
{0, 1}n, and Pn is the set of functions P such that x 7→ P (0, x) is a permutation
of {0, 1}n, and y 7→ P (1, y) its inverse. Queries of the form (0, x) and (1, y) will
be called respectively forward and backward queries. In the lazy sampling point of
view, Pn keeps two lists Lx and Ly of forward and backward queries whose image is
already defined together with an invertible mapping from Lx to Ly. Upon receiving
a forward query (0, x) such that x /∈ Lx it returns an answer y uniformly random
over {0, 1}n \ Ly, and adds x to Lx and y to Ly and updates the mapping (and
reciprocally for a backward query (1, y)). Later, we will occasionally refer to Lx and
Ly as the history of the random invertible permutation. An ideal cipher E = (En)
takes an additional input, the key, of length `(n), and for each key k ∈ {0, 1}`(n),
En(k, ·) is an independent random invertible permutation over {0, 1}n.

A two-sided random function on {0, 1}n, denoted Rn, is very similar to a random

58
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

invertible permutation. It also keeps to lists Lx and Ly together with an invertible
mapping from Lx to Ly. However when receiving a forward query (0, x) such that
x /∈ Lx or a backward query (1, y) such that y /∈ Ly, it returns a uniformly random
answer in {0, 1}n. In case a collision happens, the previous image or pre-image
is removed from Ly or Lx and the mapping is updated accordingly. Note that a
two-sided random function is stateful: it may return different answers to the same
query (however at any time it defines an invertible mapping from Lx to Ly). A two-
sided random function is statistically indistinguishable from a random invertible
permutation: the so called PRF/PRP switching lemma [BR06] establishes3 that an
oracle machine making at most q oracle queries can distinguish Pn from Rn with
advantage at most q2/2n+1.

In the following, we omit the subscripts when the domain and the range of
an ideal primitive are clear from the context. A construction will simply be a
Turing machine having oracle access to an ideal primitive and implementing another
given primitive. The main construction we will consider in this work is the Feistel
construction.
The Feistel construction. Given a function F : {0, 1}n → {0, 1}n, the basic (1-
round) Feistel construction is the permutation on {0, 1}2n defined by ΨF (L,R) =
(R,L ⊕ F (R)). Its inverse is computed by (ΨF)−1(S, T) = (T ⊕ F (S), S). (Here
L, R, S, and T are n-bit strings). The k-round Feistel construction associated to
round functions (F1, . . . , Fk) takes inputs x ∈ {0, 1} × {0, 1}2n and is defined by:

Ψ(F1,...,Fk)
k (0, (L,R)) = ΨFk ◦ · · · ◦ΨF1(L,R)

Ψ(F1,...,Fk)
k (1, (S, T)) =

(
ΨF1

)−1
◦ · · · ◦

(
ΨFk

)−1
(S, T) .

Notations used for denoting the intermediate round values for the 6-round Feis-
tel construction are given in Figure 4.1. In the following, when considering the
Feistel construction using k independent random functions, we will simply note
F = (F1, . . . ,Fk) this tuple of functions and ΨF

k = Ψ(F1,...,Fk)
k .

4.3 Sequential Indifferentiability
Indifferentiability was originally formulated within the formalism of random sys-
tems [Mau02]. We adopt here the simpler formulation using interactive Turing
machines as in [CDMP05]. We first recall the classical definition of indifferentiabil-
ity [MRH04]. For this, we slightly change the way one usually measure the cost of
queries of a distinguisher (this will make our results simpler to express). Given a
distinguisher D, the total oracle queries cost of D is the number of queries received
by the oracle F when D interacts with (CF ,F). Hence this is the sum of the number
of direct queries of D to F and the number of queries made by C to F to answer D’s
queries. We recall the definition of indifferentiability (Definition 3.2) from Chapter
2.

3Strictly speaking, the result is proven in [BR06] for one-sided functions and permutations, but
the proof can be straightforwardly adapted to two-sided primitives.

4.3 Sequential Indifferentiability 59

F1

F2 X

F3 Y

F4 Z

F5 A

F6 S

L R

S T

Figure 4.1: Notations used for the 6-round Feistel construction.

Definition 4.1 (Indifferentiability). A construction C with oracle access to an ideal
primitive F is said to be (q, t, σ, ε)-indifferentiable from an ideal primitive G if there
exists an oracle Interactive Turing Machine (ITM) S such that for any distinguisher
D of total oracle queries cost at most q, S runs at most at time t making at most
σ oracle queries, and the following holds:∣∣∣Pr

[
DG,SG = 1

]
− Pr

[
DCF ,F = 1

]∣∣∣ ≤ ε .
CF is simply said to be indifferentiable from G if for any q polynomial in the security
parameter n, the above definition is fulfilled with a σ bounded above by a polynomial
in the security parameter n and some ε which is a negligible function of n.

In order to define our new notion of indifferentiability, we will consider a re-
stricted class of distinguisher, called sequential distinguisher, which can only make
queries in a specific order. Such a distinguisher first queries the primitive F (or
the simulator S) as it wishes, and then the construction CF (or the primitive G)
as it wishes, but after its first query to CF or G, it cannot query S or F again.
Sequential indifferentiability (seq-indifferentiability for short) is defined relatively
to such distinguishers (see also Figure 4.2).

Definition 4.2 (Seq-indifferentiability). A construction C with oracle access to an
ideal primitive F is said to be (q, t, σ, ε)-seq-indifferentiable from an ideal primitive

60
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

D

0/1

SG

12

D

0/1

FC

12

Figure 4.2: The sequential indifferentiability notion. The numbers next to query
arrows indicate in which order the distinguisher accesses both oracles. After its first
query to the left oracle, the distinguisher cannot query the right oracle any more.

G if Definition 4.1 is fulfilled when D ranges over the class of sequential distin-
guishers.

Full indifferentiability obviously implies seq-indifferentiability. Yoneyama et
al. [YMO09] and Dodis et al. [DRS09] have introduced another weakened notion
of indifferentiability, where the primitive G is only queried on public inputs, that
we call here public indifferentiability (pub-indifferentiability for short). This can be
formalized as follows: given an ideal primitive G, we define the augmented ideal
primitive G as the primitive exposing two interfaces: the first (regular) one is the
same as G, and the second is an interface Reveal that, when queried, returns the
ordered sequence of all (regular) queries and corresponding answers made so far
by any party to the regular interface. The second interface can only be used by
the simulator, not by the distinguisher. We recall the formal definition of public
indifferentiability (Definition 2.4) from Chapter 2.

Definition 4.3 (Pub-indifferentiability). A construction C with oracle access to an
ideal primitive F is said to be (q, t, σ, ε)-pub-indifferentiable from an ideal primitive
G if there exists an oracle ITM S such that for any distinguisher D of total oracle
queries cost at most q, S runs at most at time t and makes at most σ oracle queries,
and the following holds:∣∣∣∣Pr

[
DG,SG = 1

]
− Pr

[
DCF ,F = 1

]∣∣∣∣ ≤ ε .
As explained in [DRS09], the composition theorem of [MRH04] still holds with

pub-indifferentiability for cryptosystems where all messages queried to G can be
inferred from the adversary’s query during the security experiment.

Clearly, pub-indifferentiability implies seq-indifferentiability. Indeed, since after
its first query to G a sequential distinguisher never queries the simulator again,
the interface Reveal is of no use to the simulator. A less trivial result is that seq-

4.3 Sequential Indifferentiability 61

Dpub

0/1

C

SseqG

Dseq

0/1

Dpub

0/1

C

FC

Dseq

0/1

Figure 4.3: Illustration of the proof of Theorem 4.1. The dashed arrow means that
Dseq makes the corresponding queries once Dpub has returned and compares the
answers with the one it computed with C.

indifferentiability implies pub-indifferentiability for stateless4 ideal primitives G,
thus making seq- and pub-indifferentiability equivalent notions in that case.

Theorem 4.1. Let C be a construction with oracle access to some ideal primitive
F . If CF is (2q, t, σ, ε)-seq-indifferentiable from a stateless ideal primitive G, then
CF is (q, t′, σ + q, ε)-pub-indifferentiable from G, where t = t′ +O(qn).

Proof. Assume that CF is (2q, t, σ, ε)-seq-indifferentiable from G, and let Sseq be the
simulator for seq-indifferentiability. We define a simulator Spub for pub-indifferentiability
as follows. Spub runs Sseq, transparently relaying queries of Sseq to G to the regular
interface of G. Each time Spub receives a F -query y from the distinguisher, it makes
a call to Reveal, getting a sequence (x1, . . . , xm) of G-queries that have been made
by the distinguisher so far (Spub considers only fresh G-queries, i.e. G-queries that
have not been returned by a previous query to Reveal). For each i = 1 to m,
Spub makes all F -queries needed to compute CF (xi) to Sseq. Finally, it makes the
F -query y to Sseq and returns the corresponding answer.

Let Dpub be a distinguisher for the pub-indifferentiability game of total oracle
queries cost at most q. We have to bound the absolute difference between the
probabilities that Dpub outputs 1 when interacting with (G,SG

pub) and (CF ,F). For

4By stateless we mean that the answer of G to any query only depends on the query and the
randomness of G and not on any additional state information. In particular, for fixed randomness,
G always returns the same answer to a given query.

62
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

this, we assume wlog that

Pr
[
D

G,SG
pub

pub = 1
]
≥ Pr

[
DC

F ,F
pub = 1

]
. (4.1)

We consider the following sequential distinguisher Dseq interacting with a pair of
oracles (G,F) which can be either (G,SG

seq) or (CF ,F). Dseq runs Dpub (see Fig-
ure 4.3). Dseq simply relays any F -query of Dpub to its own F oracle, returning the
corresponding answer. When Dpub makes a G-query x, Dseq makes all the neces-
sary F -queries to its own F -oracle to compute CF (x) and returns this value as the
answer to Dpub. Once Dpub has returned 0 or 1, Dseq makes all the G-queries that
have been made by Dpub to its own G-oracle and checks whether all the answers it
has given to Dpub (by computing CF with its own F -oracle) correspond (in which
case we say that event check happens). If this is the case, Dseq returns the same
answer as Spub. Otherwise it returns 1. Note that Dseq is indeed sequential, and
that its total oracle queries cost is less than 2q when Dpub’s total oracle queries cost
is less than q.

First, it is straightforward to verify that when Dseq interacts with (CF ,F), check
happens with probability one so that

Pr
[
DCF ,F

seq = 1
]

= Pr
[
DC

F ,F
pub = 1

]
.

When Dseq interacts with (G,SG
seq), one can write:

Pr
[
DG,SG

seq
seq = 1

]
= Pr

[
DG,SG

seq
seq = 1 | check

]
Pr[check] + Pr[check] .

Note that when event check occurs, all answers to F - and G-queries of Dpub have
been answered as if Dpub had been interacting directly with (G,SG

pub). This follows
from the definition of Spub and the fact that G is stateless. The statelessness of G
is crucial here since even when check happens, the sequence of queries to G when
Dseq interacts with (G,SG

seq) is not necessarily the same as when Dpub interacts with
(G,SG

pub): in the former, the G-queries of Dpub are forwarded to G by Dseq only
once Dpub has returned, whereas in the later G receives Dpub’s queries immediately.
Hence we have:

Pr
[
DG,SG

seq
seq = 1

]
= Pr

[
D

G,SG
pub

pub = 1 | check

]
Pr[check] + Pr[check]

= Pr
[
D

G,SG
pub

pub = 1
]

+ Pr[check]
(

1− Pr
[
D

G,SG
pub

pub = 1 | check

])

≥ Pr
[
D

G,SG
pub

pub = 1
]
.

It follows from assumption (4.1) that∣∣∣∣∣Pr
[
D

G,SG
pub

pub = 1
]
− Pr

[
DC

F ,F
pub = 1

]∣∣∣∣∣ ≤
∣∣∣∣Pr

[
DG,SG

seq
seq = 1

]
− Pr

[
DCF ,F

seq = 1
]∣∣∣∣ ,

4.3 Sequential Indifferentiability 63

which is less than ε since by hypothesis CF is (2q, σ, ε)-seq-indifferentiable from G.
The result follows by noting that Spub makes at most q Reveal queries and σ queries
to G.

Clearly, Spub and Dpub are polynomial-time if Sseq and Dseq are, so that pub-
indifferentiability holds computationally if seq-indifferentiability does.

A very simple example enables to separate full indifferentiability from seq/pub-
indifferentiability, namely the Merkle-Damgård construction without strengthening
using a random compression function: it was proven in [CDMP05] that it is not
indifferentiable from a random oracle (a consequence of length-extension attacks),
and in [DRS09] that it is pub-indifferentiable from a random oracle.

4.3.1 Separation between public and sequential indifferentiability
for Stateful Ideal Primitives

When the ideal primitive G is stateful, then seq-indifferentiability does not neces-
sarily imply pub-indifferentiability in the computational setting, as was observed
by Ristenpart5. To see this, let E = (KeyGen, Enc, Dec) be a IND-CPA public-key
encryption scheme. The ideal primitive G maintains a hashtable T with n-bit keys
and takes as input an n-bit string x and a public key pk for E .
1: procedure G(x,pk)
2: if T (x) = ⊥ then
3: y ←R {0, 1}n
4: T (x) := Encpk(y)
5: end if
6: return T (x)
7: end procedure

The construction C is quite similar to G, but instead of drawing a uniformly
random y it uses a random function oracle F : {0, 1}n → {0, 1}n:
1: procedure CF (x,pk)
2: if T (x) = ⊥ then
3: y := F (x)
4: T (x) := Encpk(y)
5: end if
6: return T (x)
7: end procedure

One can show that CF is computationally seq-indifferentiable from G, but not
pub-indifferentiable. The idea is that in the seq-indifferentiability game, the sim-
ulator can always get the y values drawn by G by generating the public keys by
itself, whereas in the pub-indifferentiability game, when the distinguisher makes a
G-query before the simulator, the y value will be hidden to Spub unless it can break
the one-wayness of E . The seq-indifferentiability simulator maintains an history F
for the simulated oracle and is defined as follows:

5Personal communication

64
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

1: procedure SG
seq(x)

2: if F (x) = ⊥ then
3: (pk, sk)← KeyGen
4: c := G(x, pk)
5: y := Decsk(c)
6: F (x) := y
7: end if
8: return F (x)
9: end procedure

It is not very hard to see that the above simulator works for seq-indifferentiability.
On the other hand, consider the following distinguisher for pub-indifferentiability:
1: procedure DΘ1,Θ2

pub (1n)
2: (pk, sk)← KeyGen
3: c := Θ1(0, pk)
4: y := Decsk(c)
5: y′ := Θ2(0)
6: if y = y′ then
7: return 1
8: else
9: return 0

10: end if
11: end procedure

When (Θ1,Θ2) = (CF ,F) then Dpub always returns 1. However any efficient
simulator Spub such that Dpub returns 1 with non negligible probability when
(Θ1,Θ2) = (G,SG

pub) can be turned into an algorithm breaking the one-wayness
of E . Hence Dpub distinguishes the two systems with overwhelming probability.

4.4 Sequential Distinguisher for the 5-Round Feistel
Construction

The sequential distinguisher D proceeds as follows (see Figure 4.4). It chooses
an arbitrary value Z13, two arbitrary values Y14 et Y23, and queries F3(Y14) and
F3(Y23). It then computes: {

X12 = Z13 ⊕ F3(Y14)
X34 = Z13 ⊕ F3(Y23) .

Notations are chosen such that input round values sharing a common index corre-
spond to the same input-output pair of the Feistel scheme: we say they constitute
a chain. For example, (X12, Y14, Z13) constitute a chain since X12 = Z13 ⊕ F3(Y14).
The distinguisher then queries F2(X12) and F2(X34) and computes:

R1 = Y14 ⊕ F2(X12)
R2 = Y23 ⊕ F2(X12)
R3 = Y23 ⊕ F2(X34)
R4 = Y14 ⊕ F2(X34) .

4.5 Seq-Indifferentiability of the 6-Round Feistel Construction 65

Note that necessarily R1 ⊕R2 ⊕R3 ⊕R4 = 0.
Then the distinguisher queries F1(R1), F1(R2), F1(R3), and F1(R4) and computes:

L1 = X12 ⊕ F1(R1)
L2 = X12 ⊕ F1(R2)
L3 = X34 ⊕ F1(R3)
L4 = X34 ⊕ F1(R4) .

Finally the distinguisher makes the P -queries (S1, T1) = P (0, (L1, R1)), (S2, T2) =
P (0(L2, R2)), (S3, T3) = P (0, (L3, R3)) and (S4, T4) = P (0, (L4, R4)). If S1 ⊕ S2 ⊕
S3 ⊕ S4 = 0, it returns 1, otherwise it returns 0. Note that this distinguisher is
sequential.

First, one can easily verify that D always returns 1 when it interacts with
(ΨF

5 ,F). Indeed, denote Z24 = X12⊕F3(Y23) the input value to F4 associated with
(L2, R2). Since X12 ⊕ F3(Y14) = X34 ⊕ F3(Y23) = Z13, then Z24 = X34 ⊕ F3(Y14),
so that Z24 is also the input value to F4 associated with (L4, R4). It follows that:

S1 = Y14 ⊕ F4(Z13)
S2 = Y23 ⊕ F4(Z24)
S3 = Y23 ⊕ F4(Z13)
S4 = Y14 ⊕ F4(Z24) ,

and the relation S1 ⊕ S2 ⊕ S3 ⊕ S4 = 0 is always verified.
On the contrary, when interacting with (P ,SP), it returns 1 only with negligible

probability. Indeed, considering the union of D and S as a single machine making
a polynomial number of queries to the random permutation P , it can find four
input/output pairs (Si, Ti) = P (0, (Li, Ri)) satisfying R1 ⊕ R2 ⊕ R3 ⊕ R4 = 0 and
S1 ⊕ S2 ⊕ S3 ⊕ S4 = 0 only with negligible probability.

4.5 Seq-Indifferentiability of the 6-Round Feistel Con-
struction

In this section we prove the main result of this section which states that the Feis-
tel construction with 6 rounds and random round functions is seq-indifferentiable
from a random invertible permutation, and hence also pub-indifferentiable since a
random invertible permutation is stateless. Before stating the result, we recall that
in [CPS08], it was shown that the Feistel construction with five rounds is not in-
differentiable from a random invertible permutation. In fact, the distinguisher they
described is sequential, which implies that the 5-round Feistel construction is not
even seq-indifferentiable from a random invertible permutation. We recalled the
attack in the previous section.

Theorem 4.2. The Feistel construction with six rounds and random round func-
tions is (q, t, σ, ε)-seq-indifferentiable from a random invertible permutation, where:

σ(q) = q2 and ε(q) = 8q4

2n + q4

22n t(q) = O(q2n) .

66
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

T1 T2 T3 T4

S1 S2 S3 S4

Z13 Z24

Y14 Y23

X12 X34

R1 R2 R3 R4

L1 L2 L3 L4

= 0

= 0

F5 S

F4 Z

F3 Y

F2 X

F1

S T

L R

Figure 4.4: Description of the sequential distinguisher for the 5-round Feistel con-
struction.

The rest of this section is devoted to the proof of Theorem 4.2. We will consider
a sequential distinguisher D that first issues at most qf queries to the simulator (or
the random functions Fi). These queries will be called F -queries. Then, it issues
at most qp queries to the random permutation P (or the Feistel construction ΨF

6).
These queries will be called P -queries. The total oracle queries cost is qf + 6qp (for
each P -query, the Feistel construction makes 6 F -queries to compute the answer)
and is assumed to be less than q.

We start by describing how the simulator S works. It maintains an history of
values for which each round function has been defined (either because this value
has been queried by the distinguisher, or because the simulator has set this value
internally). We will note Fi, i ∈ [1..6] the history of the i-th round function, that is
a set of pairs (U, V) ∈ {0, 1}n × {0, 1}n, where U is an input to round function Fi
and V is the corresponding image (which we denote Fi(U) = V). We write U ∈ Fi
to denote that the image of U by Fi is defined in the history. Initially round function
values Fi(U) are undefined for all i ∈ [1..6] and all U ∈ {0, 1}n. The images are then
modified during the execution of the simulator. Fi(U) ← V means that the image
of U by Fi is set to V and Fi(U)←R {0, 1}n means that the image of U by Fi is set
uniformly at random in {0, 1}n. If a round function value is already in the history
and a new assignment occurs, the previous value is overwritten (alternatively, we
could let the simulator abort in this case, as in [CPS08], but as we will see this
happens only with negligible probability so that the exact behavior of the simulator

4.5 Seq-Indifferentiability of the 6-Round Feistel Construction 67

in such a case in unessential). We will note H = (F1, . . . , F6) the complete history
of the six round functions.

When the simulator receives a F -query (i, U) (meaning that the distinguisher
asks for the image of U through round function Fi), it calls an internal procedure
Query(i, U). This procedure checks whether the corresponding image is in the his-
tory of Fi, in which case it returns this value and stops. Otherwise it sets the image
uniformly at random. If i = 1, 2, 5, or 6, it does nothing more. If i = 3 or 4,
the simulator additionally completes all centers (Y, Z) ∈ F3 × F4 newly created so
that the corresponding values of (L,R) and (S, T) obtained by evaluating the Feis-
tel construction respectively backward and forward are consistent with the random
permutation P , meaning that P (0, (L,R)) = (S, T). This is done by calling two
internal procedures CompleteForward (if i = 4) or CompleteBackward (if i = 3)
which “adapts” two round function values (F5(A) and F6(S) for CompleteForward,
and F1(R) and F2(X) for CompleteBackward) so that the Feistel matches with the
random permutation. The pseudo-code for the three procedures is given below.
Statements put in boxes in CompleteForward and CompleteBackward are replace-
ments for a different system used in the indifferentiability proof and can be ignored
for the moment.

There are two points to prove in order to obtain Theorem 4.2: that the simulator
runs in polynomial time, and then that the probabilities that the distinguisher
outputs 1 when interacting with (P ,SP) and (ΨF

6 ,F) differ by a negligible quantity
ε. The following lemma shows that the simulator runs in time polynomial in the
number of queries it receives.

Lemma 4.1. When the simulator is asked at most q queries, then the size of
histories for F3 and F4 is at most q, the size of histories for F1, F2, F5 and F6
is at most q2 + q, the procedures CompleteForward and CompleteBackward are
called in total at most q2 times, and the simulator makes at most q2 queries to the
random permutation.

Proof. Elements are added to the history of F3 and F4 only when a correspond-
ing F -query is made to the simulator, so that the size of their history cannot be
greater than q. For each pair (Y,Z) ∈ F3 × F4, either CompleteForward(Y,Z) or
CompleteBackward(Y, Z) is called, at most once, so that in total these procedures
are called at most q2 times. Since the simulator makes one query to the random per-
mutation per execution of CompleteForward and CompleteBackward this in turns
implies that the total number of queries to P is at most q2. Finally, elements are
added to the history of F1, F2, F5 and F6 either when a query is made to the sim-
ulator, or during an execution of CompleteForward or CompleteBackward, so that
the size of their history cannot be greater than q2 + q.

In order to prove that the two systems Σ1 = (P ,SP) and Σ4 = (ΨF
6 ,F) are

indistinguishable, we will use two intermediate systems: Σ2 = (ΨSP

6 ,SP) where the
P -queries of D are answered by the Feistel construction asking round function values
to the simulator, which itself interacts with P , and Σ3 = (ΨSR

6 ,SR) where the
random invertible permutation is replaced by a two-sided random function R (note

68
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Algorithm 1 Simulator

1: variable: round function histories F1, . . . , F6

2: procedure Query(i,U)
3: if U /∈ Fi then
4: Fi(U)←R {0, 1}n
5: if i = 3 then
6: for all Z ∈ F4 do
7: CompleteBackward(U,Z)
8: end for
9: end if

10: if i = 4 then
11: for all Y ∈ F3 do
12: CompleteForward(Y,U)
13: end for
14: end if
15: end if
16: return Fi(U)
17: end procedure

18: procedure CompleteForward(Y ,Z)
19: X := Z ⊕ F3(Y)
20: Query(2, X)
21: R := Y ⊕ F2(X)
22: Query(1, R)
23: L := X ⊕ F1(R)
24: (S, T) := P (0, (L,R)) (S, T) := R(0, (L,R))
25: A := Y ⊕ F4(Z)
26: F5(A)← Z ⊕ S
27: F6(S)← A⊕ T
28: end procedure

29: procedure CompleteBackward(Y ,Z)
30: A := Y ⊕ F4(Z)
31: Query(5, A)
32: S := Z ⊕ F5(A)
33: Query(6, S)
34: T := A⊕ F6(S)
35: (L,R) := P (1, (S, T)) (L,R) := R(1, (S, T))
36: X := Z ⊕ F3(Y)
37: F2(X)← R⊕ Y
38: F1(R)← L⊕X
39: end procedure

4.5 Seq-Indifferentiability of the 6-Round Feistel Construction 69

D

0/1

SP

D

0/1

SΨ6

P

D

0/1

SΨ6

R

D

0/1

FΨ6

Σ1 Σ2 Σ3 Σ4

Figure 4.5: Systems used in the seq-indifferentiability proof.

the corresponding change in procedures CompleteForward and CompleteBackward
indicated by a boxed statement). The four systems used in the proof are depicted
in Figure 4.5.

The main part of the analysis is concerned with systems Σ2 and Σ3. We will show
that unless some bad event happens, the round function values set by the simulator
in Σ2 are consistent with P (which will enable to bound the statistical distance
between Σ1 and Σ2), and that in Σ3 they are uniformly random and independent
(which will enable to bound the statistical distance between Σ3 and Σ4). In systems
Σ2 and Σ3, the simulator first receives at most qf queries from the distinguisher,
and then at most 6qp queries from the Feistel construction (6 for each P -query of
the distinguisher). Hence the total number of queries received by the simulator
is exactly the total oracle queries cost of D, which is less than q. The statistical
distance between answers of systems Σ2 and Σ3 is easily bounded.

Lemma 4.2. For any distinguisher of total oracle queries cost at most q, the fol-
lowing holds: ∣∣∣Pr

[
DΣ2 = 1

]
− Pr

[
DΣ3 = 1

]∣∣∣ ≤ q4

22n+1 .

Proof. Consider the union of D, Ψ6, and S as a single distinguisher D′ interacting
either with a random invertible permutation or a two-sided random function. Note
that D′ makes at most q2 queries to its oracle (Lemma 4.1). One can conclude
thanks to the PRF/PRP switching lemma [BR06].

Before going further with the proof, we define formally what it means for an

70
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

input x ∈ {0, 1}×{0, 1}n to the Feistel construction to be computable with respect
to the history of the simulator.

Definition 4.4 (Computable input). Given a simulator history H and an input
x ∈ {0, 1} × {0, 1}2n, the sequence ρH(x) = (ρH(x)[i])i∈[0..7] is defined as follows:

• for a forward input x = (0, (L,R)), ρH(x)[0] = L, ρH(x)[1] = R, and for i = 2
to 7:{

if ρH(x)[i− 1] ∈ Fi−1 then ρH(x)[i] = ρH(x)[i− 2]⊕ Fi−1(ρH(x)[i− 1])
else ρH(x)[i] =⊥

• for a backward input x = (1, (S, T)), ρH(x)[7] = T , ρH(x)[6] = S, and for
i = 5 to 0:{

if ρH(x)[i+ 1] ∈ Fi+1 then ρH(x)[i] = ρH(x)[i+ 2]⊕ Fi+1(ρH(x)[i+ 1])
else ρH(x)[i] =⊥

An input x is said to be computable with respect to H iff ρH(x)[i] 6=⊥ for all
i ∈ [0..7]. In that case we note ΨH6 (x) = (ρH(x)[6], ρH(x)[7]) if x is a forward input
and ΨH6 (x) = (ρH(x)[0], ρH(x)[1]) if x is a backward input.

For a computable input x, we will often use the notation (L,R,X, Y, Z,A, S,
T) = ρH(x) as depicted on Figure 4.1.

We now define a bad event that may occur during the execution of the sim-
ulator (in Σ2 or Σ3) in relation with Lines 26, 27, 37, and 38 of the simulator.
We will say that event Bad happens if in any execution of CompleteForward or
CompleteBackward, the input value whose image is set at Lines 26, 27, 37 or 38
is already in the history of the corresponding round function. This implies that
the simulator overwrites a value so that its answers may not be coherent with P
or R any more.6 Reciprocally, if Bad does not happen, then the simulator never
overwrites any value in its history.

We start with the simple observation that if Bad does not happen, then during
any execution of CompleteForward or CompleteBackward, the query to P or R
made by the simulator is fresh.

Lemma 4.3. In system Σ2, if Bad does not happen, then in any execution of
CompleteForward or CompleteBackward the query to P made by the simulator
is not in the history of P . For system Σ3, the corresponding statement holds for
R.

Proof. The reasoning is the same for Σ2 and Σ3, we use Σ2 to fix ideas. Consider
an execution of CompleteForward(Y,Z). Let x = (0, (L,R)) be the query to P
made by the simulator, and (S, T) = P (x). If x is already in the history of P ,

6In previous work on indifferentiability of the Feistel construction [CPS08, Seu09], in such a
case the simulator aborted. It does not change much since, as we will prove, this happens only
with negligible probability.

4.5 Seq-Indifferentiability of the 6-Round Feistel Construction 71

then it was necessarily added by a previous execution of CompleteForward(Y ′, Z ′)
or CompleteBackward(Y ′, Z ′) (note that the distinguisher does not make any query
to P in Σ2 or to R in Σ3). But since Bad does not happen, round function values
are never overwritten so that necessarily (Y ′, Z ′) = (Y,Z). This is impossible
since by construction the simulator makes at most one call to CompleteForward or
CompleteBackward per center (Y,Z) ∈ F3 × F4.

We are now ready to upper bound the probability that Bad happens in Σ2 or
Σ3.

Lemma 4.4. For any distinguisher of total oracle queries cost at most q, event Bad
happens with probability less than 4q4/2n in Σ3 and less than 4q4/2n + q4/22n+1 in
Σ2.

Proof. We start by working with Σ3 since it is slightly easier to analyze. Assume Bad
has not happened yet, and consider a call to Query(3, Y) (the case of Query(4, Z)
is symmetric). Let Z1, . . . , Zm, (m ≤ q according to Lemma 4.1) be the values in
the history of F4 at this point. We show that event Bad does not happen for any
call to CompleteBackward(Y, Zi) except with negligible probability. Since F3(Y)
is set uniformly at random, the probability that any value Xi = Zi ⊕ F3(X) is
in the history of F2 at the time F3(Y) is set is less than m(q2 + q)/2n ≤ 2q3/2n.
Moreover F2(Xi) cannot be set until CompleteBackward(Y,Zi) is called, hence Bad
does not happen for Line 37 of any execution of CompleteBackward(Y,Zi) except
with probability less than 2q3/2n. Let (Li, Ri) denote the answer of the query
to R in CompleteBackward(Y,Zi). Since Bad has not happened yet, according to
Lemma 4.3 this query is not in the history of R so that the answer is uniformly
random. Hence Ri is in the history of F1 with probability less than (q2 + q)/2n.
Since there are m ≤ q calls to CompleteBackward, event Bad does not occur for
Line 38 of CompleteBackward except with probability less than 2q3/2n. Finally,
since there are at most q calls in total to Query(3, ·) and Query(4, ·), event Bad
happens with probability less than 4q4/2n in Σ3. The absolute difference between
the probability that Bad happens in Σ2 and Σ3 cannot be greater than the statistical
distance between answers of P and R, hence the probability that Bad happens in
Σ2 is less than 4q4/2n + q4/22n+1.

The following lemma says that as long as Bad does not happen in Σ2, the round
function values set by the simulator are consistent with P .

Lemma 4.5. If Bad does not happen in system Σ2, then for any input x ∈ {0, 1}×
{0, 1}2n computable with respect to the final history of the simulator H, ΨH6 (x) =
P (x).

Proof. Consider an input x ∈ {0, 1} × {0, 1}2n computable with respect to the
final history H of the simulator, and let (L,R,X, Y, Z,A, S, T) = ρH(x). There was
necessarily a call to CompleteForward(Y,Z) or CompleteBackward(Y, Z) during the
execution of the simulator. With respect to the history H′ just after the completion
of CompleteForward(Y, Z) or CompleteBackward(Y,Z), it is clear that ΨH′6 (x) =

72
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

P (x). Since Bad does not happen the simulator never overwrites a value and the
equality remains true until the end of the simulation, hence ΨH6 (x) = P (x).

A direct consequence of this lemma is that as long as Bad does not happen in
Σ2, the answers of systems Σ1 and Σ2 are identically distributed.

Lemma 4.6. For any distinguisher of total oracle queries cost at most q, the fol-
lowing holds:

∣∣∣Pr
[
DΣ1 = 1

]
− Pr

[
DΣ2 = 1

]∣∣∣ ≤ 4q4

2n + q4

22n+1 .

Proof. Clearly, answers to F -queries of the distinguisher are identically distributed
in Σ1 and Σ2 since they are answered by SP in both systems (may Bad occur or
not).7 Moreover, in Σ2 any P -query x asked by the distinguisher is computable
with respect to the history of the simulator at the time it is answered by Ψ6, and if
Bad does not happen in Σ2, then according to Lemma 4.5, ΨH6 (x) = P (x) so that
answers to P -queries of the distinguisher are also identically distributed in both
systems. The result follows from Lemma 4.4.

Lemma 4.7. If Bad does not happen in system Σ3, then the round function values
set by the simulator are uniformly random and independent.

Proof. Since this is clear for round function values set uniformly at random (in-
dependently of Bad occurring or not), we only have to examine values that are
adapted at Lines 26, 27, 37, and 38 of the simulator. But according to Lemma 4.3,
if Bad does not happen, the query to R made by the distinguisher in any execution
of CompleteForward or CompleteBackward is not in the history of R, so that the
answer (S, T) or (L,R) is uniformly random. Consequently, round function values
set by F5(A)← Z⊕S and F6(S)← A⊕T in CompleteForward, or F2(X)← R⊕Y
and F1(R)← L⊕X in CompleteBackward are uniformly random and independent
of previous round function values set by the simulator. Since Bad does not happen
round function values are not overwritten and the result follows.

This lemma finally enables to bound the statistical distance between the answers
of Σ3 and Σ4.

Lemma 4.8. For any distinguisher of total oracle queries cost at most q, the fol-
lowing holds: ∣∣∣Pr

[
DΣ3 = 1

]
− Pr

[
DΣ4 = 1

]∣∣∣ ≤ 4q4

2n .

Proof. If Bad does not occur in Σ3 then answers of SR are distributed exactly
as answers of F according to Lemma 4.7. Hence the statistical distance between
answers of Σ3 and Σ4 is upper bounded by the probability that Bad happens in Σ3,
given by Lemma 4.4.

7It is crucial here that the distinguisher is sequential, otherwise the simulation in Σ2 would be
altered by the queries made by Ψ6.

4.6 Applications to Correlation Intractability 73

Theorem 4.2 is now a simple consequence of Lemmata 4.2, 4.6, and 4.8.

Remark 4.1 The strategy of using the intermediate system Σ2 is likely to be quite
generic for seq-indifferentiability proofs (system Σ3, on the contrary, is quite specific
to the Feistel construction). We believe this could probably make proofs of pub-
indifferentiability (e.g. [DRS09, Section 7]) much easier, but leave this for future
work.

Remark 4.2 Note that for general distinguishers (not necessarily sequential), the
proof would go through exactly as above for Lemmata 4.2 and 4.8. The problematic
step is clearly going from Σ1 to Σ2. To see what could go wrong if the distinguisher
can interleave queries to P and S, consider the following simple example. D first
makes a P -query P (0, (L,R)) = (S, T), and then makes the sequence of F -queries
F1(R), F2(X), F6(S), F5(A). In system Σ1, the simulator returns uniformly answers
to the four F -queries and will be unable to adapt F3 and F4, whereas in Σ2 the
initial P -query of the distinguisher will trigger six F -queries from Ψ6 which will
lead the simulator to adapt the chain when query F4(Y) occurs. Making progress
towards proving full indifferentiability for six rounds clearly requires to find the
right way to deal with these “external” chains without knowing the P -queries of
the distinguisher.

4.6 Applications to Correlation Intractability
Correlation intractability was introduced by Canetti et al. in their work on the
limits of the random oracle methodology [CGH98]. In the standard model, a func-
tion family is said to be correlation intractable if given the description of a random
function f of the family, no Probabilistic Polynomial Time (PPT) algorithm can
find an input x, or more generally a sequence of inputs (x1, . . . , xm), such that
((x1, . . . , xm), (f(x1), . . . , f(xm))) satisfies a relation that would be hard to satisfy
for a uniformly random function.

There is no difficulty in extending the definition of correlation intractability to
an idealized model: instead of passing the description of the function as input to
the algorithm, it is granted access to the ideal primitive used by the construction C.
This way one can define a correlation intractable construction (accessing an ideal
primitive).

In all the following, we will consider relations over pairs of binary sequences
(formally, a subset of {0, 1}∗×{0, 1}∗). We assume that the machineM returns se-
quences of strings in Domn, the domain of the ideal primitive Gn or the construction
CFn .

Definition 4.5 (Evasive relation). Let G = (Gn) be an ideal primitive associated
to G = (Domn, Rngn,Gn). A relation R over pairs of binary sequences is said to be
evasive with respect to G if for any PPT oracle machine M, there is a negligible
function ε such that the following holds:

Pr
[
(x1, . . . , xm)←MGn : ((x1, . . . , xm), (Gn(x1), . . . ,Gn(xm))) ∈ R

]
≤ ε(n) .

74
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Example 4.1 The relation over pairs of quadruplets of binary strings

∪n
{(

((0, (L1, R1)), (0, (L2, R2)), (0, (L3, R3)), (0, (L4, R4))), ((S1, T1), (S2, T2), (S3, T3), (S4, T4))
)

:
Li, Ri, Si, Ti ∈ {0, 1}n and R1 ⊕R2 ⊕R3 ⊕R4 = 0 and S1 ⊕ S2 ⊕ S3 ⊕ S4 = 0

}
is evasive for a random invertible permutation. This is exactly the evasive rela-
tion used in Section 4.4 to show that the 5-round Feistel construction is not seq-
indifferentiable from a random permutation. This same attack also shows that the
5-round Feistel construction is not correlation intractable.

Definition 4.6 (Correlation intractable construction). Let C be a construction with
oracle access to an ideal primitive F = (Fn) and implementing some primitive G.
CF is said to be (multiple-output) correlation intractable if for any relation R over
pairs of binary sequences evasive with respect to G, and any PPT oracle machine
M, there is a negligible function ε such that:

Pr
[
(x1, . . . , xm)←MFn :

(
(x1, . . . , xm), (CFn(x1), . . . , CFn(xm))

)
∈ R

]
≤ ε(n) .

Weak correlation intractability is defined similarly as above by quantifying only
over all polynomial-time recognizable relations (i.e. relations R such that there
exists a polynomial-time algorithm that, given ((x1, . . . , xm), (y1, . . . , ym)), decides
whether it belongs to R or not).

Theorem 4.3. Let C be a construction with oracle access to an ideal primitive
F = (Fn) and implementing some primitive G. If CF is seq-indifferentiable from
the ideal primitive G, then CF is correlation intractable (resp. weakly correlation
intractable).

Proof. Assume that CF is not correlation intractable. Then there is an evasive re-
lation R and a PPT oracle machineM such thatMFn outputs with non-negligible
probability δ a sequence (x1, . . . , xm) such that ((x1, . . . , xm), (CFn(x1), . . . , CFn(xm))) ∈
R. Consider the following sequential distinguisher D accessing a pair of oracles
(G,F): it runsM, answeringM’s oracle queries with its own oracle F . M returns
(x1, . . . , xm). D then makes oracle queries G(x1), . . . , G(xm) and checks8 whether
((x1, . . . , xm), (G(x1), . . . , G(xm))) ∈ R. If this is the case it returns 1, otherwise it
returns 0.

When the distinguisher is interacting with (CF ,F), the probability that it re-
turns 1 is exactly δ, which is non-negligible by hypothesis. On the contrary, when
it interacts with (G,SG), then the union ofM and S is a PPT oracle machine with
oracle access to G, so that by definition of an evasive relation D outputs 1 only with
negligible probability. The advantage of the distinguisher is non-negligible, which
contradicts the seq-indifferentiability of CF .

A direct consequence of Theorems 4.2 and 4.3 is that the 6-round Feistel con-
struction with random round functions is correlation intractable: no polynomial

8Note that the reasoning holds only relatively to a polynomial-time recognizable relation if D
is computationally bounded.

4.7 Separating Correlation Intractability and Sequential Indifferentiability 75

algorithm with oracle access to the round functions can find a sequence of inputs
that together with their image by the Feistel satisfy a relation that would be hard
to satisfy in the random invertible permutation model. Note that the sole existence
of correlation intractable invertible permutations in the random oracle model was
already implied by the result of Holenstein et al. [HKT11] on the full indifferen-
tiability of the 14-round Feistel construction (since full indifferentiability implies
seq-indifferentiability and hence correlation intractability), but our results shows
that six rounds are sufficient to achieve this property.

Remark 4.3 According to Theorem 4.3, sequential indifferentiability implies cor-
relation intractability. However correlation intractability does not necessarily im-
ply sequential indifferentiability. In the following Section 4.7 we provide a simple
counter-example separating the two notions.

Implications for Chosen-Key and Known-Key Attacks on Block Ciphers.
Knudsen and Rijmen [KR07] have introduced so-called known-key attacks on block
ciphers. We discuss the implications of our results regarding this attack model in
Section 4.8.

4.7 Separating Correlation Intractability and Sequen-
tial Indifferentiability

According to Theorem 4.3, sequential indifferentiability implies correlation intractab-
ility. However, it does not hold the other way around. Below we give a constructive
counter-example.

Let CE be a construction based on some ideal primitive E which is seq-indifferen-
tiable from a random function F = (Fn), Fn : {0, 1}n → {0, 1}n. By Theorem 4.3,
CE is also correlation intractable with respect to the random function F .

Now consider the primitive G = (Gn) where Gn : {0, 1}n → {0, 1}n is such that
Gn(0n) = 0n and for x ∈ {0, 1}n \ {0n}, we have Gn(x) = Fn(x). Let R be be
a relation evasive with respect to the ideal primitive G. Clearly, R is also evasive
with respect to the random function F so that CE is also correlation intractable
with respect to G. However, CE is not seq-indifferentiable from G. Indeed, consider
a distinguisher which simply makes the query 0n to its left oracle: the answer will
be 0n when it is G, and will be 0n with only negligible probability when it is CE

(since otherwise this would yield a sequential distinguisher distinguishing CE from
F).

4.8 Implications for Chosen-Key and Known-Key At-
tacks on Block Ciphers

Knudsen and Rijmen [KR07] have introduced the model of known-key attacks on
block ciphers, where the attacker is given a random or chosen key K to the block
cipher, and must find inputs to the block cipher that together with their image
satisfy a relation that would be hard to satisfy for a random invertible permutation.

76
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

In other words, the attacker must break the correlation intractability of the block
cipher for that particular key.

In the random oracle model, there are at least two straightforward ways to obtain
a block cipher with a Feistel construction. The first one is to let round functions have
input length `+n, where ` is the key length, and to prepend the key K to the input
of each round function. Another way is to xor keys (k1, . . . , kr) (where |ki| = n)
to the input of the r round functions (F1, . . . ,Fr) (the pseudorandomness of this
construction in the random oracle model has for example been studied by [GR04]).
Many variations can be explored, e.g. having a single round function F instead
of independent ones, having Fi’s be random invertible permutations rather that
random functions, etc.

An interesting result of [KR07] is that for a 7-round Feistel construction using
a single random invertible permutation P as round function, and independent keys
(k1, . . . , k7) xored to the input of P at each round, then the resulting block cipher
is not correlation intractable (even when the keys are only random and known from
the attacker, not chosen): namely with high probability on the choice of the keys,
the attacker can find inputs (L,R) and (L′, R′) that together with the corresponding
outputs (S, T) and (S′, T ′) satisfy R⊕R′ ⊕ T ⊕ T ′ = 0.

Our results on the correlation intractability of the 6-round Feistel construction
shows that the block cipher obtained by prepending the key to the input of each
round function is correlation intractable (in the random oracle model), and hence
immune to known-key and even chosen-key attacks. Other variations need more
careful analysis. In particular, note that the variant using a single round function
is clearly not immune to known or chosen key attacks (at least when the same key is
used at each round): for example for any number of rounds, ΨF ,...,F

r (L,R) = (S, T)
implies ΨF ,...,F

r (T, S) = (R,L) (this is in fact true for any palindromic sequence of
round functions).

4.9 Seq-Indifferentiability Beyond the Birthday Barrier
for the Construction of Chapter 3

In Chapter 3, we considered the problem of ideal cipher domain extension. We
showed that a 3-round Feistel-like construction based on an n-bit ideal cipher is
indifferentiable from a 2n-bit ideal cipher. We obtained a birthday security bound,
namely the construction is secure as long as the attacker makes q � 2n/2 many
queries. However, we also showed that the construction is actually secure up to
q � 2n many queries in the standard indistinguishability model, where the attacker
cannot make queries to the smaller n-bit ideal cipher. It was left as an open problem
whether obtaining a similar improved security bound in the indifferentiability model
was possible. Here we give a partial positive answer to that question, namely
showing that the 3-round Feistel-like construction is seq-indifferentiable and pub-
indifferentiable from an ideal cipher up to q � 2n queries.

The 3-round permutation Ψ3 : {0, 1}2n → {0, 1}2n defined as follows (see Fig-
ure 4.6 for an illustration), given block ciphers E1, E2 and E3 with n-bit key (first

4.9 Seq-Indifferentiability Beyond the Birthday Barrier for the Construction of
Chapter 3 77

variable) and n-bit input/output (second variable):

X = E1(R,L)
S = E2(X,R)
T = E3(S,X)

Ψ3(L,R) := (S, T)

The 3 round block cipher Ψ′3 : {0, 1}k × {0, 1}2n → {0, 1}2n is defined as follows,
given block ciphers E1, E2 and E3 with (k + n)-bit key and n-bit input/output:

X = E1(K‖R,L)
S = E2(K‖X,R)
T = E3(K‖S,X)

Ψ′3(K, (L,R)) := (S, T)

E1

E2

E3

L R

X

S

S T

E1

E2

E3

L R

X

S

S T

K

K

K

Figure 4.6: 3-round permutation Ψ3(L,R) (left) and 3-round block-cipher
Ψ′3(K, (L,R)) (right)

We now state our main result in this section: the 3-round Feistel construction
({0, 1}2n → {0, 1}2n) is seq-indifferentiable from a random permutation up to q �
2n queries. To get an ideal cipher, it suffices to prepend a key K to the 3 ideal
ciphers E1, E2 and E3; one then gets a family of independent random permutation,
parametrized by K, i.e. an ideal cipher.

Theorem 4.4. The 3-round Feistel construction Ψ3 is (q, t, σ, ε)-seq-indifferentiable
from a random invertible permutation P : {0, 1}2n → {0, 1}2n , with σ(q) = nq, and
ε = O(q/2n). The running time of the simulator for is t = O(nq log q).

We only consider the 3-round permutation Ψ3. The extension to block-cipher
Ψ′3 is straightforward. We must construct a simulator S such that the two systems
formed by (Ψ3, E) and (P,S) are indistinguishable.

78
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Our simulator maintains a history of already answered queries for E1, E2 and
E3. Formally, (1, R, L,X) exists in history if and only if the simulator has answered
E1(R,L) query as X or E−1

1 (R,X) query as L previously. Similar conditions hold
for (2, X,R, S) and (3, S,X, T) as well. We define the following algorithms:

• GuessE1(R,L) returns a random X ∈ {0, 1}n \B where B is the set of already
defined values for E1(R, ·). Algorithms GuessE−1

1 , GuessE3 and GuessE−1
3 work

in a similar fashion.

• ConflictE1(R,L,X) returns True iff (1, R, L, ∗) or (1, R, ∗, X) exist in history.
In other words, it checks whether E1(R,L) or E−1

1 (R,X) has been defined
before. ConflictE2 and ConflictE3 work in a similar fashion.

• Store(L,R,X, S, T) saves (1, R, L,X), (2, X,R, S) and (3, S,X, T) in history.

The distinguisher’s queries are answered as follows by the simulator:

E1(R,L) query: E−1
1 (R,X) query:

1. If (1, R, L, ∗) ∈ history 1. If (1, R, ∗, X) ∈ history
2. Return ∗ 2. Return ∗
3. X ← GuessE1(R,L) 3. L← GuessE−1

1 (R,X)
4. (Err, S, T)← Check(L,R,X) 4. (Err, S, T)← Check(L,R,X)
5. If Err = True Goto 3 5. If Err = True Goto 3
6. Store(L,R,X, S, T) 6. Store(L,R,X, S, T)
7. Return X 7. Return L

E2(X,R) query:
1. If (2, X,R, ∗) ∈ history
2. Return ∗
3. L← GuessE−1

1 (R,X)
4. (Err, S, T)← Check(L,R,X)
5. If Err = True Goto 3
6. Store(L,R,X, S, T)
7. Return S

Check(L,R,X):
1. S‖T ← P (L‖R)
2. If ConflictE2(X,R, S) = True Or ConflictE3(S,X, T) = True
3. Return (True, ∗, ∗)
4. Return (False, S, T).

The procedure for answering the other queries is essentially symmetric; we provide
it for completeness:

4.9 Seq-Indifferentiability Beyond the Birthday Barrier for the Construction of
Chapter 3 79

E−1
3 (S, T) query: E3(S,X) query:
1. If (3, S, ∗, T) ∈ history 1. If (3, S,X, ∗) ∈ history
2. Return ∗ 2. Return ∗
3. X ← GuessE−1

3 (S, T) 3. T ← GuessE3(S,X)
4. (Err, L,R)← Check−1(S, T,X) 4. (Err, L,R)← Check−1(S, T,X)
5. If Err = True Goto 3 5. If Err = True Goto 3
6. Store(L,R,X, S, T) 6. Store(L,R,X, S, T)
7. Return X 7. Return T

E−1
2 (X,S) query:
1. If (2, X, ∗, S) ∈ history
2. Return ∗
3. T ← GuessE3(S,X)
4. (Err, L,R)← Check−1(S, T,X)
5. If Err = True Goto 3
6. Store(L,R,X, S, T)
7. Return R

Check−1(S, T,X):
1. L‖R← P−1(S‖T)
2. If ConflictE2(X,R, S) = True Or ConflictE1(R,L,X) = True
3. Return (True, ∗, ∗)
4. Return (False, L,R)

For a given set of queries Q and their responses X (Q) we define the extender con-
sistency as the property that the responses to Ψ3 (or P) are equal to those that
one would obtain by applying the extender construction from responses to E (or
S) (when queries to E or S suffice to preform the calculation). By construction,
the system (Ψ3, E) always gives consistent response. Also from the definition of our
simulator S, it is evident that (P,S) gives consistent responses as well (S runs in
polynomial time unless it enters an exponential loop with a small probability). For
any distinguisher D against the systems (Ψ3, E) and (P,S) we construct another
distinguisher D′′ by the following way.

1. Ψ3(L,R)→ (S, T) query in D is replaced in D′′ by the sequence of queries

E1(R,L)→ X,E2(X,R)→ S,E3(S,X)→ T.

2. Ψ−1
3 (S, T)→ (L,R) query in D is replaced in D′′ by the sequence of queries

E−1
3 (S, T)→ X,E−1

2 (X,S)→ R,E−1
1 (R,X)→ L.

We argue that D′′ is more powerful than D. In replacement 1, D′′ actually observes
the 5-tuple (L,R,X, S, T), whereas D can only observe the 4-tuple (L,R, S, T).
Moreover, the systems (Ψ3, E) and (P,S) always give extender-consistent responses.
Hence, D′′ observes the exact same information as observed by D, plus some extra
information. Formally, we have the following theorem,

80
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Theorem 4.5. For any distinguisher D and the distinguisher D′′ constructed in
the above way, we have

AdvD ≤ AdvD′′ .

Moreover, D′′ only makes queries to E or S.

Remark 4.4 The above theorem is not true in case of general indifferentiability,
this kind of query replacement would mean the simulator is getting some extra
information, namely the queries to the P oracle.

For any distinguisher D′′ making only E or S queries we construct another
distinguisher D′ by the following way.

1. E1(R,L)→ X query in D′′ is replaced by the sequence of queries E1(R,L)→
X, E2(X,R)→ S, E3(S,X)→ T in D′.

2. E−1
1 (R,X)→ L query inD′′ is replaced by the sequence of queries E−1

1 (R,X)→
L, E2(X,R)→ S, E3(S,X)→ T in D′.

3. E2(X,R)→ L query inD′′ is replaced by the sequence of queries E−1
1 (R,X)→

L, E2(X,R)→ S, E3(S,X)→ T in D′.

4. The queries E−1
3 (S, T), E3(S,X) and E−1

2 (X,S) are processed essentially
symmetrically.

5. D′ does not make any duplicate or trivial query. (Queries which try to verify
whether Ei is a well defined permutation are trivial queries).

In general, D′ always observes the exact same or more information thanD′′. It might
happen that for some (L,R, S, T) such that Ψ3(L,R) = (S, T), D′ gets the interme-
diate X value through E1(R,L) query, whereas D′′ finds it through E−1

3 (S, T) query
or vice-verse. When the distinguishers are interacting with (Ψ3, E) the X value is
always the same irrespective of whether it is retrieved through E1 or E−1

3 query.
And when the distinguishers are interacting with (P,S), X follows the exact same
probability distribution in both scenarios. This is due to the fact that, for fixed
(L,R, S, T) while answering E1(R,L) or E−1

3 (S, T) the simulator picks X uniformly
over all possible X which do not conflict with previous responses. Proof of Lemma
4.12 explains it in more details. Hence we have the following theorem.

Theorem 4.6. For any distinguisher D and the distinguishers D′′ and D′ (making
only E or S queries) constructed in the above way, we have

AdvD ≤ AdvD′′ ≤ AdvD′ .

Moreover, if D makes at most q queries to the systems (Ψ3, E) or (P,S), then D′
only makes at most q many 3-query sequences to (Ψ3, E) or (P,S). Each query
sequence is one of the following types.

• Type I E1(R,L)→ X, E2(X,R)→ S, E3(S,X)→ T

4.9 Seq-Indifferentiability Beyond the Birthday Barrier for the Construction of
Chapter 3 81

• Type II E−1
1 (R,X)→ L, E2(X,R)→ S, E3(S,X)→ T

• Type III E−1
3 (S, T)→ X, E−1

2 (X,S)→ R, E−1
1 (R,X)→ L

• Type IV E3(S,X)→ T , E−1
2 (X,S)→ R, E−1

1 (R,X)→ L

Type I and Type III query sequences are actually symmetric. The same is true
for Type II and IV query sequences as well. We write {0, 1}n as Y. If AdvD′i+1 is
the advantage of the distinguisher D′ for the (i+ 1)th 3-query sequence we have the
following two theorems.

Theorem 4.7. If the (i + 1)th 3-query sequence made by D′ is either of Type I
or Type III we have,

AdvD′i+1 ≤
2i
|Y|2 .

Theorem 4.8. If the (i + 1)th 3-query sequence made by D′ is either of Type II
or Type IV we have,

AdvD′i+1 ≤
5i
|Y|2 + 25i2

|Y|3 + 4i3

|Y|4 .

We know, AdvD′ ≤
∑q−1
i=0 AdvD′i+1. Hence Theorem 4.6, Theorem 4.7 and Theorem

4.8 together complete the proof of Theorem 4.4.

4.9.1 Proof of Theorem 4.7 and Theorem 4.8

Input-output of each 3-query sequence made byD′ is actually a 5-tuple (L,R,X, S, T).
In fact, input of each 3-query sequence is a 2-tuple and output is a 3-tuple. Say
before (i + 1)th query, D′ has observed i many such distinct (as D′ does not make
duplicate or trivial queries) 5-tuples (Lj , Rj , Xj , Sj , Tj) for j = 1 to i. When D′
is interacting with (P,S), the simulator’s internal history also contains exactly the
same information. Let L, R, X, S and T be the set of Lj ’s, Rj ’s, Xj ’s, Sj ’s and
Tj ’s (for j = 1 to i) respectively. We partition the set L as

L = L1 ∪ L2 ∪ · · · ∪ Li,

such that ` ∈ Lk if and only if ` has appeared exactly k times in history (or there
are exactly k-many j values such that ` = Lj). We do similar partitioning for the
sets R, X, S and T as well. Note,∑

j

j|Lj | =
∑
j

j|Rj | =
∑
j

j|Xj | =
∑
j

j|Sj | =
∑
j

j|Tj | = i. (4.2)

We also define L0 = Y \L. R0, X0, S0 and T0 are defined similarly. The proofs of
Theorem 4.7 and Theorem 4.8 are essentially independent. We describe Theorem
4.8 before, because the proof is simpler.

82
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Theorem 4.8

We prove the result when the query sequence is of Type II. For Type IV query
sequence the result follows because of symmetry. Let (R,X) be the input to the
Type II query sequence. Note, we can not have (R,X) = (Rj , Xj) for some j ∈
[1, i], because then E−1

1 (R,X) becomes duplicate or trivial query. (LE , SE , TE) and
(LP , SP , TP) be the random variables corresponding to the output tuple depending
on whether D′ is interacting with (Ψ3, E) or (P,S) respectively.

Let BL be the set of values for which E1(R, .) is defined in history. Also on BS ,
E−1

2 (X, .) is defined. If R ∈ Ri1 and X ∈ Xi2 , we have

|BL| = i1 and |BS | = i2,

BL ⊆ L and BS ⊆ S.

OPST be the set of (Sj , Tj) tuples present in history. Also for j = 1, · · · , i, (Sj , Tj)’s
are actually distinct. In other words, |OPST | = i.

Lemma 4.9. If R ∈ Ri1 and X ∈ Xi2 then for j = 0, · · · , i we have

Pr[(LE , SE , TE) = (L, S, T)] = 1
|Y| − i1

× 1
|Y| − i2

× 1
|Y| − j

when (L, S, T) ∈ (Y \BL)× ((Sj ×Y) \OPST). Moreover,

|(Y \BL)× (((Sj \BS)×Y) \OPST)| = (|Y| − i1)|Sj \BS |(|Y| − j).

For the tuples (L, S, T) not covered by Lemma 4.9, Pr[(LE , SE , TE) = (L, S, T)]
is actually zero. In fact, (LE , SE , TE) always have some non-zero probability over
the set (Y \BL) ×

((
(Y \BS) ×Y

)
\OPST

)
, even though non-uniform. We will

see, (LP , SP , TP) is actually uniform over the same set, and at other points it has
zero probability as well. Using some basic counting principles, we also get

|
(
(Y \BS)×Y

)
\OPST | = (|Y| − |BS |)|Y| − |OPST |+

∑
j′

j′|BS ∩ Sj′ |

= |Y|2 − i2|Y| − i+
∑
j′

j′|BS ∩ Sj′ |.

Formally, we have the following lemma.

Lemma 4.10. If R ∈ Ri1 and X ∈ Xi2 then, (LP , SP , TP) is uniform over (Y \
BL)×

((
(Y\BS)×Y

)
\OPST

)
. More specifically, for (L, S, T) ∈ (Y\BL)×

((
(Y\

BS)×Y
)
\OPST

)
we have,

Pr[(LP , SP , TP) = (L, S, T)] = 1
|Y| − i1

× 1
|Y|2 − i2|Y| − i+

∑
j′ j
′|BS ∩ Sj′ | .

Proof. For a Type II query sequence the simulator response is decided by simu-
lators behavior on E−1

1 (R,X) query. Inside the Check(L,R,X) function, L is not
passed to ConflictE2 and ConflictE3 functions. L, is only used as input to P . P

4.9 Seq-Indifferentiability Beyond the Birthday Barrier for the Construction of
Chapter 3 83

being a random permutation the probability distributions of LP and (SP , TP) are
actually independent. Again, due to uniform randomness of P , (SP , TP) is actually
uniform over a set of possible values which does conflict with history. Again, the
probability that Check(L,R,X) returns Err is the same for all possible outputs of
GuessE−1

1 . Also GuessE−1
1 outputs uniformly. Hence, the distribution of LE is also

uniform. The result follows, because joint probability distribution of two uniform
and independent distribution is also uniform.

AdvD′i+1 is nothing but sum of half of the probability differences of (LE , SE , TE)
and (LP , SP , TP) at all points. Instead of considering all the points we can only
consider the points where the probability corresponding to (LP , SP , TP) is bigger.
Now let us calculate the probability differences. For j = 0, · · · , i if (L, S, T) ∈
(Y \BL)× ((Sj ×Y) \OPST) we have,

Pr[(LE , SE , TE) = (L, S, T)]− Pr[(LP , SP , TP) = (L, S, T)]

= 1
|Y| − i1

× 1
|Y| − i2

× 1
|Y| − j −

1
|Y| − i1

× 1
|Y|2 − i2|Y| − i+

∑
j′ j
′|BS ∩ Sj′ |

=
j(|Y| − i2)− i+

∑
j′ j
′|BS ∩ Sj′ |

(|Y| − i1)(|Y| − i2)(|Y| − j)(|Y|2 − i2|Y| − i+
∑
j′ j
′|BS ∩ Sj′ |)

• As, i ≤ |Y|/2 and i1 ≤ i the expression above is bigger than zero for j ≥ 1.

• Also,
∑
j′ j
′|BS∩Sj′ | ≤

∑
j′ j
′|Sj′ | ≤ i. Hence the expression above is negative

for j = 0.

So, we can only consider j = 0, for calculating AdvD′i+1.

AdvD′i+1 ≤
(|Y| − i1)(|Y| − |S|)|Y| × i

(|Y| − i1)(|Y| − i2)|Y|(|Y|2 − i2|Y| − i+
∑
j′ j
′|BS ∩ Sj′ |)

≤ i

|Y|2 − i|Y| − i (As, i2 = |BS | ≤ |S| and i2 ≤ i)

≤ 2i
|Y|2 (As, i ≤ |Y|/2− 1)

Theorem 4.7

We prove the result when the query sequence is of Type I. For Type III query
sequence the result follows because of symmetry. Let (L,R) be the input to the
Type I query sequence. Note, we can not have (L,R) = (Lj , Rj) for some j ∈
[1, i], because then E1(R,L) becomes duplicate or trivial query. (XE , SE , TE) and
(XP , SP , TP) be the random variables corresponding to the output tuple depending
on whether D′ is interacting with (Ψ3, E) or (P,S) respectively.

As before, BX is the set of values for which E−1
1 (R, .) is already defined in

history. Let us assume R ∈ Ri1 . We have

|BX | = i1 and BX ⊆ X.

84
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

We also partition the sets Sj ’s as follows. For j = 0, · · · , i,

Sj = Sj0 ∪ Sj1 ∪ · · · ∪ Sjmin(i1,j),

such that s ∈ Sjj′ if and only if there are exactly j′ many x ∈ BX for which E−1
3 (s, x)

is defined in history. |Sjj′ | > 0 actually implies,

i1 + j − j′ ≤ i.

OPXS be the set of (Xj , Sj) tuples present in history. We have,

|OPXS | = i.

OPST is defined as before. Let, us denote |Xk ∩BX | as rk. Note,

i∑
k=1

rk = |BX | = i1 and
i∑

k=1
krk ≥ i1.

Lemma 4.11. If R ∈ Ri1, then for k = 0, · · · , i and j = 0, · · · , i we have

Pr[(XE , SE , TE) = (X,S, T)] = 1
|Y| − i1

× 1
|Y| − k

× 1
|Y| − j

,

when (X,S, T) ∈ ((Xk \BX)× Sj ×Y) \ ((OPXS ×Y) ∪ (Y×OPST)).

Lemma 4.12. If R ∈ Ri1, then for j = 0, · · · , i and j′ = 0, · · · ,min(i1, j) we have

Pr[(XP , SP , TP) = (X,S, T)] = 1
|Y| − i1 − j + j′

× 1
|Y|2 − i ,

when (X,S, T) ∈ ((Y \BX)× Sjj′ ×Y) \ ((OPXS ×Y) ∪ (Y×OPST)).

Proof. For a Type I query sequence the simulator response is decided by simulators
behavior on E1(R,L) query. (S, T) values return by the simulator is actually direct
output of P . Hence, the distribution of (SE , TE) is independent of internal random
choices of the simulator. If we fix S then the distribution of XE is actually uniform
over the values for which E−1

1 (R, .) and E3(S, .) is not defined. (Note, we can
actually drop the ConflictE2 call inside Check(L,R,X) function when it is being
called from E1).

Note, both (XE , SE , TE) and (XP , SP , TP) has non-zero probabilities over same
set of points (this is a consequence of our simulator being always consistent to P ,
and never aborting), although they are not the same. AdvD′i+1 is nothing but half
of sum of the probability differences of the two distributions over all points. The
distribution of (XE , SE , T) does not depend on j′, where as the distribution of
(XP , SP , TP) does not depend on k. To give an upper bound for the sum of
probability differences we divide the total probability space in four parts. Then, we
give an upper bound for each part separately.

4.9 Seq-Indifferentiability Beyond the Birthday Barrier for the Construction of
Chapter 3 85

1. ∆00 is the sum of probability differences for the points, where j = 0 and k = 0.
Formally,

∆00 =
∑

(X,S,T)∈
(Y\X)×(Y\S)×Y

∣∣Pr[(XE , SE , TE) = (X,S, T)]

− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

2. ∆01 is the sum of probability differences for the points where, j = 0 and k ≥ 1.
Formally,

∆01 =
i∑

k=1

∑
(X,S,T)∈

(Xk\BX)×(Y\S)×Y

∣∣Pr[(XE , SE , TE) = (X,S, T)]

− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

3. ∆10 is the sum of probability differences for the points where, j ≥ 1 and k = 0.
Formally,

∆01 =
i∑

j=1

min(i1,j)∑
j′=0

∑
(X,S,T)∈

(Y\X)×((Sj

j′×Y)\OPST)

∣∣Pr[(XE , SE , TE) = (X,S, T)]

− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

4. ∆11 is the sum of probability differences for the points where, j ≥ 1 and k ≥ 1.
Formally,

∆11 =
i∑

k=1

i∑
j=1

min(i1,j)∑
j′=0

∑
(X,S,T)∈

((Xk\BX)×Sj

j′×Y)
\((OPXS×Y)∪(Y×OPST))

∣∣Pr[(XE , SE , TE) = (X,S, T)]

− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

Below, we state the upper bounds for ∆ij ’s. In section 4.9.2 we give a detailed
analysis.

1. ∆00 ≤ 2i
|Y|2

2. ∆01 ≤ 4i
|Y|2

3. ∆10 ≤ 4i
|Y|2 + 10i2

|Y|3

4. ∆11 ≤ 40i2
|Y|3 + 8i3

|Y|4

86
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Hence,

AdvD′i+1 = 1
2(∆00 + ∆01 + ∆10 + ∆11)

≤ 5i
|Y|2 + 25i2

|Y|3 + 4i3

|Y|4

4.9.2 Upper bound for ∆ij’s

Upper bound for ∆00

If (X,S, T) ∈ (Y \X)× (Y \ S)×Y, we have

∣∣Pr[(XE , SE , TE) = (X,S, T)]− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y|2 −

1
|Y| − i1

× 1
|Y|2 − i

∣∣ = i

|Y|2(|Y| − i1)(|Y|2 − i) .

Hence,

∆00 = (|Y| − |X|)(|Y| − |S|)|Y| × i
|Y|2(|Y| − i1)(|Y|2 − i)

= i

|Y|2 − i ×
|Y| − |S|
|Y| × |Y| − |X|

|Y| − i1

≤ i

|Y|2 − i (As, i1 = |BX | ≤ |X|)

≤ 2i
|Y|2

Upper bound for ∆01

If (X,S, T) ∈ (Xk \BX)× (Y \ S)×Y, we have

∣∣Pr[(XE , SE , TE) = (X,S, T)]− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y| − k ×

1
|Y| −

1
|Y| − i1

× 1
|Y|2 − i

∣∣
= k|Y| − i
|Y|(|Y| − i1)(|Y| − k)(|Y|2 − i) .

Observe,

|(Xk \BX)× (Y \ S)×Y| = (|Xk| − rk)(|Y| − |S|)|Y|.

4.9 Seq-Indifferentiability Beyond the Birthday Barrier for the Construction of
Chapter 3 87

Hence,

∆01 =
i∑

k=1

(|Xk| − rk)(|Y| − |S|)|Y|(k|Y| − i)
|Y|(|Y| − i1)(|Y| − k)(|Y|2 − i)

≤ (|Y| − |S|)
(|Y| − i1)(|Y| − i)(|Y|2 − i) ×

i∑
k=1

(|Xk| − rk)(k|Y| − i) (As, k ≤ i)

≤ i(|Y| − |X|)(|Y| − |S|))
(|Y| − i1)(|Y| − i)(|Y|2 − i)

(As,
i∑

k=1
k|Xk| = i,

i∑
k=1
|Xk| = |X|,

i∑
k=1

rk = i1,
i∑

k=1
krk ≥ i1 and |Y| ≥ i)

≤ i|Y|
(|Y| − i)(|Y|2 − i) (As, i1 ≤ |X|)

≤ 4i
|Y|2 (As, i ≤ |Y|/2)

Upper bound for ∆10

If (X,S, T) ∈ (Y \X)× ((Sjj′ ×Y) \OPST), we have

∣∣Pr[(XE , SE , TE) = (X,S, T)]− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y| ×

1
|Y| − j −

1
|Y| − i1 − j + j′

× 1
|Y|2 − i

∣∣
=
∣∣ j′|Y|2 − (i1j + i)|Y|+ i(i1 + j − j′)
|Y|(|Y| − i1)(|Y| − j)(|Y| − i1 − j + j′)(|Y|2 − i)

∣∣
≤ j′|Y|2 + (i1j + i)|Y|+ i(i1 + j − j′)
|Y|(|Y| − i1)(|Y| − j)(|Y| − i)(|Y|2 − i) (As, j′ ≤ min(i1, j) and i1 + j − j′ ≤ i).

Also,

|(Y \X)× ((Sjj′ ×Y) \OPST)| = (|Y| − |X|)|Sjj′ |(|Y| − j).

88
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Hence,

∆10 ≤
i∑

j=1

min(i1,j)∑
j′=0

(|Y| − |X|)|Sjj′ |(j′|Y|2 + (i1j + i)|Y|+ i(i1 + j − j′))
|Y|(|Y| − i1)(|Y| − i)(|Y|2 − i)

≤
i∑

j=1

(|Y| − |X|)(j|Sj ||Y|2 + (i1j|Sj |+ i|Sj |)|Y|+ (ii1 + j)|Sj |)
|Y|(|Y| − i1)(|Y| − i)(|Y|2 − i)

(As, j′ ≤ j and
min(j,i1)∑
j′=0

|Sjj′ | = |S
j |)

≤ i|Y|2 + (i1 + |S|)i|Y|+ i(i1|S|+ 1)
|Y|(|Y| − i)(|Y|2 − i) (As,

i∑
j=1
|Sj | = |S|,

i∑
j=1

j|Sj | = i and i1 ≤ |X|)

≤ i|Y|2 + 2i2|Y|+ (i3 + i2)
|Y|(|Y| − i)(|Y|2 − i) (As, i1 ≤ i and |S| ≤ i)

≤ 4i
|Y|2 + 10i2

|Y|3 (As, i ≤ |Y|/2− 1)

Upper bound for ∆11

If (X,S, T) ∈ ((Y \BX)× Sjj′ ×Y) \ ((OPXS ×Y) ∪ (Y×OPST)), we have

∣∣Pr[(XE , SE , TE) = (X,S, T)]− Pr[(XP , SP , TP) = (X,S, T)]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y| − k ×

1
|Y| − j −

1
|Y| − i1 − j + j′

× 1
|Y|2 − i

∣∣
=
∣∣(k + j′)|Y|2 − (i+ i1k + kj + i1j)|Y|+ (ii1 + ij − ij′ + i1kj)

(|Y| − i1)(|Y| − k)(|Y| − j)(|Y| − i1 − j + j′)(|Y|2 − i)
∣∣

≤ (k + j′)|Y|2 + (i+ i1k + kj + i1j)|Y|+ (ii1 + ij − ij′ + i1kj)
(|Y| − i1)(|Y| − k)(|Y| − j)(|Y| − i)(|Y|2 − i)

(As, j′ ≤ min(i1, j) and i1 + j − j′ ≤ i).

Also, note

∣∣((Xk \BX)× Sjj′ ×Y) \ ((OPXS ×Y) ∪ (Y×OPST))
∣∣ ≤ ∣∣((Xk \BX)× Sjj′ ×Y) \ (Y×OPST)

∣∣
= (|Xk| − rk)|Sjj′ |(|Y| − j).

4.10 Conclusion 89

Hence,

∆11 ≤
i∑

k=1

i∑
j=1

min(i1,j)∑
j′=0

(|Xk| − rk)|Sjj′ |(|Y| − j)

× (k + j′)|Y|2 + (i+ i1k + kj + i1j)|Y|+ (ii1 + ij − ij′ + i1kj)
(|Y| − i1)(|Y| − k)(|Y| − j)(|Y| − i)(|Y|2 − i)

≤
i∑

k=1

i∑
j=1

(|Xk| − rk)×
(k|Sj |+ j|Sj |)|Y|2 + (i+ i1k + kj + i1j)|Sj ||Y|+ (ii1 + ij + i1kj)|Sj |

(|Y| − i1)(|Y| − k)(|Y| − i)(|Y|2 − i)

(As, j′ ≤ j and
min(i1,j)∑
j′=0

|Sjj′ | = |S
j |)

=
i∑

k=1
(|Xk| − rk)×

(k|S|+ i)|Y|2 + (i|S|+ i1k|S|+ ki+ i1i)|Y|+ (ii1|S|+ i2 + ii1k)
(|Y| − i1)(|Y| − i)2(|Y|2 − i)

(As, k ≤ i,
i∑

j=1
|Sj | = |S| and

i∑
j=1

j|Sj | = i)

≤ i(|S|+ |X|)|Y|2 + (i|X||S|+ i2 + ii1|X|)|Y|+ ii1|S||X|+ i2|X|
(|Y| − i1)(|Y| − i)2(|Y|2 − i)

(As,
i∑

k=1
|Xk| = |X| and

i∑
k=1

k|Xk| = i)

≤ 2i2|Y|2 + (2i3 + i2)|Y|+ (i4 + i3)
(|Y| − i)3(|Y|2 − i) (As, |S| ≤ i, |X| ≤ i and i1 ≤ i)

≤ 40i2

|Y|3 + 8i3

|Y|4 (As, i ≤ |Y|/2− 1)

4.10 Conclusion
We have shown, the 6-round Feistel construction with random round functions is
publicly indifferentiable from a random invertible permutation. In general indiffer-
entiability model the best known result is 14-rounds [HKT11]. We introduce a new
notion of indifferentiability called sequential indifferentiability, which is a concep-
tually simpler version of public indifferentiability. However, these two notions are
equivalent for stateless ideal primitives. We have also shown sequential indifferen-
tiability implies correlation intractability. This also rules out a wide class of attacks
(which utilizes evasive relations) against the 6-round Feistel construction in general
indifferentiability model. However, whether the 6-round Feistel construction is in-
differentiable from an invertible random permutation or not; still remains an open
problem.

90
On the Public Indifferentiability and Correlation Intractability of the 6-Round

Feistel Construction

Chapter 5

PSS is Secure against Random
Fault Attacks

A fault attack consists in inducing hardware malfunctions in order to recover secrets
from electronic devices. One of the most famous fault attack is Bellcore’s attack
against RSA with CRT; it consists in inducing a fault modulo p but not modulo
q at signature generation step; then by taking a gcd the attacker can recover the
factorization of N = pq. The Bellcore attack applies to any encoding function that
is deterministic, for example FDH. Recently, the attack was extended to randomized
encodings based on the iso/iec 9796-2 signature standard. Extending the attack to
other randomized encodings remains an open problem. In this chapter, we show that
the Bellcore attack cannot be applied to the PSS encoding; namely we show that
PSS is provably secure against random fault attacks in the random oracle model,
assuming that inverting RSA is hard. This is a joint work with Jean-Sébastien
Coron [CM09].

Contents
5.1 Introduction . 92

5.2 Security Model . 93

5.2.1 Why Random Faults ? . 95

5.3 PSS is Secure against Random Fault Attacks 96

5.3.1 The PSS Scheme . 96

5.3.2 Security Proof . 97

5.4 PSS-R is Secure against Fault Attacks 102

5.4.1 The PSS-R Scheme . 103

5.4.2 Security Proof . 104

5.5 Conclusion . 104

92 PSS is Secure against Random Fault Attacks

5.1 Introduction

rsa [RSA78] is still the most widely used signature scheme in practical applications.
To sign a message m with rsa, the signer first applies an encoding function µ to m,
and then computes the signature σ = µ(m)d mod N . The signature is verified by
checking that σe = µ(m) mod N . For efficiency reasons RSA signatures are often
computed using the Chinese Remainder Theorem (crt); in this case the signature
is first computed modulo p and q separately:

σp = md mod p , σq = md mod q

and then σp and σq are combined by CRT to form the signature σ.
Boneh, DeMillo and Lipton showed that rsa signatures computed with CRT

can be vulnerable to fault attacks [BDL97, BDL01]. If the attacker can induce a
fault when σq is computed while keeping the computation of σp correct, one obtains:

σp = md mod p , σq 6= md mod q

and the resulting faulty signature σ satisfies

σe = m mod p , σe 6= m mod q .

Therefore, given one faulty signature σ, the attacker can recover the factorization of
N by computing gcd(σe −m mod N,N) = p. This attack actually applies to any
deterministic rsa encoding, e.g. Full Domain Hash (fdh) [BR96] with σ = H(m)d
mod N .

More generally, the attack applies to any probabilistic scheme where the random
used to generate the signature is sent along with the signature, e.g. as in the
Probabilistic Full Domain Hash (Coron02) encoding [Cor02] where the signature
is σ‖r with σ = H(m ‖ r)d mod N . In that case, given the faulty value of σ and
knowing r, the attacker can still factor N by computing gcd(σe − H(m ‖ r) mod
N,N) = p.

However, if the random r is not given to the attacker along with the signature
σ then the Bellcore attack is thwarted. This is the case for signatures of the form
σ = µ(m, r)d mod N where the random r is only recovered when verifying the
signature, as in pss [BR96]. To recover r one needs a correct signature; from
a faulty signature, the attacker cannot retrieve r nor infer µ(m, r) in order to
compute gcd(σe − µ(m, r) mod N,N) = p, unless r is short enough to be guessed
by exhaustive search. Note that obtaining another correct signature for m would
not help the attacker since with high probability a different random r′ would be
used to generate this signature.

Recently, it was shown how to extend Bellcore’s attack to a large class of ran-
domized rsa encoding schemes [CJK+09]. The extended attack was illustrated with
the iso/iec 9796-2 standard [ISO02]. iso/iec 9796-2 is originally a deterministic

5.2 Security Model 93

encoding scheme but often used in combination with message randomization, as in
the emv standard [EMV08]. The iso/iec 9796-2 encoded message has the form

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m = m[1] ‖m[2] is split into two parts. The authors of [CJK+09] showed
that if the randomness introduced into m[1] is not too large (e.g. less than 160
bits for a 2048-bit rsa modulus), then a single faulty signature allows to factor N
as in the original Bellcore attack. The attack is based on Coppersmith’s technique
for finding small roots of polynomial equations [Cop97], which is based on the LLL
algorithm [LLL82].

However, extending the attack to other randomized RSA signatures remains
an open problem. In particular, it is natural to ask whether the Bellcore attack
could apply to PSS [BR96], the most popular RSA-based signature scheme. In this
chapter, we show that the Bellcore attack cannot be extended to PSS; namely we
show that PSS is provably secure against random fault attacks in the random oracle
model, assuming that inverting RSA is hard.

More precisely, we consider an extended model of security in which the attacker,
in addition to the regular signing oracle, has access to a faulty signature oracle; that
is, the attacker can request faulty signatures either modulo p or modulo q. For a
faulty signature modulo q, the signer first generates the correct value modulo p:

σp = µ(m, r)d mod p

but generates a random σq modulo q. With CRT the signer then computes σ′ such
that σ′ = σp mod p and σ′ = σq mod q, and returns the faulty signature σ′ to
the adversary. Our result is that PSS is still secure under this extended notion of
security, in the random oracle model, assuming that inverting RSA is hard.

5.2 Security Model
We recall the definition of a signature scheme.

Definition 5.1 (signature scheme). A signature scheme (Gen, Sign, Verify) is de-
fined as follows:

- The key generation algorithm Gen is a probabilistic algorithm which given 1k,
outputs a pair of matching public and private keys, (pk, sk).

- The signing algorithm Sign takes the message M to be signed, the public key
pk and the private key sk, and returns a signature x = Signsk(M). The signing
algorithm may be probabilistic.

- The verification algorithm Verify takes a message M , a candidate signature
x′ and pk. It returns a bit Verifypk(M,x′), equal to one if the signature is accepted,
and zero otherwise. We require that if x← Signsk(M), then Verifypk(M,x) = 1.

In the existential unforgeability under an adaptive chosen message attack sce-
nario, the forger can dynamically obtain signatures of messages of his choice and
attempts to output a valid forgery. A valid forgery is a message/signature pair

94 PSS is Secure against Random Fault Attacks

(M,x) such that Verifypk(M,x) = 1 whereas the signature of M was never re-
quested by the forger.

In the following, we consider an extended model of security in which the attacker,
in addition to the regular signing oracle, has access to a faulty signature oracle; that
is, the attacker can request faulty signatures either modulo p or modulo q. For a
faulty signature modulo q, the signer first generates the correct value modulo p:

σp = µ(m, r)d mod p

and generates a random σq modulo q. With CRT the signer then computes σ′ such
that σ′ = σp mod p and σ′ = σq mod q, and returns the faulty signature σ′ to the
adversary. This is actually equivalent to first computing a correct signature σ:

σ = µ(m, r)d mod N

and then generating a random u modulo q and computing the faulty signature:

σ′ = σ + u · p mod N

Formally, we consider the following scenario between a challenger and an at-
tacker. Our scenario applies to any RSA based signature scheme in which a sig-
nature σ is computed as σ = µ(m, r)d mod N for some (randomized) encoding
function µ(m, r).

Setup: the challenger generates an RSA modulus N = p · q, a public exponent e
such that gcd(e, φ(N)) = 1 and a private exponent d such that e ·d = 1 mod φ(N).
The challenger sends (N, e) to the adversary.
Queries: the adversary can make regular signature queries to the challenger. In
this case, given a message m, the challenger generates a random r and output the
(correct) signature:

σ = µ(m, r)d mod N

Additionally, the attacker can make faulty signature queries. For every such query,
the attacker specifies whether the fault should be modulo p or modulo q. For a
faulty signature modulo q, the challenger first generates a random r and computes
the correct signature:

σ = µ(m, r)d mod N

Then the challenger generates a random u modulo q, and computes:

σ′ = σ + u · p mod N

and sends σ′ to the attacker. The challenger proceeds similarly if a faulty signature
modulo p is requested.
Forgery: eventually the attacker must output a forgery, that is a message signature
pair (m,x) such that Verifypk(m,x) = 1 whereas the signature of m was never
requested by the forger, neither as a regular signature query nor in a faulty signature
query.

5.2 Security Model 95

This completes the description of the attack scenario. As usual, we say that
a signature scheme is (t, ε)-secure if no adversary running in time t can output a
forgery with probability better than ε.

The PSS scheme was proven secure in the random oracle model [BR93], and
our security proof with faulty signatures is also in the random oracle model. It is
well known that a security proof in the random oracle model does not necessarily
imply that a scheme is secure in the real world (see [CGH04]). Although it is always
better to have a security proof in the standard model, we think that it is still better
to have a proof in the random oracle model than no proof at all.

5.2.1 Why Random Faults ?

In our security model we have assumed that when a faulty signature σ′ is obtained,
it has the uniform distribution modulo p (or modulo q). This could be seen as
a very strong assumption; namely in practice the faults might have a completely
non-random distribution. Consider for example a fault attack inducing the values
of the registers to be set to zero. This gives σp = 0 and recovering p is then
straightforward: simply compute gcd(σ′, N) = p. To prevent from this attack we
could assume that when a fault occurs the value σp still has enough min-entropy.

In the following we argue that 1) the random fault assumption is almost unavoid-
able if we want to obtain a security proof and 2) such assumption might actually
be reasonable in practice.

Assume that a fault gives a random σp mod p but with the k most significant
bits set to 0, for some small integer k. That is, the attacker can obtain a list of
faulty signatures σ′i such that the corresponding σ′i,p = σ′i mod p satisfy:

0 ≤ σ′i,p <
p

2k (5.1)

for all 1 ≤ i ≤ n, where n is the number of faulty signatures. We show how
to recover p, using an attack similar to [NS98]. With LLL [LLL82], the attacker
computes a short vector (u1, . . . , un) such that:

n∑
i=1

ui · σ′i = 0 mod N

This implies:
n∑
i=1

ui · σ′i,p = 0 mod p

Since from (5.1) the σ′i,p are small modulo p, if the ui’s are small enough, then the
equality will hold not only modulo p but also over Z:

n∑
i=1

ui · σ′i,p = 0

This gives a vector (u1, . . . , un) that is orthogonal in Z to the unknown vector
(σ′1,p, . . . σ′n,p). It is shown in [NS98] that by generating sufficiently many such
vectors, one can recover the unknown vector (σ′1,p, . . . σ′n,p) and eventually p.

96 PSS is Secure against Random Fault Attacks

Note that this attack applies to any RSA-based signature scheme with CRT,
not only to PSS. This attack shows it is not enough for σp to have min-entropy,
as only a few bits of entropy loss compared to the uniform distribution enable to
recover p. Therefore, if we want to obtain a security proof, it seems necessary to
assume that σp is uniformly distributed modulo p.

Actually the random fault assumption might be reasonable in practice. Namely
to prevent probing attacks, the data being transmitted in the memory bus inside
the micro-processor is usually encrypted. Therefore, the content of a register after
a fault attack could still be some encrypted value, so it can be reasonable to model
this register value as uniformly random.

5.3 PSS is Secure against Random Fault Attacks

5.3.1 The PSS Scheme

We recall the definition of the PSS scheme [BR96]. The scheme uses three hash
functions h : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 → {0, 1}k0 and g2 : {0, 1}k1 →
{0, 1}k−k0−k1−1, where k, k0 and k1 are parameters.

m r

ω

h

0 r∗ g2(ω)

g1(ω)
g1

g2

Figure 5.1: PSS: the components of the image y = 0‖ω‖r∗‖g2(ω) are darkened. The
signature of m is yd mod N

Key Generation: generate a k-bit RSA modulus N = pq, and a random exponent
e ∈ Z∗φ(N). Generate d such that e · d = 1 mod φ(N). The public-key is (N, e); the
private key is (N, d).
Signature generation: given a message m, do the following:

1. r ← {0, 1}k0

2. ω ← h(m‖r)

3. r∗ ← g1(ω)⊕ r

4. y ← 0‖ω‖r∗‖g2(ω)

5.3 PSS is Secure against Random Fault Attacks 97

5. Return σ = yd mod N

Signature Verification: given a message m and a signature σ, do the following:

1. Let y = σe mod N

2. Parse y as 0‖ω‖r∗‖γ. If the parsing fails return 0.

3. r ← r∗ ⊕ g1(ω)

4. If h(m‖r) = ω and g2(ω) = γ return 1.

5. else return 0.

5.3.2 Security Proof

We first give an intuition of the proof. We denote by µ(m, r) the PSS encoding
scheme, that is µ(m, r) = 0‖ω‖r∗‖g2(ω) where ω = h(m‖r) and r∗ = g1(ω)⊕ r.

We receive as input a challenge (N, e, η) and we must output ηd mod N . In the
original PSS security proof [BR96], when receiving a signature query, the simulator
generates a random α modulo N such that αe mod N can be written as 0‖ω‖s‖t.
The simulator generates a random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) =
s⊕r and g2(ω) = t. Therefore we have that µ(m, r) = (αe mod N). The simulator
can then return α as a signature for m. When receiving a hash query for h(m, r),
the simulator generates a random α modulo N such that η · αe can be written as
0‖ω‖s‖t; it then proceeds as previously. In this case we have µ(m, r) = (η · αe
mod N). Therefore a forgery for µ(m, r) enables to compute ηd mod N .

One can see that if there is no collision on the randoms r used for signature gen-
eration, and no collision on the values ω, then the simulation is perfect. Then given a
forgery σ′ for some messagem′, with high probability we have that µ(m′, r′) = (η·αe
mod N) for some known α. Therefore from σ′ = µ(m′, r′)d mod N one can com-
pute ηd mod N as required and solve the RSA challenge.

In our extended model of security, we must additionally simulate a faulty signa-
ture oracle. To do this, one could first generate as previously a random α modulo N
such that αe mod N can be written as 0‖ω‖s‖t. The simulator generates a random
r of k0 bits. Then it lets h(M, r) = ω, g1(ω) = s ⊕ r and g2(ω) = t, so that again
µ(m, r) = (αe mod N). Then instead of returning the correct signature α, the
simulator could generate a random u modulo q, and output the faulty signature:

α′ = α+ u · p mod N (5.2)

Obviously our simulator cannot do this, because it does not know the prime
factors p and q. Instead we show that the distribution of α′ is statistically close to
uniform in ZN ; therefore, the simulator can simply return a random α′ ∈ ZN .

Since RSA is a permutation, instead of considering the distribution of α′, one
can consider the distribution of y′ = α′e mod N . From (5.2) we have:

y′ = y + v · p mod N

98 PSS is Secure against Random Fault Attacks

where v is uniformly distributed modulo q and y is uniformly distributed in [0, 2k−1[.
The following lemma shows that the distribution of y′ is statistically close to uniform
in ZN .
Lemma 5.1. Let N = pq be a k-bit modulus where p and q are k/2-bit, and let
y be a random integer such that 0 ≤ y < 2k−1. Let v be a random integer modulo
q. Then the distribution of y′ = y + v · p mod N is ε-statistically close to uniform
modulo N , with ε = 4

2k/2

Proof. We consider a fixed a ∈ ZN and we provide an estimate of Pr[y′ = a]. For
this we consider the solutions of the equation:

a ≡ y + v · p mod N (5.3)

We have that for every integer v ∈ [0, q), there exists a unique integer y ∈ [0, N)
which satisfies the above relation. However we are only interested in the y’s in the
range [0, 2k−1). We have that for each i ∈ [1, q], the pair:

(v = q − i, y = a+ ip mod N)

is a solution of (5.3) iff
a+ ip mod N < 2k−1 (5.4)

Depending on the choice of a, there are actually either b2k−1

p c or b
2k−1

p c + 1 many
i values which satisfy relation (5.4). Hence there are b2k−1

p c or b
2k−1

p c + 1 many
solutions to congruence (5.3) such that y < 2k−1. Since y and v are random integers
in the range [0, 2k−1) and [0, q) respectively, this gives:⌊

2k−1

p

⌋
· 1

2k−1 ·
1
q
≤ Pr[y′ = a] ≤

(⌊
2k−1

p

⌋
+ 1

)
· 1

2k−1 ·
1
q

We write b2k−1

p c = c, which gives p · c < 2k−1 < p · c+ p. We obtain:

Pr[y′ = a] ≥ c

2k−1q
= 1
N
· pc

2k−1 = 1
N
·
(

1− 2k−1 − pc
2k−1

)

>
1
N
·
(

1− p

2k−1

)
(as 2k−1 < pc+ p)

>
1
N
·
(

1− 2p
N

)
(as 2k−1 >

N

2)

=
(

1− 2
q

)
· 1
N

Similarly, we have:
Pr[y′ = a] ≤

(
1 + 2

q

)
· 1
N

This gives: (
1− 2

q

)
· 1
N
≤ Pr[y′ = a] ≤

(
1 + 2

q

)
· 1
N

for all a ∈ [0, N). This implies that the distribution of y′ is 4
2k/2 -statistically close

to uniform modulo N as q > 2k/2−1.

5.3 PSS is Secure against Random Fault Attacks 99

Lemma 5.1 shows that it is sufficient for our simulator to return a random α′

modulo N as the faulty signature. In other words, instead of first generating a
random y ∈ [0, 2k−1), then a random v modulo q, then y′ = y + v · p and finally
α′ = y′d mod N , the simulator can simply output a random α′ modulo N , and
such output will be statistically indistinguishable from a faulty signature.

However to this faulty signature α′ corresponds a correct signature α such that:

α = α′ − u · p mod N

where u is randomly distributed modulo q. Equivalently letting y′ = α′e mod N
there exists a corresponding value y with:

y = y′ − v · p mod N (5.5)

where v is randomly distributed modulo q such that y can be written as:

y = 0‖ω‖s‖t = µ(m, r)

This implicitly defines h(m, r) = ω, g1(ω) = s⊕ r and g2(ω) = t for the simulation
of random oracles h, g1 and g2.

Since our simulator does not know p, it cannot compute y in equation (5.5)
and therefore our simulator does not know the corresponding values of ω, s and t;
therefore our simulator cannot answer the corresponding h queries, g1 queries and
g2 queries if such queries are made by the attacker. Intuitively for h-queries it is
sufficient that the set of r values is exponentially large; for this the parameter k0
must be large enough. For g1 and g2 queries we must show that the adversary has a
negligible probability of querying ω. This is shown in the following lemma: we show
that given a faulty signature α′ (or equivalently y′ = α′e mod N) the distribution
of ω has enough variability, if the parameter k1 is sufficiently large. This implies
that ω does not need to be computed, and therefore the factorization of N is not
needed for our simulation.

Lemma 5.2. Let N = pq be a k-bit modulus where p and q are k/2-bit, and let y
be a random integer such that 0 ≤ y < 2k−1. Let v be a random integer modulo q,
and let y′ = y+v ·p mod N . Write y = 0‖ω‖x where ω is k1-bit and x is k−k1−1
bits. Given y′, for any ω′ of k1-bit we have:

Pr[ω = ω′|y′] ≤ 8
2min(k1,k/2)

Proof. We have that:

Pr[ω = ω′|y′] = #(y, v) pairs, s.t. y′ = y + v · p mod N and y = 0‖ω′‖x
#(y, v) pairs, s.t. y′ = y + v · p mod N and 0 ≤ y < 2k−1

For a fixed v, the value y mod N gets fixed by the relation y′ = y + v · p mod N .
Moreover at least b q2c of the possible v values give y mod N in the desired range
between 0 and 2k−1. Hence the denominator of the above fraction can be lower
bounded by b q2c.

100 PSS is Secure against Random Fault Attacks

We have that for a fixed y′, the value of y is fixed modulo p; hence for a fixed ω′
with y = 0‖ω′‖x, the value of x is also fixed modulo p. As x is k − k1 − 1-bit, over
Z there can be at most d2k−k1−1

p e many possible x values. Hence the numerator of
the above fraction can be upper bounded by d2k−k1−1

p e.
Hence we have,

Pr[ω = ω′|y′] ≤
d2k−k1−1

p e
b q2c

<
2k−k1−1

2k/2−1 + 1
2k/2−2 = 2k−k1−1 + 2k/2−1

2k−3 <
8

2min(k1,k/2)

Formally, we obtain the following theorem:

Theorem 5.1. Assume that no algorithm can invert RSA in time t′ with probability
better than ε′. Then the signature scheme PSS[k0, k1] is (t, qh, qg, qs, qfs, ε) secure,
where

t(k) = t′(k)− [qs(k) + qg(k) + qh(k) + 1] · k0 ·Θ(k3)
ε(k) = ε′(k) + (qs + qfs + 1) · (qs + qfs + qh) · 2−k0 + 8 · qg · qfs · 2−min(k1,k/2)

+ (qh + qs + qfs) · (qh + qg + qs + qfs + 1) · 2−k1

+ qh · qfs · 2−k0 + 4 · qfs · 2−k/2

Here the attacker can make at most qh, qg, qs, qfs number of h queries, g queries,
signature queries and fault signature queries respectively.

Proof. We use a simulator which behaves in exactly same way as in original PSS
security proof [BR96], in addition it answers fault queries with a uniformly random
integer modulo N . Now if the attacker is successful against our simulator then we
break the RSA challenge (N, e, η) as in the original paper.

We must show that any attacker which is successful against the original attack
scenario will be successful against our simulator. For that, we use a sequence of
games. We start with Game0, which is exactly the attack scenario, which requires
to know the factorization of N . Then we progressively modify the game, so that
eventually knowledge of the factorization of N is not needed anymore. We denote
by Si the event that the attacker succeeds in Gamei.
Game0: this is the attack scenario. We answer signature queries as specified in
the signature generation algorithm, using the private exponent d. We simulate the
faulty signature queries by first generating a correct signature σ and then computing
σ′ = σ + u · p mod N for a random u modulo q. In the following for simplicity we
only consider faulty signatures modulo q; faulty signatures modulo p are simulated
in exactly the same way.
Game1: we abort if there is a collision for ω at Step 2 of the signature generation
algorithm, or if the random r used during signature generation has already appeared
before. We call this event A1. More precisely event A1 happens if one of the
following is true:

5.3 PSS is Secure against Random Fault Attacks 101

• The random r used in a signature oracle or faulty signature oracle query
collides with either 1) the r used in a previous signature oracle or faulty
signature oracle query or 2) the r used in a previous h oracle query.

• The h function output in a signature oracle or faulty signature oracle query
collides with either 1) the h function outputs in previous signature oracle or
faulty signature oracle queries or 2) with a previous h oracle query output or
3) a previous g oracle query input.

• The h oracle query output collides with either 1) a h function output in
previous signature oracle or faulty signature oracle query or 2) a previous h
oracle query output or 3) a previous g oracle query input.

We obtain:

Pr[A1] ≤ (qs + qfs) · (qs + qfs + qh) · 2−k0 + (qh + qs + qfs) · (qh + qg + qs + qfs) · 2−k1

and:
|Pr[S1]− Pr[S0]| ≤ Pr[A1]

Game2: we construct a similar simulator as in the original PSS security proof [BR96];
however to deal with faulty signature queries we continue to use the factorization
of N .

The simulator receives as input a challenge η and must output ηd mod N .
When receiving a signature query, the simulator generates a random α modulo N
such that αe mod N can be written as 0‖ω‖s‖t. The simulator generates a random
r of k0 bits. Then it lets h(m, r) = ω, g1(ω) = s⊕ r and g2(ω) = t.

When receiving a hash query for h(m, r), the challenger generates a random
α modulo N such that η · αe mod N can be written as 0‖ω‖s‖t; it then defines
h(m, r) = ω, g1(ω) = s ⊕ r and g2(ω) = t as previously. The queries to g1 and g2
are simulated by returning a random value for every new input.

To simulate the faulty signature oracle, one first generates as above a random α
moduloN such that αe mod N can be written as 0‖ω‖s‖t. The simulator generates
a random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) = s⊕ r and g2(ω) = t. Then
instead of returning α, the simulator generates a random u modulo q, and outputs:

α′ = α+ u · p mod N (5.6)

In Game2 we abort as in Game1, and additionally in the following case: while
generating a random α modulo N such that αe mod N can be written as 0‖ω‖s‖t
during signature or faulty signature queries (and similarly for h(m, r) queries), we
stop after trying k0 + 1 times. This adds (qh + qs + qfs) · 2−k0 in the error term:

|Pr[S2]− Pr[S1]| ≤ (qh + qs + qfs) · 2−k0

Game3: we abort if the attacker makes a query for g(ω) where ω was used in a faulty
signature for message m and random r, while the attacker has not made a query to

102 PSS is Secure against Random Fault Attacks

h(m, r) before. We define this event as A3. As all the query answers are simulated
independently, from Lemma 5.2 this gives:

|Pr[S3]− Pr[S2]| ≤ Pr[A3] ≤ qg · qfs ·
8

2min(k1,k/2)

Game4: we abort if the attacker makes a query for h(m, r) where r was used to
generate a faulty signature with ω, while the attacker has not made a query before
to g(ω). In this case the attacker’s view is independent from r, which gives:

|Pr[S4]− Pr[S3]| ≤ qh · qfs · 2−k0

Game5: we abort if the attacker makes a query for h(m, r) where r was used to
generate a faulty signature, or if the attacker makes a query for g(ω) where ω was
used in a faulty signature. Game5 is the same as Game4 since for a faulty signature
m with random r and ω, either the attacker starts with a h(m, r) query or it starts
with a g(ω) query.

Pr[S5] = Pr[S4]

Game6: we change the way the faulty signature oracle is simulated. Instead of first
generating α and then α′ as in equation (5.6), we first generate a uniformly random
α′ and then a random u modulo q such that αe mod N can be written as 0‖ω‖s‖t.
From Lemma 5.1 we have:

|Pr[S6]− Pr[S5]| ≤ qfs ·
4

2k/2

Game7: since we do not answer the queries for h(m, r) where r was used to generate
a faulty signature, and the queries for g(ω) where ω was used in a faulty signature,
we do not need to compute ω. Therefore, we do not need to compute a random u
modulo q such that αe mod N can be written as 0‖ω‖s‖t. Therefore we do not
need to know the factorization of N anymore, and we have:

Pr[S7] = Pr[S6]

Finally, if the adversary outputs a forgery with probability at least ε in Game0,
then the adversary must output a forgery with probability at least ε − |Pr[S7] −
Pr[S0]| in Game7. As in the original PSS security proof, from this forgery we can
solve the RSA challenge with probability at least:

ε′ = ε− |Pr[S7]− Pr[S0]| − 2−k1

Combining the previous inequalities, we get (5.6).

5.4 PSS-R is Secure against Fault Attacks
In PSS-R or PSS with message recovery the goal is to save bandwidth such that
the message is recoverable from the signature; hence it is not necessary to send the
message separately.

5.4 PSS-R is Secure against Fault Attacks 103

5.4.1 The PSS-R Scheme

We recall the definition of the PSS-R scheme [BR96]. The scheme uses three hash
functions h : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 → {0, 1}k0 and g2 : {0, 1}k1 →
{0, 1}k−k0−k1−1, where k, k0 and k1 are the parameters.

m r

ω

h

0 r∗ M∗

g1(ω)
g1

g2(ω)

g2

Figure 5.2: PSS-R: Components of image y = 0‖ω‖r∗‖M∗ are darkened. The
signature of M is yd mod N

Key Generation: generate a k-bit RSA modulus N = pq, and a random exponent
e ∈ Z∗φ(N). Generate d such that e · d = 1 mod φ(N). The public-key is (N, e); the
private key is (N, d).
Signature generation: given a message m, do the following:

1. r ← {0, 1}k0

2. ω ← h(M‖r)

3. r∗ ← g1(ω)⊕ r

4. m∗ ← g2(ω)⊕m

5. y ← 0‖ω‖r∗‖m∗

6. Return σ = yd mod N

Message Recovery: given a signature σ, do the following:
1. Let y = σe mod N

2. Parse y as 0‖ω‖r∗‖m∗. If the parsing fails return Reject.

3. r ← r∗ ⊕ g1(ω)

4. m← m∗ ⊕ g2(ω)

104 PSS is Secure against Random Fault Attacks

5. If h(m‖r) = ω return m.

6. else return Reject.

5.4.2 Security Proof

Theorem 5.2. Assume that no algorithm can invert RSA in time t′ with probabil-
ity better than ε′. Then the signature scheme PSS-R[k0, k1] is (t, qh, qg, qs, qfs, ε)
secure, where:

t(k) = t′(k)− [qs(k) + qg(k) + qh(k) + 1] · k0 ·Θ(k3)
ε(k) = ε′(k) + (qs + qfs + 1) · (qs + qfs + qh) · 2−k0 + 8 · qg · qfs · 2−min(k1,k/2)

+ (qh + qs + qfs) · (qh + qg + qs + qfs + 1) · 2−k1

+ qh · qfs · 2−k0 + 4 · qfs · 2−k/2

Here the attacker can make at most qh, qg, qs, qfs number of h queries, g queries,
signature queries and fault signature queries respectively.

Proof. The proof of this theorem is very similar to that of Theorem 5.1 and hence
is omitted.

5.5 Conclusion
We obtain from the previous theorems that unless the attacker is making more fault
oracle queries than hash oracle queries, one gets the same security bound as in the
original PSS proof without fault oracle. We note that in practice fault queries are
usually more expensive than hash queries, since those hash queries can be made
offline when a concrete hash function is used.

In [Cor02] a better security bound was given for PSS (without fault oracle). It
was shown that the random size k0 could be taken as small as log2 qs, where qs is
the maximum number of signature queries; with qs = 230 this gives k0 = 30 bits.
However with a fault oracle one cannot take such a small k0, since in this case the
random r could be recovered by exhaustive search and the Bellcore attack would
still apply.

In summary, any parameters chosen according to the bounds in the original PSS
paper [BR96] give the same level of security against fault attacks. Taking k = 1024,
k0 = k1 = 128 as suggested by Bellare and Rogaway [BR96] would guarantee 64-bit
security. However, as present day adversaries are more powerful than before, one
might prefer k = 1024, k0 = k1 = 160 guaranteeing 80-bit security.

Chapter 6

On the Impossibility of
Instantiating PSS in the
Standard Model

In this chapter, we consider the problem of securely instantiating Probabilistic
Signature Scheme (PSS) in the standard model. PSS, proposed by Bellare and
Rogaway [BR96] is a widely deployed randomized signature scheme, provably se-
cure (unforgeable under adaptively chosen message attacks) in the Random Oracle
Model.
Our main result is a black-box impossibility result showing that one can not prove
unforgeability of PSS against chosen message attacks using blackbox techniques
even assuming existence of ideal trapdoor permutations (a strong abstraction of
trapdoor permutations which inherits all security properties of a random permu-
tation, introduced by Kiltz and Pietrzak in Eurocrypt 2009) or the lossy trapdoor
permutations [PW08]. Moreover, we show onewayness, the most common secu-
rity property of a trapdoor permutation does not suffice to prove even the weakest
security criteria, namely unforgeability under zero message attack. Our negative
results can easily be extended to any randomized signature scheme where one can
recover the random string from a valid signature. This is a joint work with Rishiraj
Bhattacharyya [BM11a].

Contents
6.1 Introduction . 106

6.1.1 Our Results . 106
6.1.2 Overview of our Technique 107
6.1.3 Previous Results . 108

6.2 Preliminaries . 109
6.2.1 Notations . 109
6.2.2 Trapdoor Permutations (TDPs) 109
6.2.3 Hard Games . 110
6.2.4 Ideal Trapdoor Permutations 110

106 On the Impossibility of Instantiating PSS in the Standard Model

6.2.5 Lossy Trapdoor Permutations(LTDPs) 111
6.3 Signature Schemes . 111

6.3.1 Security of a Signature Scheme 111
6.3.2 Probabilistic Signature Scheme(PSS) 111

6.4 No Blackbox Reduction from One way Trapdoor Per-
mutations . 113

6.5 No Blackbox Reduction from an Ideal Trapdoor Per-
mutation . 116

6.6 No Reduction from Lossy Trapdoor Permutations . . . 122
6.7 No Reduction from Hard Games with Inversion 124
6.8 Conclusion . 124

6.1 Introduction
Probabilistic Signature Scheme (PSS) is one of the most known and widely deployed
provably secure randomized signature schemes. It was designed by Bellare and
Rogaway [BR96] as a generic scheme based on a trapdoor permutation (like RSA).
In [BR96], Bellare and Rogaway showed the scheme is secure in Random Oracle
(RO) Model [BR93]. Coron improved the previous security bound in [Cor02]. In
Chapter 5, we showed PSS is secure even against fault attacks exploiting the Chinese
Remainder Theorem (CRT) implementation of RSA . However, all the previous
security proofs are valid only in RO model, where one assumes the existence of
ideal, truly random hash functions. Unfortunately truly random functions do not
exist and in practice, the “ideal” functions are instantiated with some efficient
hash functions. Hence it is important that the proofs are valid while replacing
random oracles by a standard hash functions. Otherwise such proofs merely provide
heuristic evidence that breaking the scheme may be hard (or there is no generic
attack against the scheme).

A number of papers [CGH04, DOP05, GK03, KP09], starting from famous re-
sults of Canetti et. al. [CGH04], showed that there are schemes secure in the
Random Oracle model, which are uninstantiable in the standard model. Naturally,
these results raise concerns about the soundness of the schemes proven secure in
the random oracle model. Particularly for widely deployed scheme like PSS, it is
especially important to have an secure instantiation by a standard, efficiently com-
putable hash function so that we do not build our technology in vacuum. In this
chapter, we ask essentially this particular question about PSS: Whether it is possi-
ble, to securely instantiate PSS based on reasonable assumptions to the underlying
trapdoor permutation.

6.1.1 Our Results

Our main result is a general negative result to the above question. Roughly, we
extend all the negative results by Dodis et. al. [DOP05] for Full Domain Hash
(FDH) to PSS. Specifically, we show the following

6.1 Introduction 107

• There is no instantiation of PSS such that, unforgeability under chosen mes-
sage attack can be reduced to any security property of a random permuta-
tion using black-box reduction techniques. As a random permutation satisfies
almost all reasonable security notions, our result covers many of the stan-
dard security notions, like inverting trapdoor permutation on a random point
(one-way), finding some bits of pre-image of a random point (partial domain
one-wayness), finding correlated inputs etc. Our result is perfectly valid even
if the hash functions used in PSS can query the trapdoor permutation and
digests are arbitrarily related to the responses.

• We also rule out any black box reduction from recently proposed Lossy Trap-
door Permutations [PW08]. In Crypto 2010, Kiltz et. al. [KOS10] has proven
IND-CPA security of OAEP based on Lossy Trapdoor Permutation. Hence it
is important to analyze whether positive result could be possible for PSS.

• We also show that even the weakest security criteria , namely unforgeability
under no message attack cannot be black-box reduced to the one-wayness of
the trapdoor permutation if the randomness space in PSS is “super-polynomial”
in security parameter.

• All our results can easily be extended to the scenario when the adversary can
invert some points of his choice (with some restrictions) for a fixed bounded
number of times.

We would like to mention that our results does not completely rule out the
possibility of instantiating PSS in the standard model. A “whitebox” reduction,
using the code of the adversary, may still exist. On the other hand, it may be
possible to show a reduction from other cryptographic functions like homomorphic
encryption. Still, we believe our result is important from theoretical point of view
as it shows PSS requires special property of underlying trapdoor permutation as
opposed to “Only randomness of hash is sufficient” notion of the random oracle
model.

6.1.2 Overview of our Technique

We use the technique of two oracles due to Hsiao and Reyzin [HR04b] for our
separation results. We construct two oracles T and G such that T implements a
ideal trapdoor permutation and G can be used to forge the PSS scheme. However,
G does not help the attacker to break any security property of the ideal trapdoor
permutation. Informally, this ensures that a black-box security proof cannot exist
as any such proof should be valid against our T and G.

On a very high level our technique can be seen as an extension of the technique
of Dodis et. al. [DOP05] to rule out black box reduction of FDH. Separation from
a random permutation is achieved in two steps. As the first step, we instantiate
T by permutation chosen uniformly at random from the set of exponentially many
permutations. Intuitively, G, the main forger oracle, should output a forgery after
checking whether the adversary truly has access to a signer by sending polynomially

108 On the Impossibility of Instantiating PSS in the Standard Model

many challenge messages. However the reduction could design the underlying hash
function in such a way, so that the digests of the messages either collide with each
other (hence reducing the number of points on which inversion is needed) or the
digest is the result one of the evaluation queries made to the trapdoor permuta-
tion (hence the reduction can get the signature from the corresponding query by
evaluating the hash function). For this reason we define G to output the forgery
only if the adversary can produce distinct signatures, which were not a query to
the trapdoor permutation during the computation of digests, for all the challenge
messages.

In the second step we show that a reduction algorithm (which does not have
access to inversion oracle) can not produce valid, signature meeting both the con-
ditions with non-negligible probability. Hence to win any hard game, G is of no use
to the adversary. However, we construct an efficient adversary with an access to a
valid sign oracle (available in an unforgeability game) that can either find a forgery
on its own or can construct signatures satisfying all the conditions of G. We stress
that the efficient algorithm in [DOP05], which pre-computes all the hash values
to check for the conditions, does not work efficiently when the signature scheme is
randomized. Specifically, when the random strings are of super-logarithmic length,
it is no longer possible for a polynomial time algorithm to compute all possible hash
values for even a single message. It might very well happen that the computed di-
gests meet the conditions but the digests on which signer generated the signature
do not meet the condition. To solve this problem we use an elegant adaptive “eval-
uate on the fly” technique where we sample polynomially many random strings and
check for the conditions. If the conditions are satisfied for the sampled digests, we
repeatedly query the signer with fresh random coins for multiple signatures of same
message. We show that, with probability exponentially close to 1, one gets either
a set of valid signatures maintaining the conditions from the signer or could find a
forgery during the sampling stage.

6.1.3 Previous Results

A rich body of work [GT00, GKM+00, GMR01, GK03, IR89, Sim98] on blackbox
separation exists in the literature starting from the seminal work of Impagliazzo and
Rudich [IR89]. Regarding the separation of random oracle from the standard model,
the first result was due to Canetti, Goldreich and Halevi [CGH98, CGH04] who
showed an artificial albeit valid signature scheme that can not be securely instanti-
ated by standard hash functions. Many such results [DOP05, FS10, GK03, KP09]
were subsequently published. To obtain our separation results we use the two
oracle technique of Hsiao and Reyzin[HR04b]. The most relevant results to our
work is the work of Dodis et. al. [DOP05] and of Kiltz and Pietrzak [KP09].
In [DOP05], Dodis, Oliviera and Pietrzak showed that the popular Full Domain
Hash (FDH) signature scheme can not be instantiated (using blackbox technique)
in the standard model by a ideal trapdoor permutation. Kiltz and Pietrzak [KP09]
established that there is no blackbox reduction of any padding based CCA secure
encryption scheme from ideal trapdoor permutations. In [Pai07], Paillier showed

6.2 Preliminaries 109

impossibility of reduction of many RSA based signatures including PSS from dif-
ferent security assumptions of RSA. However, their result is based on an additional
assumption (namely, instance non-malleability) of RSA. In comparison, our result
is more generic as we rule out blackbox reduction from any property of random
permutation.

Differences from Dodis et al’s Crypto’05 paper [DOP05]

Although our definition of oracles are quite similar to that in [DOP05], difference
comes in when finally implementing a forgery. The technique of [DOP05] is not
readily applicable for randomized signatures. Specifically in case of PSS the forger
cannot force the signer to choose any particular random string. On the other
hand, if the randomness space is super-polynomial the forger cannot pre-compute
all the possible value of the hashes of any message. As a result the forger, as
defined in [DOP05], cannot output a forgery when G aborts. Our contribution is in
constructing adaptive forger that can forge PSS with overwhelming probability even
when the randomness space is super-polynomial. Moreover, our technique to rule
out black-box reduction to one way trapdoor permutation is completely different.
Looking ahead, we show that when the randomness space is of super-polynomial
size, no Probabilistic Polynomial-Time Turing Machine (PPTM) can use a random
signature (over the choice of random string during signing) of any fixed message to
invert the one way trapdoor permutation.

6.2 Preliminaries

6.2.1 Notations

Throughout the section, if x is a string, |x| denotes the length of the string. 1n
denotes the string of n many 1s. If S is a set |S| denotes the cardinality of the set.
We use negl(n) to denote any function γ : N→ [0, 1] where for any constant c > 0
there exist n0 such that for all n > n0; γ(n) < 1/nc. We call a function f(n) to be
super-polynomial if for any constant c > 0, there exists n0 such that for all n > n0,
f(n) > nc.

6.2.2 Trapdoor Permutations (TDPs)

Definition 6.1. A trapdoor permutation family is a triplet of PPTM (Tdg, F
, F−1). Tdg is probabilistic and on input 1n outputs a key-pair (pk, td)←R Tdg(1n).
F (pk, .) implements a permutation fpk over {0, 1}n and F−1(td, .) implements the
corresponding inverse f−1

pk .

The most standard security property of TDP is one-wayness which says that it
is hard to invert a random element without knowing the trapdoor. Formally, for
any PPTM A

Pr[(pk, td)←R Tdg(1n), x←R {0, 1}n : A(fpk(x)) = x] ≤ negl(n).

110 On the Impossibility of Instantiating PSS in the Standard Model

Many other security notion for Trapdoor Permutations are known. Like [DOP05,
KP09], we consider a wide class of security properties using the notion of δ-hard
games.

6.2.3 Hard Games

A cryptographic game consists of two PPTMs C (Challenger) and A (Prover) who
can interact over a shared tape. After the interaction, C finally outputs a bit d.
We say, A wins the game if d = 1 and denote it, following [DOP05], by 〈C,A〉 = 1.

Definition 6.2. A game defined as above is called δ-hard game if for all PPT
A (in the security parameter n) the probability of win , when both C and A have
oracle access to t uniform random permutations π1, π2, · · · , πt over {0, 1}n, is at
most negligible more than δ. Formally C is a δ-hard game if for all PPTM A

AdvC(A,n) = Pr[〈Cπ1,π2,··· ,πt , Aπ1,π2,··· ,πt〉 = 1] ≤ δ + negl(n)

The hardness of the game C (denoted by δ(C)) is the minimum δ such that C is
δ-hard.

For cryptographic games like one-wayness, partial one-wayness, claw-freeness;
δ = 0. For the game of pseudo-randomness δ = 1/2. The notion of δ-hard game
was considered in [KP09] as a generalization of hard games considered in [DOP05].
It was pointed out in [KP09] that the result of [DOP05] can easily be extended to
this notion.

6.2.4 Ideal Trapdoor Permutations

The notion of Ideal Trapdoor permutation was coined in [KP09]. To remain con-
sistent with literature, we follow the same notion.

Let TDP = (Tdg, F, F−1) be a trapdoor permutation. We say that TDP is
secure for δ-hard game C if for all PPTM A, AdvC(A,n)− δ(C) is negligible even
when the random permutations in the definition of hard game is replaced by TDP .
Formally, TDP is secure iff,

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt)〉 = 1] ≤ δ + negl(n),

where (pki, tdi)←R Tdg(1n) for i = 1, · · · t.

Definition 6.3. TDP is said to be an ideal trapdoor permutation if it is secure for
any δ-hard game C.

We stress that, ideal trapdoor permutation does not exist (see [DOP05] for
proof). However as we are proving negative result, showing that PSS cannot be
reduced to ideal trapdoor permutation (hence to any hard game) makes our result
stronger. This implies that PSS cannot be black-box reduced to security notions
like collision resistant hashing, pseudo-random functions, IND-CCA secure public
key encryption schemes etc.

6.3 Signature Schemes 111

6.2.5 Lossy Trapdoor Permutations(LTDPs)

Lossy Trapdoor Functions were introduced by Peikert et. al. in [PW08]. In this
work we consider a straightforward generalization to permutations. A family of (n, l)
Lossy Trapdoor Permutations (LTDPs) is given by a Tuple (S,F ,F ′) of PPTMs.
S is a sampling algorithm which on input 1 invokes F and on input 0 invokes F ′.
F (called “Injective Mode”) describes a usual trapdoor permutation; i.e. it outputs
(f, f−1) where f is a permutation over {0, 1}n and f−1 is the corresponding inverse.
F ′ (called “Lossy Mode”) outputs a function f ′ on {0, 1}n with range size at most
2l. For any distinguisher D, LTDP-Advantage is defined as

Advltdp(F ,F ′),D =
∣∣∣Pr[Df (.) = 1 : (f, f−1)←R F]− Pr[Df ′(.) = 1 : f ′ ←R F ′]

∣∣∣.
We call F “lossy” if it is the first component of some lossy LTDP.

6.3 Signature Schemes

A signature scheme (Gen, Sign, Verify) is defined as follows:
- The key generation algorithm Gen is a probabilistic algorithm which given 1k,

outputs a pair of matching public and private keys, (pk, td).
- The signing algorithm Sign takes the message M to be signed, the public key

pk and the private key td, and returns a signature σ = Signtd(M). The signing
algorithm may be probabilistic.

- The verification algorithm Verify takes a messageM , a candidate signature σ′
and pk. It returns a bit Verifypk(M,σ′), equal to one if the signature is accepted,
and zero otherwise. We require that if σ ← Signtd(M), then Verifypk(M,σ) = 1.

6.3.1 Security of a Signature Scheme

In the existential unforgeability under an adaptive chosen message attack scenario,
the forger can dynamically obtain signatures of messages of his choice and attempts
to output a valid forgery. A valid forgery is a message/signature pair (M,x) such
that Verifypk(M,x) = 1 whereas the signature of M was never requested by the
forger.

6.3.2 Probabilistic Signature Scheme(PSS)

Let TDP = (Tdg, F, F−1) be a trapdoor permutation. PSS uses a triplet H =
(h, g1, g2) of hash functions such that, h : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 → {0, 1}k0

and g2 : {0, 1}k1 → {0, 1}k−k0−k1−1, where k, k0 and k1 are parameters.
Gen(1k)

1. Return (pk, td) = Tdg(1k)

112 On the Impossibility of Instantiating PSS in the Standard Model

m r

ω

h

0 r∗ g2(ω)

g1(ω)
g1

g2

Figure 6.1: PSSTDPH : The components of the image y = 0‖ω‖r∗‖g2(ω) are dark-
ened. The signature of m is F−1(td, y)

Signtd(m)

1. r ← {0, 1}k0

2. ω ← h(m‖r)

3. r∗ ← g1(ω)⊕ r

4. y ← 0‖ω‖r∗‖g2(ω)

5. Return σ = F−1(td, y).

Verifypk(m,σ)

1. Let y = F (pk, σ)

2. Parse y as 0‖ω‖r∗‖γ. If the parsing
fails return 0.

3. r ← r∗ ⊕ g1(ω)

4. If h(m‖r) = ω and g2(ω) = γ return
1.

5. else return 0.

Any PSS signature scheme can be instantiated by specifying the triplet of hash
functions H = (h, g1, g2) and the trapdoor permutation TDP . PSSTDPH be the
PSS signature scheme instantiated by H and TDP . For any H = (h, g1, g2), the
PSS transformation described above is defined as

PSS
fpk

H (m‖r) = 0‖h(m‖r)‖(r ⊕ g1(h(m‖r))‖g2(h(m‖r)).

PSS
fpk

H (m‖r) is in fact the darkened area in Figure 6.1, y = 0‖ω‖r∗‖g2(ω). Note,
h, g1, g2 can be oracle circuits with oracle access to fpk. For the rest of this section,
PSSTDPH denotes the signature scheme, where as PSSfpk

H (·) is the PSS transforma-
tion during Sign procedure before applying the trapdoor permutation. From the
context these two notations are easily distinguishable.

The following observation is very important to our technique.

Observation 1 A collision after the PSS transformation implies collision in the

6.4 No Blackbox Reduction from One way Trapdoor Permutations 113

random space. In other words,

PSS
fpk

H (M1‖r1) = PSS
fpk

H (M2‖r2)

implies r1 = r2.

As both the digests are same, ω1‖r∗1‖γ1 = ω2‖r∗2‖γ2; we have ω1 = ω2 and
r∗1 = r∗2. This leads to r1 = r2. So for two distinct random strings r1 and r2,
the digests of PSSfpk

H and hence the signatures are always different (irrespective of
whether the messages are same or not)! As a side note, all our results are valid not
only for PSS, but for any randomized signature scheme where the randomness is
recoverable and hence the Observation 1 holds true.

6.4 No Blackbox Reduction from One way Trapdoor
Permutations

One-wayness is the most common security property of a trapdoor permutation. All
the previous security proofs of PSS in the random oracle model are based on one
wayness of underlying trapdoor permutation (specifically RSA). In this section we
consider the possibility of reducing security of PSS from one-wayness of a trapdoor
permutation, but in the standard model. We show that when k0 = ω(logn), one
cannot prove PSS secure via a blackbox reduction from one way trapdoor permu-
tation even if the forger is never allowed to query the signer.

Recall that, r1 6= r2 implies PSSfpk

H (0‖r1) 6= PSS
fpk

H (0‖r2). So the set {PSSfpk

H

(0‖r)|r ∈ {0, 1}k0} is of super-polynomial size. Even if G returns one random
signature (from a choice of super-polynomially many) of message 0, it is unlikely
to be of any use of the adversary intended to invert TDP T on a uniformly chosen
element z.

Following [HR04b], Proposition 1, to rule out blackbox reductions, it is enough
to construct two oracles T and G such the following holds:

• There exists an oracle PPTM TDP such that TDP T implements a trapdoor
permutation.

• There exist an oracle PPTM A such that AT,G finds a forgery under chosen
message attack for PSSTDPT

H .

• TDP T is an one-way trapdoor permutation relative to the oracles T and G.
That is, TDP T is an one-way permutation even if the adversary is given oracle
access to T and G.

Definition of T

For any n ∈ N, Choose 2n+ 1 permutations f0, f1, f2, · · · , f2n−1 and g uniformly at
random from the set of all permutations over {0, 1}n. Now the oracle T is defined
as follows:

114 On the Impossibility of Instantiating PSS in the Standard Model

• T1(td)→ g(td) (generate public key from the trapdoor)

• T2(pk, y)→ fpk(y) (evaluate)

• T3(td, z)→ f−1
g(td)(z) (inversion)

Implementing TDP T

We use T = (T1, T2, T3) in the following way to construct (in the functional sense)
the trapdoor permutation TDP T = (Tdg, FT , F−1

T).

• Tdg(1n) chooses a uniform random td ← {0, 1}n and computes the corre-
sponding public key as pk = T1(td) and outputs (td, pk).

• FT (pk, y) returns T2(pk, y).

• F−1
T (td, z) returns T3(td, z).

It is easy to check that as TDP T implements a trapdoor permutation, as g(td) = pk.

Description of G

The oracle G takes as input k ∈ N and H ∈ {0, 1}∗. G selects an r ∈R {0, 1}k0 and
returns f−1

pk (PSSfpk

H (0‖r)). Here pk is the public key generated by Tdg(1k).

As G always outputs a forgery for message 0, we get the following result.

Lemma 6.1. There is a PPTM A such that AG outputs a forgery for PSS signature
scheme.

G does not break security of TDP T

Next we shall prove that TDP T is one way, even relative to G. This is not at all
obvious as G always provides forgery of the form f−1

pk (PSSfpk

H (.)) for a H of our
choice! But we note that G(.) samples one z′ from a set of super-polynomial size
and outputs f−1

pk (z). Even if the adversary sets PSSfpk

H (0, r) for one r to be the
challenge z she received, probability that fpk(G(.)) = z is negligible. On the other
hand if fpk(G(.)) 6= z, then knowledge of inverse of some other point does not help
the adversary to find f−1

pk (z) with significant probability for a pseudorandom fpk.
Following the above discussion we have Lemma 6.2,

Lemma 6.2. A random permutation π : {0, 1}n → {0, 1}n is one way even if
adversary is allowed to make one inverse query on any input except the challenge.

Proof. Suppose, for contradiction, the lemma is not true. Then there exist a PPTM
B = (B1, B2) such that

Pr[Bπ
1 (z) = z′;Bπ

2 (z, z′, π−1(z′)) = x; z 6= z′ : π(x) = z] ≥ 1/nc

6.4 No Blackbox Reduction from One way Trapdoor Permutations 115

for some constant c > 0. Now We shall construct a PPTM B′ that , using B, can
invert a random permutation π′ : T → T where |T | = 2n− 1. First we note that we
can view T as the set {0, 1}n \ 1n. B′ keeps a list L with all the query responses.
Without loss of generality, we assume B does not repeat a query and if B outputs
some x it must have queried it.

Suppose B1 and B2 makes nc1 and nc2 queries respectively (c1, c2 are positive
constant). B′ works as following: on receiving the challenge z, check whether
z = 1n. If yes, abort; otherwise simulate B1(z). Clearly the probability that a
randomly chosen z is equal to 1n is 1/2k; hence negligible. When B1 makes an
oracle query x, check whether x = 1n. If yes, select one element y1 uniformly at
random from {0, 1}n \ Ly. If y1 = z; abort. Otherwise add (1n, y1) to L. If x 6= 1n,
query y = π′(x) and check whether y = y1. If no add (x, y) to L. Otherwise add
(x, 1n) to L. Clearly the probability that B′ aborts at this stage is 1/(2k− |L|). As
B1 makes only nc1 number of queries, the above probability is negligible.

Suppose after all the queries, B1(z) outputs z′. Select one element x′ uniformly
at random from {0, 1}n \Lx, add (x′, z′) to L and simulate B2(z, z′, x′). If B2 makes
an oracle query x (x 6= 1n) s.t π′(x) = z′ compute y′ = π′(x′) . If x′ = 1n; y′ = 1n.
Add (x, y′) to L and proceed with y′ as the answer. Otherwise if B2 queries 1n,
select one element y1 uniformly at random from {0, 1}n \ Ly. If y1 = z; abort.
Otherwise add (1n, y1) to L. For all other query x compute y = π(x). If y = y1
reset y = 1n. Add (x, y) to L.

Suppose B2 returns x1. Clearly x1 6= 1n as B′ aborted whenever 1n was queried
and the result of the sampling was z. If π′(x1) = z′ return x′ from the list. else
return x1.

It is easy to check that, while answering the oracle queries B′ simulates the
random permutation. Moreover, if B2 returns a correct answer so does B, except
the case when B′ aborts (when challenge is 1n or B has queried 1n and the result
of the sampling was z). Probability that randomly chosen challenge is equal to 1n
is 1/2n. On the other hand, Probability that while sampling for the image of 1n,
z was picked is at most 1

2n−|L| ≤
1

2n−nc1 for some fixed constant c. So Probability
that B′ aborts is negligible. So Probability that B′ inverts a randomly chosen z is
at least 1

nc−negl(n) . This is a contradiction to the fact that a π′ is hard to invert.
Hence the lemma follows.

Now, we can claim that TDP T is one way even relative to G.

Lemma 6.3.

Pr[AT,G(pk, z) = x : FT (pk, x) = z] ≤ negl(n),

where x←R {0, 1}n and (pk, td)← Tdg(1n).

Proof. As FT (pk, .) is a permutation chosen uniformly at random from a set of
exponential size, FT (pk, .) is computationally indistinguishable from a random per-
mutation. So if G was not there, TDP T was clearly one way. Next we shall prove
that TDP T is one-way even when adversary has access to G. By the property

116 On the Impossibility of Instantiating PSS in the Standard Model

of PSSfpk

H , there can be at most one r ∈ {0, 1}k0 such that PSSfpk

H (0||r) = z.
So Probability that G selects that corresponding r is 1/2k0 which is negligible for
k0 = ω(logn). On the other hand , if G does not select that particular r, by
Lemma 6.2, a random permutation and hence FT (pk, .) (being computationally
indistinguishable from a random permutation) is hard to invert . Hence

Pr[AT,G(pk, z) = x : FT (pk, x) = z]
= Pr[AT,G(pk, z) = x : FT (pk, x) = z|G(·) = FT (td, z)].P r[G(·) = FT (td, z)]
+ Pr[AT,G(pk, z) = x : FT (pk, x) = z|G(·) 6= FT (td, z)] · Pr[G(·) 6= FT (td, z)]
≤ 1/2k0 + (2k0 − 1)/2k0 .(negl(n))
= negl(n).

Using Lemma 6.1 and Lemma 6.3, we get the main result of this section as
follows

Theorem 6.1. There is no blackbox reduction of Security under no message attack
of Probabilistic Signature Scheme with super-polynomial randomness space from
Oneway Trapdoor Permutations.

6.5 No Blackbox Reduction from an Ideal Trapdoor
Permutation

The following theorem states that there is no adversary that can break the security
of the TDP T using any adversary (in black-box way) breaking PSSTDPT

H by chosen
message attack when TDP T is an ideal permutation.

Theorem 6.2. There is no black-box reduction from a family of ideal trapdoor
permutations to the existential unforgeability against chosen message attack of the
PSS signature scheme.

Like the previous section, we shall construct a oracle G such that there exist a
PPTM B such that BG can forge PSS although TDP T is secure even relative to
G. We define, T and TDP T as in section 6.4.

Definition of G

The oracle G works as follows. On input the description of the hash function triplet
H = (h, g1, g2), and the security parameter n, it selects t = max(|H|, n) messages
m1,m2, · · ·mt uniformly at random from {0, 1}∗ \ {0} and outputs them as a set of
challenge messages. G expects valid and distinct signatures of all the messages. G
also keeps a list (initially empty) of description of input hash functions, the challenge
messages and the forgery it returns. If the description of the hash matches then
G outputs the same challenge messages. If it gets valid signatures (as described
below) then it outputs the previously returned forgery from the list.

6.5 No Blackbox Reduction from an Ideal Trapdoor Permutation 117

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · ,
σt), G checks for the following conditions.

1. σ1, · · · , σt are valid signatures for m1, · · · ,mt. Recover r1, · · · , rt such that,

PSS
fpk

H (m1‖r1) = fpk(σ1), · · · , PSSfpk

H (mt‖rt) = fpk(σt).

2. σi 6= σj (or equivalently PSSfpk

H (mi‖ri) 6= PSS
fpk

H (mj‖rj)) for all 1 ≤ i <
j ≤ t.

3. {PSSfpk

H (m1‖r1), · · · , PSSfpk

H (mt‖rt)} ∩ Y PSSH
fpk

(r1, · · · , rt) = ∅ where

Y PSSH
fpk

(r1, · · · , rt) ={fpk(x)|∃i, 1 ≤ i ≤ t,

PSS
fpk

H (mi‖ri) makes the oracle query x}.

If all the above conditions are satisfied then G chooses one r uniformly at random
from {0, 1}k0 and returns f−1

pk (PSSfpk

H (0‖r)). Here pk is the public key generated
by Tdg(1k).

G breaks the security of PSSTDPT

H

Lemma 6.4. There is a PPTM BG that can mount existential forgery by chosen
message attack on PSS with overwhelming probability.

Proof. The goal of BG is to either generate a forgery on it’s own or use the sign
oracle to get signatures of m1, · · · ,mt such that Condition 1, Condition 2 and 3 get
satisfied. Then BG can use output of G to produce forgery for the message 0. We
describe two constructions of BG depending on size of the randomness space or k0.

Case I: k0 = O(logn) :

In this case BG pre-computes PSSfpk

H (mi‖r) for all r ∈ {0, 1}k0 and i = 1 · · · t and
checks whether the Condition 3 from Section 6.5 would get satisfied or not for any
possible choice of r by the Sign oracle. If not B can find some mi,mj , ri, rj , x such
that

PSS
fpk

H (mi‖ri) = fpk(x),

where PSSfpk

H (mj‖rj) makes the oracle query fpk(x). In this case B can easily
produce the forged signature x for the message mi.
Otherwise to take care of Condition 2, BG calls the Sign oracle to get valid signa-
tures for message mi’s one by one for i = 1 to t. After receiving the ith signature
σi it always recovers the randomness ri and checks whether

PSS
fpk

H (mi‖ri) = PSS
fpk

H (mj‖ri)

for some i < j ≤ t. Because of Observation 1 it is sufficient to check with the fixed
ri for collision detection purposes. If the above condition gets true again BG can

118 On the Impossibility of Instantiating PSS in the Standard Model

Algorithm 2 BG : Phase-I
1: rki ←R {0, 1}k0 : 1 ≤ i ≤ t, 1 ≤ k ≤ t
2: V = {PSSfpk

H (mi‖rki) : 1 ≤ i ≤ t, 1 ≤ k ≤ t}
3: Y = {fpk(x)| ∃i, k, 1 ≤ i ≤ t, 1 ≤ k ≤ t
4: s. t. PSSfpk

H (mi, r
k
i) makes oracle query fpk(x)}

5: if V ∩ Y 6= ∅ then
6: Output Direct Forgery
7: end if

readily output a forged signature for message mj as σi. Otherwise, BG ends up
with σ1, · · · , σt such that all the three conditions in Section 6.5 are satisfied. So
BG can easily use G to produce a forgery for the message 0. Hence BG succeeds to
forge PSS with probability 1.

Case II: k0 = ω(logn) :

In this case the randomness space is of super-polynomial size, hence BG cannot
pre-compute all the possible outputs of PSSfpk

H (m‖·) even for a single message m.
However, we observe that the “no collision” requirement or Condition 2 can easily be
taken care of by a technique similar to the previous one. To take care of Condition
3, we adopt a sampling procedure. BG works in two phases. In Phase-I, B samples
some random r’s from {0, 1}k0 uniformly and simulate the signing procedure by
the real Sign oracle that would be queried in Phase-II. Then the probabilities that
Condition 3 gets satisfied in Phase-I or in Phase-II are essentially the same. We
set our parameters such a way, with high probability either Condition 3 does not
hold in Phase I (hence direct forgery) or it holds in Phase-II (forgery via oracle G,
provided Condition 2 holds).

Success Probability of BG in Case II:

In Line 3 of Algorithm 3, Condition 1 and Condition 2 are always satisfied. So BG

can abort only in two ways.

1. In Line 3 of Algorithm 3, Σi becomes empty for some i, 1 ≤ i ≤ t.

2. In Line 3 of Algorithm 3, Condition 3 gets violated. r1, · · · , rt be the random
strings recovered from σ1, · · · , σt. Violation of Condition 3 over here implies
there exists some i, j, 1 ≤ i, j ≤ t, i 6= j such that

PSS
fpk

H (mi‖ri) = fpk(x),

where PSSfpk

H (mj‖rj) makes the oracle query x.

Moreover, in both the cases no forgery was found in Algorithm 2.
Let us consider the case where for some i, Σi is empty. It implies for some i, for

all k = 1, · · · , t, σki ∈ Xi,k and hence was removed from Σi . Fix some i . Let us call

6.5 No Blackbox Reduction from an Ideal Trapdoor Permutation 119

Algorithm 3 BG : Phase-II
1: for i = 1 to t do
2: σ1

i ← Sign(mi), · · · , σti ← Sign(mi)
3: Σi = {σ1

i , · · · , σti}
4: Recover r1

i , · · · , rti from σ1
i , · · ·σti using Verify.

5: for j = i+ 1 to t do
6: if PSSfpk

H (mi‖rki) == PSS
fpk

H (mj‖rki) for some 1 ≤ k ≤ t then
7: Output Direct Forgery (mj , σ

k
i)

8: end if
9: end for

10: for k = 1 to t do
11: Xi,k ← {x|PSS

fpk

H (mi‖rki) makes oracle query fpk(x)}
12: if σki ∈ Xi,k then
13: Σi ← Σi \ {σki }
14: end if
15: end for
16: if Σi = ∅ then
17: Output ⊥
18: end if
19: Pick any σi ∈ Σi

20: end for
21: if σ1, · · · , σt satisfy Condition 1, Condition 2 and Condition 3 from Section 6.5

then
22: Output forgery via G
23: else
24: Output ⊥
25: end if

the set of r for which PSSfpk

H (mi, r) = fpk(x) and x was queried while computing
PSS

fpk

H (mi, r) as BAD. Suppose

Prr[r ∈ BAD] = θ.

Now the event Σi = ∅ and no forgery was found in Phase-I implies that the random
strings r(i), sampled in Phase 1 were not from the BAD set and all of r1

i , r
2
i , · · · , rti

was from BAD. As Sign and B samples independently, probability of Σi = ∅ is
θt(1− θ)t ≤ 2−t. Taking union bound over all i, the probability that for some i, Σi

is empty is at most t/2t.
For the second case, the chosen σis were not queried while computing them;

rather one σi was queried while computing some other σj . Recall that maximum
number of fpk queries (made by PSS

fpk

H) while computing one signature is |H|.
As, for any j Σj ≤ t, for each j = 1, 2, · · · , t; j 6= i, maximum number of fpk
queries made while computing Σj is at most t|H|. So overall, for all j 6= i, total
number of fpk queries made by the PSSfpk

H was t2|H|. As, there are 2|r| choices

120 On the Impossibility of Instantiating PSS in the Standard Model

of random string, implying 2|r| choices for each σki , and Sign runs each time with
independent random coins, probability that at least one σki was from those t2|H|
many fpk queries is at most t4

2k0 .
Hence we get that

Pr[BG →⊥]
≤ Pr[∃i; Σi = ∅] + Pr[∃i, j;σi ∈ { fpk queries made while computing σj }]

≤ t

2t + t4|H|
2|r|

Putting t = max(|H|, n), |r| = ω(logn) and |H| ≤ nc for some constant c, Pr[BG →⊥
] is negl(n).

G does not break the security of TDP T

Lemma 6.5. For any oracle PPTM B and any δ-hard game C (with t = t(n) im-
plicitly defined by C),

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt),G〉 = 1] ≤ δ + negl(n),

where (pki, tdi)←R Tdg(1n) for i = 1, · · · t.

Proof. The proof of the above lemma is essentially same as in proof of Lemma 2 in
[DOP05], where one argues in the absence of oracle G the claim holds because of
computational indistinguishability of fpk from a random permutation. Moreover,
Lemma 6.6 below states the accepting condition of oracle G can only be satisfied
with a negligible probability.

Lemma 6.6. Let f be a random permutation on {0, 1}n and c ≥ 1 be a constant,
m1, · · · ,mt be n-bit values with t = max(|H|, n). For any oracle TM A which makes
at most nc oracle queries, we have (the probability is over randomness of f)

Pr[Af → (H,x1, · · · , xt)] = negl(n)

where, |H| ≤ nc and the output satisfies the following conditions for some k0-bit
r1, · · · , rt

1. f−1(PSSfH(m1‖r1)) = x1, · · · , f−1(PSSfH(mt‖rt)) = xt .

2. f−1(PSSfH(mi‖ri)) 6= f−1(PSSfH(mj‖rj)) for all 1 ≤ i < j ≤ t.

3. {PSSfH(m1‖r1), · · · , PSSfH(mt‖rt)} ∩ Y PSSH
f (r1, · · · , rt) = ∅, where

Y PSSH
f (r1, · · · , rt) ={f(x)|∃i, 1 ≤ i ≤ t,

PSSfH(mi‖ri) makes the oracle query x}.

6.5 No Blackbox Reduction from an Ideal Trapdoor Permutation 121

Lemma 6.6 can proved following the same technique of Lemma 3 of [DOP05].
For completeness we give the following proof.

Proof. Consider any oracle TM A, where Af comes up with an output (PSSH , x1,
· · · , xt) after making nc oracle queries. Even if A outputs only one xi, which it did
not query to the oracle f , then the probability that the relation f−1(PSSfH(mi‖ri)) =
xi holds for some ri is negligible. Let XA

f , |XA
f | = nc denote all the oracle queries

made by Af , i.e.
XA
f = {x|Af makes the oracle query x}.

Consider any fixed oracle circuit h, |h| ≤ nc and k0 bit values r1, · · · , rt satisfying
condition 2 and 3. Let Xh

f (r1, · · · , rt) = {f−1(y)|y ∈ Y h
f (r1, · · · , rt)}, i.e.

Xh
f (r1, · · · , rt) = {x|∃i, 1 ≤ i ≤ t, hf (mi‖ri) makes the oracle query x}

and let
H(r1, · · · , rt) = {f−1(hf (m1‖r1)), · · · , f−1(hf (mt‖rt))}.

Condition 3 states that f(H(r1, · · · , rt)) ∩ f(Xh
f (r1, · · · , rt)) = φ, and as f is per-

mutation this is equivalent to

H(r1, · · · , rt) ∩Xh
f (r1, · · · , rt) = φ.

Given Xh
f (r1, · · · , rt) and conditioned on hf satisfies condition 3 for the fixed

r1, · · · , rt, the setH(r1, · · · , rt) is a random subset of {0, 1}n\Xh
f (r1, · · · , rt). If con-

dition 2 is satisfied then H(r1, · · · , rt) = t, moreover |Xh
f (r1, · · · , rt)| ≤ t|h| ≤ tnc.

Now the probability that H(r1, · · · , rt) ⊆ XA
f can be upper bounded as

Pr[H(r1, · · · , rt) ⊆ XA
f] =

t−1∏
i=0

|XA
f | − |XA

f ∩Xh
f (r1, · · · , rt)| − i

2n − i− |Xh
f (r1, · · · , rt)|

≤
(|XA

f |
2n − t− |Xh

f (r1, · · · , rt)|

)t
≤
(nc

2n − 2tnc
)t
.

By taking the union bound over all oracle circuits h, |h| ≤ nc and all possible
r1, · · · , rt we can now upper bound the probability that there exists some oracle
circuit PSSH , and k0-bit values r1, · · · , rt satisfying condition 2 and 3 such that
Af have queried the xi values satisfying condition 1 as

nc∑
|H|=1

2|H|
(nc2k0

2n − 2tnc
)t
.

As t = max(|H|, n) and assuming k0 < n− c logn for all c and sufficiently large n,1
we can easily show the above term is negl(n).

1If k0 = n − c log n for some constant c PSS is trivially insecure as a random n bit string will
be a valid signature of message 0 with probability 2n−c log n−n = 1

nc

122 On the Impossibility of Instantiating PSS in the Standard Model

6.6 No Reduction from Lossy Trapdoor Permutations
Lossy Trapdoor Functions, introduced by Peikert et. al. has gained consider-
able attention in recent years. In a recent work [KOS10], has proven IND-CPA
security of OAEP under Lossy Trapdoor Permutation. Moreover different con-
structions like IND-CCA secure encryption, which cannot be reduced to standard
trapdoor permutation using blackbox techniques, were proven reducible to Lossy
Trapdoor Permutations. In this section we show that there is no blackbox reduc-
tion of existential unforgeability of PSS against chosen message attack from Lossy
Trapdoor Permutations as well. Specifically, Let LTDP = (S, F, F ′) be a family
of Lossy Trapdoor Permutation. We define the output of PSS based on LTDP as
σ = f−1(PSSH(m||r)) where (f, f−1) ∈ F . Note that, while instantiating PSS by
a lossy TDP, we consider the trapdoor permutation to be the injective mode of the
TDP.

Theorem 6.3. There is no blackbox reduction of existential unforgeability against
chosen message attack of Probabilistic Signature Scheme from Lossy Trapdoor Per-
mutations.

Proof To prove Theorem 6.3, we need new definitions of the oracles.

Definition of T

T is defined as a pair (T, T ′). Choose 2n + 1 permutations f0, · · · , f2n−1 and g
uniformly at random from the set of all permutations over {0, 1}n. Moreover choose
2n functions e0, · · · , e2n−1 uniformly at random from the set of all functions from
{0, 1}n to {0, 1}l.

Oracle T works as follows:

• T1(td)→ g(td) (generate public key from the trapdoor)

• T2(pk, y)→ fpk(y) (evaluate)

• T3(td, z)→ f−1
g(td)(z) (inversion)

On the other hand T ′ is defined as follows

• T ′(pk, x) = fpk(1n−l||epk(x))

Now we define the LTDP T,T ′ = (S, (F, F−1), F ′) as follows

• S(b) If b = 1, choose a uniform random td ← {0, 1}n computed pk = T1(td)
and return (pk,td), otherwise choose a uniform random pk ← {0, 1}n and
return (pk,⊥).

• F (pk, y) returns T2(pk, y).

• F−1(td, z) returns T3(td, z).

• F ′(pk, y) returns T ′(pk, x).

6.6 No Reduction from Lossy Trapdoor Permutations 123

Lemma 6.7. LTDP T,T ′ implements a secure (n, l) Lossy Trapdoor Permutation
when l = O(n

1
c) for a positive constant c.

Proof. Recall that, to show the security of LTDP T,T ′ , we need to argue that for any
efficient distinguisher D, |Pr[DF = 1]−Pr[DF ′ = 1]| is negligible. Consider a ran-
dom function e′ : {0, 1}n → {0, 1}l and a random permutation π : {0, 1}n → {0, 1}n.
It is easy to check that π(1n−l||e′()) has the same distribution of a random permu-
tation until a collision in e′. e′ being a random function, the collision probability is
q2/2l, which is negligible for q = O(nc1)) for some constant c1 > 0.

Now using the fact that a function (permutation) chosen uniformly at random
from the set of exponentially many functions (permutations) is indistinguishable
form a random function (permutation), the lemma follows.

Definition of G:

Intuitively, G will work exactly the same way as in the previous case when the
underlying permutation is in injective mode. When the permutation is lossy G can
abort instead of returning a forgery. So effectively, when instantiated by the lossy
mode G always aborts and in injective mode G aborts if the conditions are not
satisfied.

In more detail, G works in the following way. On input the description of the
hash functions h, g1 and g2, it selects t (to be fixed later) messages m1,m2, · · ·mt

uniformly at random from {0, 1}∗\0 and outputs them as a set of challenge messages.
G expects valid and distinct signatures of all the messages. G also keeps a list
(initially empty) of description of input hash functions, the challenge messages and
the forgery it returns. If the description of the hash matches then G outputs the
same challenge messages. If it gets valid signatures (as described below) then it
outputs the same forgery from the list.

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · ,
σt), G first checks whether the signatures are valid and distinct.

• F (pk, σi) = PSS
fpk

H (mi‖r) for some r. This signature verification is to make
sure that that calling algorithm has access to signing oracle.

• σi 6= σj for all i 6= j

If the above two conditions are satisfied then G finds the random strings used in
the signatures. Let r1, r2, · · · , rt be the random strings

• {F (pk, σ1), F (pk, σ2), · · · , F (pk, σt)} ∩ YT = ∅ where

YT = {F (pk, x)|∃i, 1 ≤ i ≤ t, PSSfpk

H (mi‖ri) queries F (pk, x)}.

Finally G checks whether F is the lossy mode2, if yes it aborts; otherwise G
chooses one r uniformly at random from {0, 1}k0 and computes the PSS hash of

2As description of F can be hardwired in G, G can easily check the mode of F by finding the
possible inverses

124 On the Impossibility of Instantiating PSS in the Standard Model

0‖r as y = 0‖h(0‖r)‖g1(h(0‖r)) ⊕ r‖g2(h(0‖r)). Finally it returns the forgery as
(0, F−1(td, y)).

In order to use G to distinguish the lossy and the injective mode, any dis-
tinguisher has to construct a satisfying assignment of G in injective mode. By
Lemma 6.6, it happens with negligible probability and we get the following result.

Lemma 6.8. Suppose k = O(n
1
c) for a positive constant c. LTDP T,T ′ implements

a secure (n, k) Lossy Trapdoor Permutation even relative to G.

Existence of a forger BG for PSS using the injective mode of the LTDP is
satisfied by Lemma 6.4. This completes the proof of Theorem 6.3.

6.7 No Reduction from Hard Games with Inversion
Like [DOP05], our result can also be extended to the hard games with inversions.
Informally, in a hard game with bounded inversion C, the adversary is allowed to
make polynomial q(n) many inversion queries except on some points defined in the
game (for one way game adversary is not allowed to make inversion queries on the
challenge she received). Following [DOP05], if we modify G to ask for signatures of
|H| + q(n) messages and modify Lemma 6.6 accordingly, we get the following two
theorems.

Theorem 6.4. There is no blackbox reduction of security against existential forgery
under chosen message attack for PSS from any hard game with polynomial number
of inversion queries.

Theorem 6.5. There is no blackbox reduction of security against existential forgery
against zero message attack for PSS from an oneway trapdoor permutation, even
with polynomial number of inversion queries.

6.8 Conclusion
Following the negative results, on generic insecurity of FDH by Dodis et. al [DOP05]
and of OAEP by Kiltz and Pietrzak [KP09] in the standard model, we show security
of PSS also can not be black box reduced to any property of an ideal trapdoor
permutation. Moreover, we also show one can not even hope to achieve security
of PSS based on Lossy Trapdoor Permutations. On the contrary recently a secure
instantiation of OAEP has been realized based on Lossy Trapdoor Permutations
[KOS10].

Bibliography

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint
signature and encryption. In EUROCRYPT, pages 83–107, 2002.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-
based encryption without random oracles. In EUROCRYPT, pages
223–238, 2004. 18

[BBN+09] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil
Segev, Hovav Shacham, and Scott Yilek. Hedged public-key encryp-
tion: How to protect against bad randomness. In ASIACRYPT, pages
232–249, 2009.

[BCFW09] Alexandra Boldyreva, David Cash, Marc Fischlin, and Bogdan Warin-
schi. Foundations of non-malleable hash and one-way functions. In
ASIACRYPT, pages 524–541, 2009.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the im-
portance of checking cryptographic protocols for faults (extended ab-
stract). In EUROCRYPT, pages 37–51, 1997. 92

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the im-
portance of eliminating errors in cryptographic computations. J. Cryp-
tology, 14(2):101–119, 2001. 92

[BDPA08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Ass-
che. On the indifferentiability of the sponge construction. In EURO-
CRYPT, pages 181–197, 2008.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis
of the full aes-192 and aes-256. In ASIACRYPT, pages 1–18, 2009. 23

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher
and related-key attack on the full aes-256. In CRYPTO, pages 231–249,
2009. 23

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable
blockcipher-based hash function. In FSE, pages 328–340, 2006. 22

126 Bibliography

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. In ASIACRYPT, pages 514–532, 2001. 18

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. J. Cryptology, 17(4):297–319, 2004. 18

[BM11a] Rishiraj Bhattacharyya and Avradip Mandal. On the impossibility of
instantiating pss in the standard model. In Public Key Cryptography,
pages 351–368, 2011. 9, 105

[BM11b] Rishiraj Bhattacharyya and Avradip Mandal. On the indifferentiability
of fugue and luffa. In ACNS, pages 479–497, 2011.

[BMN09] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Indiffer-
entiability characterization of hash functions and optimal bounds of
popular domain extensions. In INDOCRYPT, pages 199–218, 2009.

[BMN10] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security
analysis of the mode of jh hash function. In FSE, pages 168–191, 2010.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
key exchange secure against dictionary attacks. In EUROCRYPT,
pages 139–155, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference on
Computer and Communications Security, pages 62–73, 1993. 6, 8, 18,
25, 55, 95, 106

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption.
In EUROCRYPT, pages 92–111, 1994. 6

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital sig-
natures - how to sign with rsa and rabin. In EUROCRYPT, pages
399–416, 1996. 6, 8, 9, 18, 55, 92, 93, 96, 97, 100, 101, 103, 104, 105,
106

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for
parallelizable message authentication. In EUROCRYPT, pages 384–
397, 2002.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryp-
tion and a framework for code-based game-playing proofs. In EURO-
CRYPT, pages 409–426, 2006. 57, 58, 69

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box anal-
ysis of the block-cipher-based hash-function constructions from pgv. In
CRYPTO, pages 320–335, 2002. 22, 55

Bibliography 127

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-damgård revisited: How to construct a hash function.
In CRYPTO, pages 430–448, 2005. 7, 8, 13, 15, 16, 19, 21, 22, 23, 36,
37, 52, 54, 58, 63

[CDMS10] Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick
Seurin. A domain extender for the ideal cipher. In TCC, pages 273–
289, 2010. 8, 21, 56

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited (preliminary version). In STOC, pages 209–
218, 1998. 6, 9, 53, 55, 57, 73, 108

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004. 6, 9, 12, 95,
106, 108

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure
public-key encryption scheme. In EUROCRYPT, pages 255–271, 2003.
18

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure
public-key encryption scheme. J. Cryptology, 20(3):265–294, 2007. 18

[CJK+09] Jean-Sébastien Coron, Antoine Joux, Ilya Kizhvatov, David Naccache,
and Pascal Paillier. Fault attacks on rsa signatures with partially
unknown messages. In CHES, pages 444–456, 2009. 92, 93

[CJM+11] Jean-Sébastien Coron, Antoine Joux, Avradip Mandal, David Nac-
cache, and Mehdi Tibouchi. Cryptanalysis of the rsa subgroup as-
sumption from tcc 2005. In Public Key Cryptography, pages 147–155,
2011.

[CLNY06] Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indif-
ferentiable security analysis of popular hash functions with prefix-free
padding. In ASIACRYPT, pages 283–298, 2006.

[CM09] Jean-Sébastien Coron and Avradip Mandal. Pss is secure against ran-
dom fault attacks. In ASIACRYPT, pages 653–666, 2009. 9, 91

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi
Tibouchi. Fully homomorphic encryption over the integers with shorter
public keys. In CRYPTO, pages 487–504, 2011.

[CMPP05] Benoît Chevallier-Mames, Duong Hieu Phan, and David Pointcheval.
Optimal asymmetric encryption and signature paddings. In ACNS,
pages 254–268, 2005. 56

[CN08] Donghoon Chang and Mridul Nandi. Improved indifferentiability secu-
rity analysis of chopmd hash function. In FSE, pages 429–443, 2008.

128 Bibliography

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low
exponent rsa vulnerabilities. J. Cryptology, 10(4):233–260, 1997. 93

[Cor02] Jean-Sébastien Coron. Optimal security proofs for pss and other sig-
nature schemes. In EUROCRYPT, pages 272–287, 2002. 18, 55, 92,
104, 106

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The
random oracle model and the ideal cipher model are equivalent. In
CRYPTO, pages 1–20, 2008. 19, 52, 55, 56, 65, 66, 70

[CS06a] Debrup Chakraborty and Palash Sarkar. Hch: A new tweakable
enciphering scheme using the hash-encrypt-hash approach. In IN-
DOCRYPT, pages 287–302, 2006. 22, 28

[CS06b] Debrup Chakraborty and Palash Sarkar. A new mode of encryption
providing a tweakable strong pseudo-random permutation. In FSE,
pages 293–309, 2006. 22, 28

[CS08] Debrup Chakraborty and Palash Sarkar. Hch: A new tweakable enci-
phering scheme using the hash-counter-hash approach. IEEE Trans-
actions on Information Theory, 54(4):1683–1699, 2008. 22, 28

[Dam89] Ivan Damgård. A design principle for hash functions. In CRYPTO,
pages 416–427, 1989. 54

[Des00] Anand Desai. The security of all-or-nothing encryption: Protecting
against exhaustive key search. In CRYPTO, pages 359–375, 2000. 22

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644–654, 1976.
2

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the
generic insecurity of the full domain hash. In CRYPTO, pages 449–
466, 2005. 8, 106, 107, 108, 109, 110, 120, 121, 124

[DP06] Yevgeniy Dodis and Prashant Puniya. On the relation between the
ideal cipher and the random oracle models. In TCC, pages 184–206,
2006. 8, 16, 17, 23, 37, 40, 55

[DP07] Yevgeniy Dodis and Prashant Puniya. Feistel networks made public,
and applications. In EUROCRYPT, pages 534–554, 2007. 54

[DRRS09] Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. In-
differentiability of permutation-based compression functions and tree-
based modes of operation, with applications to md6. In FSE, pages
104–121, 2009.

Bibliography 129

[DRS09] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Sal-
vaging merkle-damgård for practical applications. In EUROCRYPT,
pages 371–388, 2009. 8, 16, 18, 19, 53, 55, 56, 60, 63, 73

[EM91] Shimon Even and Yishay Mansour. A construction of a cipher from
a single pseudorandom permutation. In ASIACRYPT, pages 210–224,
1991. 22

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a
single pseudorandom permutation. J. Cryptology, 10(3):151–162, 1997.
22

[EMV08] emv. Integrated circuit card specifications for payment systems, book
2. security and key management. Technical Report 4.2, EMVco, June
2008. www.emvco.com. 93

[FLP08] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust multi-
property combiners for hash functions revisited. In ICALP (2), pages
655–666, 2008.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, pages 186–194,
1986. 6, 18

[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of three-
move blind signature schemes. In EUROCRYPT, pages 197–215, 2010.
108

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169–178, 2009.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-
homomorphic encryption scheme. In EUROCRYPT, pages 129–148,
2011.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the
fiat-shamir paradigm. In FOCS, pages 102–, 2003. 106, 108

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Ma-
hesh Viswanathan. The relationship between public key encryption
and oblivious transfer. In FOCS, pages 325–335, 2000. 108

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Com-
put. Syst. Sci., 28(2):270–299, 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message attacks. SIAM
J. Comput., 17(2):281–308, 1988.

www.emvco.com

130 Bibliography

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility
of basing trapdoor functions on trapdoor predicates. In FOCS, pages
126–135, 2001. 108

[GR04] Craig Gentry and Zulfikar Ramzan. Eliminating random permutation
oracles in the even-mansour cipher. In ASIACRYPT, pages 32–47,
2004. 76

[Gra02] Louis Granboulan. Short signatures in the random oracle model. In
ASIACRYPT, pages 364–378, 2002. 22, 37, 56

[Gro05] Jens Groth. Cryptography in subgroups of zn. In TCC, pages 50–65,
2005.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency
of generic cryptographic constructions. In FOCS, pages 305–313, 2000.
108

[Hal07] Shai Halevi. Invertible universal hashing and the tet encryption mode.
In CRYPTO, pages 412–429, 2007. 22, 28

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equiva-
lence of the random oracle model and the ideal cipher model, revisited.
In STOC, pages 89–98, 2011. 19, 21, 22, 23, 34, 37, 55, 56, 75, 89

[HPY07] Shoichi Hirose, Je Hong Park, and Aaram Yun. A simple variant of the
merkle-damgård scheme with a permutation. In ASIACRYPT, pages
113–129, 2007.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In
CRYPTO, pages 482–499, 2003. 27, 28

[HR04a] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode.
In CT-RSA, pages 292–304, 2004. 27, 28, 29

[HR04b] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public
road, or do secure hash functions need secret coins? In CRYPTO,
pages 92–105, 2004. 8, 107, 108, 113

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable con-
sequences of one-way permutations. In STOC, pages 44–61, 1989. 108

[ISO02] iso/iec 9796-2. Information technology – security techniques – digital
signature schemes giving message recovery – part 2: Integer factoriza-
tion based mechanisms. Technical report, ISO, 2002. 92

[Jon02] Jakob Jonsson. An oaep variant with a tight security proof. IACR
Cryptology ePrint Archive, 2002:34, 2002. 22

[K0̈9] Robin Künzler. Are the random oracle and the ideal cipher models
equivalent? Master’s thesis, ETH Zurich, Switzerland, 2009. 55

Bibliography 131

[KOS10] Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of rsa-oaep
under chosen-plaintext attack. In CRYPTO, pages 295–313, 2010. 107,
122, 124

[KP09] Eike Kiltz and Krzysztof Pietrzak. On the security of padding-based
encryption schemes - or - why we cannot prove oaep secure in the
standard model. In EUROCRYPT, pages 389–406, 2009. 8, 10, 106,
108, 110, 124

[KR01] Joe Kilian and Phillip Rogaway. How to protect des against exhaustive
key search (an analysis of desx). J. Cryptology, 14(1):17–35, 2001. 22

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for
some block ciphers. In ASIACRYPT, pages 315–324, 2007. 56, 75, 76

[Kro06] Ted Krovetz. Message authentication on 64-bit architectures. In Se-
lected Areas in Cryptography, pages 327–341, 2006. 25

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signa-
ture schemes with tight security reductions. In ACM Conference on
Computer and Communications Security, pages 155–164, 2003. 56

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515–534, 1982.
93, 95

[LR88] Michael Luby and Charles Rackoff. How to construct pseudoran-
dom permutations from pseudorandom functions. SIAM J. Comput.,
17(2):373–386, 1988. 23, 54

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block
ciphers. In CRYPTO, pages 31–46, 2002. 24, 40

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block
ciphers. J. Cryptology, 24(3):588–613, 2011. 24, 40

[Man07] Avradip Mandal. Mac constructions: Security bounds and distinguish-
ing attacks. Master’s thesis, University of Waterloo, Canada, 2007.

[Mau92] Ueli M. Maurer. A simplified and generalized treatment of luby-rackoff
pseudorandom permutation generator. In EUROCRYPT, pages 239–
255, 1992. 54

[Mau02] Ueli M. Maurer. Indistinguishability of random systems. In EURO-
CRYPT, pages 110–132, 2002. 58

[Mer89] Ralph C. Merkle. One way hash functions and des. In CRYPTO, pages
428–446, 1989. 54

132 Bibliography

[MF07] David A. McGrew and Scott R. Fluhrer. The security of the extended
codebook (xcb) mode of operation. In Selected Areas in Cryptography,
pages 311–327, 2007. 22, 28

[Min09] Kazuhiko Minematsu. Beyond-birthday-bound security based on
tweakable block cipher. In FSE, pages 308–326, 2009. 24, 25

[MM07] Kazuhiko Minematsu and Toshiyasu Matsushima. New bounds for
pmac, tmac, and xcbc. In FSE, pages 434–451, 2007.

[MPN10] Avradip Mandal, Jacques Patarin, and Valérie Nachef. Indifferentia-
bility beyond the birthday bound for the xor of two public random
permutations. In INDOCRYPT, pages 69–81, 2010.

[MPS12] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the public
indifferentiability and correlation intractability of the 6-round feistel
construction. In TCC, pages 285–302, 2012. 9, 53

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferen-
tiability, impossibility results on reductions, and applications to the
random oracle methodology. In TCC, pages 21–39, 2004. 7, 8, 11, 12,
13, 14, 15, 16, 18, 22, 25, 58, 60

[MT07] Ueli M. Maurer and Stefano Tessaro. Domain extension of public
random functions: Beyond the birthday barrier. In CRYPTO, pages
187–204, 2007.

[NM08] Mridul Nandi and Avradip Mandal. Improved security analysis of
PMAC. J. Math. Cryptol., 2(2):149–162, 2008.

[NR99] Moni Naor and Omer Reingold. On the construction of pseudoran-
dom permutations: Luby-rackoff revisited. J. Cryptology, 12(1):29–66,
1999. 54

[NS98] Phong Q. Nguyen and Jacques Stern. Cryptanalysis of a fast public key
cryptosystem presented at sac ’97. In Selected Areas in Cryptography,
pages 213–218, 1998. 95

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In STOC, pages 427–437, 1990.

[P1304] IEEE P1363a. Standard specifications for public key cryptography:
Additional techniques. Technical report, IEEE, 2004. available at
http://www.manta.ieee.org/groups/1363.

[Pai07] Pascal Paillier. Impossibility proofs for rsa signatures in the standard
model. In CT-RSA, pages 31–48, 2007. 108

[Pat90] Jacques Patarin. Pseudorandom permutations based on the des
scheme. In EUROCODE, pages 193–204, 1990. 54

http://www.manta.ieee.org/groups/1363

Bibliography 133

[Pat91] Jacques Patarin. New results on pseudorandom permutation gener-
ators based on the des scheme. In CRYPTO, pages 301–312, 1991.
54

[Pat98] Jacques Patarin. About feistel schemes with six (or more) rounds. In
FSE, pages 103–121, 1998. 54

[Pat03] Jacques Patarin. Luby-rackoff: 7 rounds are enough for
2n(1-epsilon)security. In CRYPTO, pages 513–529, 2003. 54

[Pat04] Jacques Patarin. Security of random feistel schemes with 5 or more
rounds. In CRYPTO, pages 106–122, 2004. 54

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions
based on block ciphers: A synthetic approach. In CRYPTO, pages
368–378, 1993. 55

[PP03] Duong Hieu Phan and David Pointcheval. Chosen-ciphertext security
without redundancy. In ASIACRYPT, pages 1–18, 2003. 22, 23, 37

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. In STOC, pages 187–196, 2008. 10, 105, 107, 111

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. Ocb: A block-cipher
mode of operation for efficient authenticated encryption. ACM Trans.
Inf. Syst. Secur., 6(3):365–403, 2003. 22

[RR00] Zulfikar Ramzan and Leonid Reyzin. On the round security of
symmetric-key cryptographic primitives. In CRYPTO, pages 376–393,
2000. 54

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, 1978. 92

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful
with composition: Limitations of the indifferentiability framework. In
EUROCRYPT, pages 487–506, 2011. 12, 14

[Seu09] Yannick Seurin. Primitives et protocoles cryptographiques à sécu-
rité prouvée. PhD thesis, Université de Versailles Saint-Quentin-en-
Yvelines, France, 2009. 55, 70

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. IACR Cryptology ePrint Archive, 2004:332, 2004. 11,
42

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure
hash functions be based on general assumptions? In EUROCRYPT,
pages 334–345, 1998. 108

134 Bibliography

[Vau03] Serge Vaudenay. Decorrelation: A theory for block cipher security. J.
Cryptology, 16(4):249–286, 2003. 54

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In EU-
ROCRYPT, pages 24–43, 2010.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. Hctr: A variable-input-
length enciphering mode. In CISC, pages 175–188, 2005. 22, 28

[YMO09] Kazuki Yoneyama, Satoshi Miyagawa, and Kazuo Ohta. Leaky random
oracle. IEICE Transactions, 92-A(8):1795–1807, 2009. 18, 53, 55, 56,
60

List Of Publications

[BM11a] Rishiraj Bhattacharyya and Avradip Mandal. On the impossibility of
instantiating pss in the standard model. In Public Key Cryptography,
pages 351–368, 2011. 9, 105

[BM11b] Rishiraj Bhattacharyya and Avradip Mandal. On the indifferentiability
of fugue and luffa. In ACNS, pages 479–497, 2011.

[BMN09] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Indif-
ferentiability characterization of hash functions and optimal bounds of
popular domain extensions. In INDOCRYPT, pages 199–218, 2009.

[BMN10] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security
analysis of the mode of jh hash function. In FSE, pages 168–191, 2010.

[CDMS10] Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick
Seurin. A domain extender for the ideal cipher. In TCC, pages 273–289,
2010. 8, 21, 56

[CJM+11] Jean-Sébastien Coron, Antoine Joux, Avradip Mandal, David Naccache,
and Mehdi Tibouchi. Cryptanalysis of the rsa subgroup assumption
from tcc 2005. In Public Key Cryptography, pages 147–155, 2011.

[CM09] Jean-Sébastien Coron and Avradip Mandal. Pss is secure against ran-
dom fault attacks. In ASIACRYPT, pages 653–666, 2009. 9, 91

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi
Tibouchi. Fully homomorphic encryption over the integers with shorter
public keys. In CRYPTO, pages 487–504, 2011.

[MPN10] Avradip Mandal, Jacques Patarin, and Valérie Nachef. Indifferentia-
bility beyond the birthday bound for the xor of two public random
permutations. In INDOCRYPT, pages 69–81, 2010.

[MPS12] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the public
indifferentiability and correlation intractability of the 6-round feistel
construction. In TCC, pages 285–302, 2012. 9, 53

[NM08] Mridul Nandi and Avradip Mandal. Improved security analysis of
PMAC. J. Math. Cryptol., 2(2):149–162, 2008.

	Titlepage
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Cryptography
	Provable security
	Organization

	Indifferentiability Framework
	Introduction
	Indifferentiability
	Other Indifferentiability models
	Honest but curious
	Public indifferentiability

	Relation among the indifferentiability models

	A domain extender for the ideal cipher
	Introduction
	Related Work

	Basics
	An Attack against 2 Rounds
	Previous Constructions are not Indifferentiable
	The CMC construction
	The EME construction.

	Indifferentiability of 3-round Feistel Construction
	Practical Considerations
	Indifferentiability for 2 Rounds in the Honest-but-curious Model

	Domain Extension of Tweakable Block Cipher
	Conclusion

	On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction
	Introduction
	Preliminaries
	Sequential Indifferentiability
	Separation between public and sequential indifferentiability for Stateful Ideal Primitives

	Sequential Distinguisher for the 5-Round Feistel Construction
	Seq-Indifferentiability of the 6-Round Feistel Construction
	Applications to Correlation Intractability
	Separating Correlation Intractability and Sequential Indifferentiability
	Implications for Chosen-Key and Known-Key Attacks on Block Ciphers
	Seq-Indifferentiability Beyond the Birthday Barrier for the Construction of Chapter 3
	Proof of Theorem 4.7 and Theorem 4.8
	Upper bound for ij 's

	Conclusion

	PSS is Secure against Random Fault Attacks
	Introduction
	Security Model
	Why Random Faults ?

	PSS is Secure against Random Fault Attacks
	The PSS Scheme
	Security Proof

	PSS-R is Secure against Fault Attacks
	The PSS-R Scheme
	Security Proof

	Conclusion

	On the Impossibility of Instantiating PSS in the Standard Model
	Introduction
	Our Results
	Overview of our Technique
	Previous Results

	Preliminaries
	Notations
	Trapdoor Permutations (TDPs)
	Hard Games
	Ideal Trapdoor Permutations
	Lossy Trapdoor Permutations(LTDPs)

	Signature Schemes
	Security of a Signature Scheme
	Probabilistic Signature Scheme(PSS)

	No Blackbox Reduction from One way Trapdoor Permutations
	No Blackbox Reduction from an Ideal Trapdoor Permutation
	No Reduction from Lossy Trapdoor Permutations
	No Reduction from Hard Games with Inversion
	Conclusion

	Bibliography
	Publications

