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1 Introduction

Since strain smoothing approach, particularly smoothed finite element method

(S-FEM) in FEM, was introduced, S-FEM has been highlighted due to its

strengths, effectively alleviating volumetric locking and distorted meshes.

Despite these positives, this approach is still remained in 2D and linear elas-

ticity.

We provided remarkable results for volumetric locking with nearly incom-

pressible neo-Hookean material in 2D using node-based S-FEM (NS-FEM)

and edge-based S-FEM (ES-FEM). In this report, we extend S-FEM in 2D

to 3D with face-based S-FEM (FS-FEM), and introduce NS-FEM in 3D.

Benchmarking tests, simple shear and Lateral extension with Dirichlet and

Neumann boundary conditions, and “Not-so-simple” shear deformation with
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Dirichlet boundadry conditions, are implemented and the accuracy and con-

vergence of strain energy of proposed methods are provided.

2 Smoothed Finite Element Method

Face-based S-FEM (FS-FEM) Fig. 1 describes the smoothing domains

for face-based smoothed finite element method (FS-FEM). The idea of this

method is the same as ES-FEM, smoothing domains are associated to face

instead of edge. Nodes 1,2,3 and 4 are element node, and node 5 is the

centroid of tetrahedral element 1234.
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Figure 1: Smoothing domains for FS-FEM with tetrahedral element.
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Figure 2: (a) Smoothing domains of FS-FEM with two tetrahedral elements
(1234 and 1345) and those centroids; (b) Smoothing domains associated to
target surface.

Node-based S-FEM (NS-FEM) Fig. 3 illustrates the numbering of

element nodes and smoothing domain nodes, and four-smoothing domains

for NS-FEM in 3D. In 2D, there are three-smoothing domains in triangular

element; however, four-smoothing domains are generated for tetrahedral

element in 3D. Nodes 1, 2, 3 and 4 in black are element nodes, and nodes

11, 12, 13 and 14 in blue are the centroid of △123, △234, △124 and △134,

respectively. Node 15 in red is the centroid of tetrahedral element 1234.
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Figure 3: Smoothing domains for NS-FEM with tetrahedral element.
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Figure 4: (a) Smoothing domains of NS-FEM with two tetrahedral elements
(1234 and 1345), and those smoothing domains; (b) Smoothing domains
associated to target node.
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3 Numerical examples

The stored energy function for a compressible neo-Hookean material is

W (C) =
1

2
λ (lnJ)2 − µlnJ +

1

2
µ (trC− 3) (1)

where µ is the shear modulus and Lamé’s first parameter λ is λ = κ−(2/3) µ

where κ is the bulk modulus. For following bechmarking tests, the shear

modulus µ = 0.6 or E = 1.7964, and the bulk modulus κ = 100 or ν ≈ 0.497

are used.

For following tests, normal unit vectors to surfaces are given by:

• Top Surface: (0, 1, 0)T;

• Left Surface: (−1, 0, 0)T;

• Right Surface: (1, 0, 0)T;

• Front Surface: (0, 0,−1)T;

• Back Surface: (0, 0, 1)T.

3.1 Simple Shear

The deformation gradient for the simple shear is

F =













1 k 0

0 1 0

0 0 1













=













1 1 0

0 1 0

0 0 1













(2)

and the strain energy is

W =
µ

2
k2 = 0.3 (3)
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Dirichlet boundary conditions. Dirichlet boundary conditions for the

simple shear are imposed:

• Bottom Surface: (u1, u2, u3) = (0, 0, 0);

• Top Surface: (u1, u2, u3) = (kX2, 0, 0) = (1, 0, 0);

• Left- and Right-hand Surfaces: (u1, u2, u3) = (kX2, 0, 0);

• Front and Back Surfaces: (u1, u2, u3) = (kX2, 0, 0).

Fig. 5 describes the deformed shape of simple shear for Dirichlet and

Neumann boundary conditions.
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Figure 5: Deformed shape for simple shear with Dirichlet boundary condi-
tions.

Fig. 6 shows the convergence of strain energies of FEM, FS-FEM and

NS-FEM, and Table 1 provides the strain energy relative error. Errors of

FEM, FS-FEM and NS-FEM are remarkably small; therefore, those errors

are acceptable.
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Figure 6: Strain energy convergence.

Table 1: Strain energy relative error
(

×10−12%
)

Num. of DOFs
FEM FS-FEM NS-FEM

2D 3D ES-FEM FS-FEM 2D 3D

81 0.0000 -0.0019 0.0019 0.0019 0.0056 0.0000

375 0.0019 0.0722 -0.0037 -0.0333 0.0056 0.0019

1029 -0.0019 -0.0296 -0.0111 -0.0759 0.0019 -0.0241

2187 -0.0019 0.0444 0.0130 0.8493 0.0037 0.0426

3993 0.0111 -0.8290 0.0093 -0.4607 0.0019 -0.0500

Strain energy relative error is given by:

(

WNum.

−WExact

WExact.

)

× 100.
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Mixed boundary conditions. The first Piola-Kirchhoff stress tensor is

P =













σ11 − kσ12 σ12 0

σ12 − kσ22 σ22 0

0 0 σ33













=













0 kµ 0

kµ 0 0

0 0 0













=













0 0.6 0

0.6 0 0

0 0 0













(4)

The Dirichlet and Neumann boundary conditions are imposed as follows:

• Bottom Surface: (u1, u2, u3) = (0, 0, 0);

• Top Surface: (P1, y2, y3) = (−P12, 0, 0);

• Left-hand Surface: (P1, u2, u3) = (−P12, 0, 0);

• Right-hand Surface: (P1, u2, u3) = (P12, 0, 0);

• Front Surface: (P1, u2, u3) = (P12,, 0, 0);

• Back Surface: (P1, u2, u3) = (−P12, 0, 0).

Fig. 7 describes the deformed shape of simple shear with mixed boundary

conditions, and fig. 8 illustrates the convergence of strain energy for FEM,

FS-FEM and NS-FEM comparing an analytical solution.
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Figure 7: Deformed shape for simple shear with mixed boundary conditions.
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Figure 8: Strain energy convergence of FEM, FS-FEM and NS-FEM.

The strain energy relative errors are explained in Table 2. With mixed

boundary conditions, errors of all methods are about 30%.

Table 2: Strain energy relative error (%)

Num. of DOFs
FEM FS-FEM NS-FEM

2D 3D ES-FEM FS-FEM 2D 3D

81 -30.5556 -30.5556 -30.5556 -30.5556 -30.5556 -30.5556

375 -30.5556 -30.4751 -30.5556 -30.4512 -30.5556 -30.1798

1029 -30.5556 -30.5087 -30.5556 -30.4973 -30.5556 -30.3085

2187 -30.5556 -30.5247 -30.5556 -30.5181 -30.5556 -30.4100

3993 -30.5556 -30.5339 -30.5556 -30.5296 -30.5556 -30.4504

Strain energy relative error is given by:

(

WNum.

−WExact

WExact.

)

× 100.
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3.2 Uniform Extension with Lateral Contraction

The corresponding deformation gradient is

F =













λ1 0 0

0 λ2 0

0 0 λ3













=













1.15 0 0

0 0.869565217391304 0

0 0 1













(5)

Hence, we can get the strain energy for this test

W =
µ

2

(

λ2

1 +
1

λ2
1

− 2

)

= 0.023593100189036 (6)

Dirichlet boundary conditions. The following Dirichlet boundary con-

ditions are imposed:

• Bottom Surface: (u1, u2, u3) = ((λ1 − 1)X1, 0, 0) = (0.15X1, 0, 0);

• Top Surface: (u1, u2, u3) = ((λ1 − 1)X1, (1/λ1 − 1)X2, 0)

= (0.15X1,−0.130434782608696X2 , 0) ;

• Left-hand Surface: (u1, u2, u3) = (0, (1/λ1 − 1)X2, 0)

= (0,−0.130434782608696X2 , 0) ;

• Right-hand Surface: (u1, u2, u3) = ((λ1 − 1) , (1/λ1 − 1)X2, 0)

= (0.15X1,−0.130434782608696X2 , 0) ;

• Front and Back Surfaces: (u1, u2, u3) = ((λ1 − 1)X1, (1/λ1 − 1)X2, 0)

= (0.15X1,−0.130434782608696X2 , 0) ;

Fig. 9 illustrates the deformed shape of uniform extension with Dirichlet

boundary conditions.
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Figure 9: Deformed shape of uniform extension with Dirichlet boundary
conditions.

The convergences of uniform extension for FEM, FS-FEM and NS-FEM

are shown in fig. 10. Results of FS-FEM and NS-FEM are much more stable

than FEM.
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Figure 10: Strain energy convergence of uniform extension for FEM, FS-
FEM and NS-FEM.

Table 3: Strain energy relative error
(

×10−12%
)

Num. of DOFs
FEM FS-FEM NS-FEM

2D 3D ES-FEM FS-FEM 2D 3D

81 -0.0279 -0.0397 -0.0338 -0.0235 -0.0029 -0.0191

375 -0.0368 -0.0279 -0.0074 -0.0088 -0.0059 -0.0118

1029 -0.0250 -0.2176 -0.0191 -0.0132 -0.0147 -0.0118

2187 -0.0206 -0.4059 0.0029 -0.0309 -0.0103 -0.0176

3993 -0.0382 -0.7206 -0.0088 -0.0015 -0.0132 -0.0309

Strain energy relative error is given by:

(

WNum.

−WExact

WExact.

)

× 100.
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Mixed boundary conditions. The non-zero components for the first

Piola-Kirchhoff stress are

P11 =
σ11
λ1

= µ

(

λ1 −
1

λ1

)

= 0.168260869565217

P22 = −P11 = −0.168260869565217 (7)

The mixed boundary conditions are imposed as follows:

• Bottom Surface: (P1, u2, u3) = (P11, 0, 0);

• Top Surface: (P1, u2, u3) = (P11, P22, 0);

• Left-hand Surface: (u1, P2, u3) = (0, P22, 0);

• Right-hand Surface: (P1, P2, u3) = (P11, P22, 0);

• Front and back surfaces: (P1, P2, u3) = (P11, P22, 0);
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Figure 11: Deformed shape of uniform extension with mixed boundary con-
ditions.

For this test, the errors of NS- and FS-FEM are relatively higher than

those of FEM (Fig. 12); however these errors are still acceptable (Tabel 4).
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Figure 12: Strain energy convergence of uniform extension for FEM, FS-
FEM and NS-FEM.

Table 4: Strain energy relative error (%)

Num. of DOFs
FEM

(

×10−12
)

FS-FEM
(

×10−6
)

NS-FEM
(

×10−6
)

2D 3D ES-FEM FS-FEM 2D 3D

81 -0.0735 -0.0662 0.4876 0.4875 0.4876 0.4876

375 -0.0529 -0.0029 0.4876 0.4875 0.4876 0.4875

1029 -0.0721 -0.2382 0.4876 0.4875 0.4876 0.4875

2187 -0.0897 -0.4220 0.4876 0.4875 0.4876 0.4875

3993 -0.0882 -0.7264 0.4876 0.4875 0.4876 0.4875

Strain energy relative error is given by:

(

WNum.

−WExact

WExact.

)

× 100.
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3.3 “Not-so-simple” shear

The non-homogeneous deformation gradient is

F =













1 2kX2 0

0 1 0

0 0 1













, X ∈ [0, 2] (8)

and the strain energy is

W =
µ

2
(2kX2)

2 = 2µk2X2

2 (9)

Hence, Eq. 9 is

E =

∫

V

WdX =

∫

2

0

(
∫

2

0

(
∫

2

0

2µk2X2

2dX2

)

dX1

)

dX3

= 4

(

2µk2
X3

2

3

∣

∣

∣

∣

2

0

)

=
64

3
µk2 = 3.2 (10)

where k = 0.5.

Dirichlet boundary conditions. The following Dirichlet boundary con-

ditions are imposed:

• Bottom Surface: (u1, u2, u3) = (0, 0, 0);

• Top Surface: (u1, u2, u3) = (2, 0, 0);

• Left- and Right-hand Surfaces: (u1, u2, u3) =
(

kX2
2
, 0, 0

)

;

• Front and Back Surfaces: (u1, u2, u3) =
(

kX2
2
, 0, 0

)

.

Fig. 13 shows the deformed shape of “Not-so-simple” shear deformation

with Dirichlet boundary conditions.
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Figure 13: Deformed shape of “Not-so-simple” shear with Dirichlet bound-
ary conditions.
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Figure 14: Strain energy convergence of “Not-so-simple” shear of FEM, FS-
FEM and NS-FEM: (a) Analytical strain energy is W = 3.2 in 3D; (b)
Analytical strain energy is W = 1.6 in 2D.

For “Not-so-simple” shear deformation, the result of FEM is given upper

bound solution for 2D and 3D. However, the convergence (Fig. 14) of NS-

and FS-FEM for 3D is faster than 2D problems.
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Table 5: Strain energy relative error (%)

Num. of DOFs
2D (W = 1.6) 3D (W = 3.2)

FEM ES-FEM NS-FEM FEM FS-FEM NS-FEM

81 -6.3190 -9.4428 -15.1836 -6.3190 -7.8804 -15.1470

375 -1.7452 -2.9355 -5.2169 -1.7473 -2.3402 -5.2158

1029 -0.9250 -1.5214 -2.6853 -0.9267 -1.2227 -2.6860

2187 -0.6442 -1.0001 -1.6983 -0.6454 -0.8216 -1.6986

3993 -0.5162 -0.7523 -1.2150 -0.5170 -0.6338 -1.1251

Strain energy relative error is given by:

(

WNum.

−WExact

WExact.

)

× 100.

4 Conclusions

In this report, we introduce 3D node-based Smoothed FEM, and some nu-

merical examples are implemented. With analytical solutions of these tests,

NS-FEM and FS-FEM show good performance and accurate results, com-

pared to FEM and tests in 2D. As a future work, practical tests will be

implemented, and we are looking forward to improved results rather than

FEM.
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