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River damming has dramatic environmental impacts and while changes due to reservoir 

flooding are immediate, downstream impacts are more spatially extensive. Downstream 

environments are influenced by the pattern of flow regulation, which also provides an 

opportunity for mitigation. We discuss impacts downstream from dams and recent case 

studies where collaborative efforts with dam operators have led to the recovery of more 

natural flow regimes. These restoration programs, in Nevada and Alberta, Canada, focused 

on the recovery of flow patterns during high flow years, because these are critical for 

riparian vegetation and sufficient water is available for both economic commitments and 

environmental needs. The restoration flows were developed using the “Recruitment Box 

Model”, which recommends high spring flows and then gradual flow decline for seedling 

survival. These flow regimes enabled extensive recruitment of cottonwoods and willows 

along previously impoverished reaches, and resulted in improvements to river and 

floodplain environments. Such restoration successes demonstrate how instream flow 

management can act as a broadly applicable tool for the restoration of floodplain forests. 
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• Floodplain ecosystems are dependent upon naturally dynamic river-flow patterns and 

occasional floods 

• For some degraded rivers, the recovery of appropriate seasonal flow patterns has lead to 

dramatic improvements in floodplain forests, which provide rich wildlife habitats 

• Each river dam provides an opportunity for study and contributes to our understanding of 

river and floodplain processes, as well as fostering environmental conservation 

 

River damming is one of the foremost human impacts on freshwater environments worldwide. 

Rivers are dammed to enable agricultural, domestic, and industrial water use, to control flooding, 

and for the purpose of hydroelectric power generation. While the environmental changes caused 

by reservoir flooding are abrupt and obvious, impacts on downstream river and floodplain 

ecosystems can be more extensive. While downstream impacts are initially subtle, progressive 

change over years or decades often produces severe cumulative ecological impacts (Rood and 

Mahoney 1990; Ligon et al. 1995; Nilsson and Svedmark 2002). 

This review considers some of the prominent downstream impacts and some recent 

efforts to restore floodplain forest ecosystems dominated by cottonwoods (Populus spp) and 

willows (Salix spp). Such cottonwood forests are abundant throughout the northern hemisphere 

and are especially valuable and vulnerable in arid and semi-arid regions, where trees are 

generally restricted to riparian zones (Rood and Mahoney 1990; Braatne et al. 1996; Stromberg 

2001). We focus on western North America, but the fundamental processes and restoration 

strategies are relevant worldwide (Hughes and Rood 2003). Our research has concentrated on 

riparian or streamside zones, but these reciprocally interact with aquatic (instream) ecosystems 

(Baxter et al. in press) and such case studies demonstrate a common reliance on the dominant 

underlying physical processes of river flow. This discussion extends the conceptual foundations 

developed by Poff et al. (1997), Stromberg (2001), Wissmar and Bisson (2003), and many 

others. 

 

Environmental impacts downstream from dams 

 
The downstream impacts of dams can generally be categorized as physical changes and their 

biological consequences. Physical changes involve river and floodplain hydrology, sediment 



movement, and channel structure (Ligon et al. 1995; Friedman et al. 1998; Grant et al. 2003). 

Biological consequences include virtually all aquatic and floodplain biota, either through direct 

physical influence, or as a result of indirect effects on biological interactions and food-web 

processes (Power et al. 1995; Nilsson and Svedmark 2002; Tockner and Stanford 2002). 

 

Hydrologic changes 

A common objective of dam operation is flood flow attenuation to reduce damage to human 

infrastructure in flood-prone zones. While in the past floods were generally viewed as 

undesirable events, they are now recognized as essential natural physical disturbances (Scott et 

al. 1997; Richter and Richter 2000). The “flood pulse” concept emphasizes the importance of 

floods as disturbances that drive geomorphic change and rejuvenate riparian and aquatic 

communities (Junk et al. 1989; Bovee and Scott 2002). Flooding of riparian zones may therefore 

be considered as somewhat equivalent to fire in upland forests, since both are examples of 

catastrophic disturbances that rejuvenate associated ecosystems. 

Dam-related changes in seasonal flow patterns can be severe (Annear et al. 2004). 

Following the trapping of flood flows, water is often released during low flow periods. This 

combination of flood attenuation and subsequent augmentation results in artificially stabilized 

flow and channel patterns (Hughes and Rood 2001). Native plants and animals that occupy 

floodplain environments typically have life histories that are coordinated with the natural 

seasonality of river flows, so the loss of the natural pattern impedes growth and reproduction 

(Johnson 2000; Karrenberg et al. 2002; Lytle and Poff 2004). 

 

Flow interruption 

Rivers are linear landscape features along which surface waters flow and transport other 

material, including nutrients, sediments, organic debris, and biota (Vannote et al. 1980; Leopold 

1994), all of which are interrupted by the imposition of dams and reservoirs (Ligon et al. 2004). 

Suspended sediments settle out in reservoirs, resulting in sediment depletion in tail-water 

released from dams, a condition referred to as “hungry water” (Kondolf 1997). This alters 

sediment dynamics downstream and can lead to channel incision and a static channel 

configuration or other geomorphic consequences (Ligon et al. 1995; Friedman et al. 1998; Grant 

et al. 2003). The altered sediment regime also degrades conditions necessary to aquatic 



organisms and riparian vegetation (Rood and Mahoney 1990; Scott et al. 1996; Trush et al. 

2000). The ecological consequences of sediment depletion are generally most severe 

immediately downstream from dams and conditions may progressively recover, particularly with 

inflows from sediment-laden tributaries. 

Floodplain trees are undercut as a result of bank erosion, and floated and deposited 

downstream. This large woody debris influences hydrologic and geomorphic processes and 

directly creates habitat for a range of organisms (Abbe and Montgomery 1996). The break-up of 

woody debris also provides dispersive clonal propagules from branch fragments (Rood et al. 

2003c). Very little woody debris is passed downstream from dams, and thus their associated 

ecological value is lost. 

Hydrochory refers to the dispersal of reproductive propagules by water (Nilsson and 

Berggren 2000). Plant seeds and fragments float downstream and some are deposited, along with 

fine sediments, at elevations suitable for establishment. With the interruption of river flow by 

reservoirs, there is a corresponding interruption of hydrochory (Andersson et al. 2000). 

Rivers are critical corridors for the downstream and upstream passage of aquatic and 

riparian organisms. The river continuum concept emphasizes this longitudinal corridor and the 

sequence of biotic communities and trophic interactions (Vannote et al. 1980). Dams and 

reservoirs impose barriers that hinder movements of plants and animals, resulting in physical 

fragmentation and a disjunction of populations with consequent restriction of gene flow 

(Dynesius and Nilsson 1994). 

 

Essential river flow dynamics 

An increased understanding of fluvial ecosystems has led to a shift in conservation and 

restoration strategies (Ligon et al. 1995; Stanford et al. 1996; Lytle and Poff 2004).  A new 

restoration approach, termed systemic restoration (Hughes and Rood 2001), addresses the overall 

ecosystem rather than individual charismatic or rare species, and recognizes that the restoration 

benefits transmitted throughout the river corridor are extensive and multi-trophic. This systemic 

approach is aimed at restoring appropriate flow dynamics and contrasts with artificial measures 

such as vegetation plantings, which are usually only locally effective and often require periodic 

replenishment (Alpert et al. 1999; Friedman et al. 1995). Furthermore, these restoration 

measures will fail if the underlying hydrogeomorphic processes remain uncorrected (Kauffman 



et al. 1997). In contrast, when instream flows are improved, natural restorative processes are 

effective across a greater area than artificial remediation initiatives (Rood et al. 2003b). 

Dams are built to modify the timing and distribution of water; operational rules are 

generally based on narrow economic criteria. In our experience, dam operators are interested in 

environmental conservation, but are unaware of the hydrologic needs of floodplain ecosystems. 

Appropriate flow regulation should permit flow variation, reflecting the natural hydrograph (Poff 

et al. 1997; Richter et al. 1997).  

Rivers display seasonal flow variation as a result of meteorological patterns. For some 

rivers in western North America, peak flows occur regularly in late spring, as rising temperatures 

result in mountain snowmelt which combines with spring rains (Mahoney and Rood 1998). 

Aquatic and riparian biota are adapted to this repetitive pattern, so that their life histories are 

coordinated with seasonal flows (Johnson 2000; Lytle and Poff 2004). However, there are a 

number of different adaptive strategies, with no single appropriate life cycle for river and 

floodplain organisms, even among closely related taxa (Amlin and Rood 2002; Karrenberg et al. 

2002). 

  Rivers generally display extensive flow variations across years. Some statistical patterns 

allow recurrence analyses of flow events, for example the 1-in-2 year flow which may be 

particularly relevant to channel geometry (Leopold 1994), and the greater 1-in-10 year flow 

which is relevant to some floodplain processes (Scott et al. 1997; Mahoney and Rood 1998). 

Many riverine organisms have multiple-year life cycles and reproduction may be restricted to 

years with particular hydrologic patterns (Junk et al. 1989; Shafroth et al. 1998). In view of this 

essential variation in natural flow from year to year, different flow regimes and ecological 

objectives may be necessary for dry, normal, and wet years (Richter et al. 1997; Rood and 

Mahoney 2000). 

The initial aim of river restoration was to maintain minimum flows, which was especially 

important during low-flow years (Gillilan and Brown 1997). In practice, minimum flows were 

often regarded as the low flow that would still enable survival of desired sport fish and were 

based on flow-dependent characteristics of water temperature and dissolved oxygen. Specific 

values were determined for various river reaches and minimum flow standards were 

subsequently implemented (Annear et al. 2004). An unfortunate consequence of this approach 

was that minimum flows sometimes became target flows (Rood et al. 1995). The seasonal 



release of more water than the minimum flow was discouraged, even when the water supply was 

abundant. Although survivable in the short term, minimal flows were still stressful to aquatic and 

riparian organisms and thus imposed chronic stress on river and floodplain ecosystems (Annear 

et al. 2004). 

  These minimum flow regimes caused a multitude of problems, so the concept of instream 

flow needs (IFN) was developed in North America and similar environmental flow regimes were 

introduced in Europe, Australia, and South Africa (Postel and Richter 2003; Hughes et al. 2004).  

It was recognized that additional growth flows were required to support the long-term health of 

riverine organisms and the IFN approach was introduced in order to establish quantitative 

relationships between discharge regimes and organismal responses. The instream flow 

incremental methodology (IFIM) evolved as a quantitative tool that linked flow sufficiency and 

habitat provision,  and was particularly beneficial for fish (Annear et al. 2004). IFIM and other 

environmental flow methods have now been widely adopted as tools for analyzing environmental 

impacts, but many still rely on “expert opinion”, which can be subjective and variable. 

Minimum flows are particularly important during hot, dry summers. In contrast, higher 

“growth flows” may be more effective at other times, supporting the concept of “biologically 

sensitive periods” with different environmental requirements for growth and development 

(Annear et al. 2004). In practice, increased seasonal growth flows may involve higher late spring 

and early summer flows, superimposed on longer-term minimum flows and delivered in normal 

flow years (Annear et al. 2004). 

Minimum and growth flows have been implemented specifically for the benefit of aquatic 

ecosystems, but floodplain ecosystems also require occasional over-bank or flood flows (Junk et 

al. 1989: Scott et al. 1996, 1997). Consequently, the population structures of some aquatic and 

many riparian organisms display episodes of reproduction that are correlated with flood events.  

Suitable floods need to be appropriately timed relative to the organism’s life history and 

followed by sufficient flows during the vulnerable juvenile life phase (Rood et al. 1998; Lytle 

and Poff 2004; Samuelson and Rood 2004). 

Opportunities for altering flow operations are particularly important during high-flow 

years, because it is these years that are naturally responsible for pulses of woody plant 

recruitment, essential for the perpetuation of floodplain forests (Braatne et al. 1996, Scott et al. 

1996, Karrenberg et al. 2002). High-flow years also provide sufficient water for the economic 



demands of power generation and irrigation and water resource managers may therefore be more 

receptive to a commitment for the benefit of the environment. Flow management will differ in 

high-flow years as opposed to low-flow years, when minimum flows are especially important, or 

normal years when growth flows are applied. We have also investigated opportunities to promote 

the reproduction and growth of riparian plants during high-flow years, as a strategy to offset the 

less avoidable challenges during low-flow years (Rood et al. 1998; Rood and Mahoney 2000). 

 

Floodplain restoration case studies 

We have been involved in a number of successful initiatives that involved modifying regulated 

flows to restore floodplain forests. There are many dammed and degraded rivers in western 

North America, and we have restricted our efforts to regulated rivers that satisfy three 

requirements: (1) the river reaches are situated in ecoregions of western North America, where 

riparian woodlands are dominated by cottonwoods and willows; (2) flood flows persist, as these 

are required for essential geomorphic disturbance; and (3) dam operators and river resource 

managers are receptive to changes for environmental purposes. There are many river reaches that 

satisfy these criteria and here we present four case studies that are discussed in order of 

increasing level of intervention. 

 

Floodplain conservation – Oldman River, Alberta, Canada 

Offstream diversion from the Oldman River in southern Alberta, began in about 1920 and 

increased progressively, such that a meager flow of only 1 m3/second was commonly seen in 

mid- to late summer, as more than 90% of the flow was diverted for irrigation by the 1980s. The 

low flows led to severe degradation of the aquatic ecosystem and caused drought stress among 

riparian cottonwoods, thus diminishing population replenishment. To mitigate the environmental 

effects and to permit irrigation expansion, the Oldman Dam was constructed by 1993 (Rood et 

al. 1998). As a result of controversy during its construction, instream flow needs were analyzed 

and the minimum flow was increased 15 fold. 

A second component of the operations regime for the new dam, “ramping flows”, gradual 

flow decline after the flood peak, was relatively novel. This is an aspect of the Recruitment Box 

model that describes the hydrologic requirements for seedling establishment of cottonwoods, 

willows, and other riparian plants (Figure 2; Mahoney and Rood 1998; Amlin and Rood 2002). 



In the Recruitment Box Model, the recruitment band represents the elevation along the riverbank 

at which seedlings would be low enough to maintain contact with the receding moisture zone, 

but high enough to avoid subsequent scour. The recruitment box represents the overlap of the 

recruitment band with the appropriate timing relative to seed release and viability. If the river 

stage drops through the recruitment box, seedlings should be established at appropriate 

elevations. The subsequent survival of these seedlings relies on gradual river recession, since the 

adjacent riparian water table is closely coordinated with the river stage. Along regulated rivers, 

gradual river recession can be deliberately provided by ramping flows, which permit the 

elongating roots of newly established seedlings to maintain contact with the receding moisture 

zone. 

Ramping flows from the Oldman Dam were first implemented in 1994 and resulted in the 

establishment of a considerable number of cottonwood seedling, thus confirming the 

effectiveness of the flow regime. Ramping flows were again provided in 1995, following an 

exceptional 1-in-100 year flood (Figure 3; Rood et al. 1998). Partly as a result of this flow 

ramping, billions of cottonwood and willow seedlings were established downstream along the 

Oldman and South Saskatchewan rivers (Figure 4; Rood et al. 1998; Kalischuk et al. 2001), and 

these plants are now reaching sexual maturity. In this case study, riparian woodlands still 

remained along the Oldman and South Saskatchewan rivers, but there had been a severe 

deficiency of seedling reproduction in the decades of offstream diversion. The construction and 

operation of Oldman Dam led to the improvement of summer flows and this combined with flow 

ramping to reestablish the seedling recruitment that is essential to rejuvenate floodplain forests. 

 

Floodplain restoration – St Mary River, Alberta, Canada 

Alberta’s St Mary River was first dammed in 1900 and the larger St Mary Dam began operation 

in 1951 (Rood et al. 1995). Water was diverted from the reservoir, resulting in partial dewatering 

downstream as summer flows were frequently held for weeks at about 1 m3 /second, about 5% of 

the natural flow (Rood et al. 1995). As a result of insufficient summer flows and abrupt 

reductions in spring flows, the riparian woodlands collapsed, with 90% of the cottonwoods dying 

between 1951 and 2000 (Rood et al. 1995). 

Accompanying the controversy of the Oldman Dam, the minimum flow was tripled and 

flow ramping was implemented along the St Mary River (Rood and Mahoney 2000). This led to 



extensive seedling recruitment of cottonwoods and willows after flooding in 1995 (Rood and 

Mahoney 2000). Many of these new trees and shrubs subsequently survived an exceptionally dry 

year in 2001 and are now reaching sexual maturity. In this case, floodplain forests had been 

severely degraded because reproduction had ceased and established trees had died due to drought 

stress. The implementation of ramping flows led to seedling colonization and the increased 

summer flows enabled the subsequent survival of floodplain vegetation.  

 

Flows for fish and forests – lower Truckee River, Nevada, USA 

The Truckee River flows from Lake Tahoe through the Nevada desert to Pyramid Lake, from 

which evaporation provides an atmospheric outflow. Lacking links to other watersheds, the cui-

ui sucker (Chasmistes cujus) is endemic to this system and requires the lower Truckee River for 

spawning (Scoppettone et al. 2000). As a result of damming and diversion to support irrigated 

agriculture, the lower Truckee River ecosystem had collapsed (Figure 5) and cui-ui reproduction 

failed through much of the 20th century. Following listing of the cui-ui as an endangered species, 

restoration flows commenced in the early 1980s and provided increased spring flows to allow 

cui-ui spawning. Cui-ui reproduction did occur (Scoppettone and Rissler 1995) and there was 

also an unanticipated collateral benefit, the extensive seedling recruitment of native cottonwoods 

and willows (Rood et al. 2003b). Cottonwood recruitment was particularly high in 1987, a year 

in which gradual flow recession matched the ramping flow pattern for riparian vegetation. The 

Riparian Recruitment Box model was deliberately implemented in 1995 and has enabled further 

cottonwood and willow recruitment (Figure 5). Following the establishment of willows and 

cottonwoods, the river has responded to form a prominent narrower and deeper main channel 

with reduced channel braiding (multiple side channels).  This combines with vegetation shading 

to lower water temperatures and improve conditions for both fish and wildlife (Rood et al. 

2003b).  

 

Flows and physical rehabilitation – middle Truckee River, Nevada, USA 

Along some river reaches, physical alterations to the channel impose an additional challenge that 

cannot be solved solely by instream flow remediation. The middle reach of the Truckee River 

was channelized, resulting in a straighter channel that incised deeply into the former floodplain 



(Figure 6). This section of the river thus became disconnected from the fluvial processes 

essential to maintaining floodplain forests. 

The restoration of this physically modified reach solely through flow naturalization 

would probably have required decades or even centuries. Consequently, the current restoration 

strategy includes physical restructuring of the river channel as well as instream flow 

management (Figure 6). Physical excavation will reestablish a sequence of sinuous meanders 

with riverbank cross-sections based on the geometry of the prior channel. While there will be 

some deliberate riparian vegetation planting, it is anticipated that there will also be natural 

recruitment of willows and cottonwoods following the physical reconnection of the river and 

floodplain environments.  

 

Floodplain forest ecosystems 

Along these and other rivers, the restoration of dynamic flow patterns succeeded in promoting 

the recruitment of riparian cottonwoods and willows (Shafroth et al. 1998; Rood and Mahoney 

2000; Rood et al. 2003b). These trees and shrubs have both aesthetic and environmental value 

and provide a critical foundation for floodplain forest ecosystems. As a result, there are close 

associations between the status of riparian trees and the occurrence of birds (Farley et al. 1994; 

Dobkin et al. 1998; Twedt et al. 2002; Rood et al. 2003b). Other organisms, including bats, 

insects, and other invertebrates, as well as understory plants also benefit directly and indirectly 

from changing flow regimes and woodland restoration (Holloway and Barclay 2000; Ellis et al. 

2001; Holl and Crone 2004). 

 

Lessons for implementation 

For most dammed rivers, management adjustments to attain a more natural hydrograph and river 

channel morphology will benefit river and floodplain ecosystems, and we therefore support the 

natural flow paradigm (Ligon et al. 1995; Poff et al. 1997). However, although there is an 

increasing understanding of the hydraulic, geomorphic, and ecological processes of fluvial 

ecosystems, this knowledge base remains incomplete and river managers need to appreciate the 

inherent variability and individuality of rivers (Montgomery and Buffington 1997; Wissmar and 

Bisson 2003). Recognizing these complexities, we provide some strategic recommendations to 

promote the recovery of river flow patterns. 



 

• Establish broad-based advisory groups to increase prospects for comprehensive 

consideration and political and financial support. We further suggest the deliberate 

recruitment of agencies with widely differing mandates. For example, the early 

partnership between The Nature Conservancy and the US Army Corps of Engineers 

provided an inclusive context for the Truckee River project. 

• Formalize explicit objectives and desired outcomes to focus planning and 

communication. This may reveal knowledge gaps, potential problems, and assist in the 

cost–benefit analyses that are typically required for financial support. The use of graphic 

representations and physical models focus the scientific planning and assist in 

communicating current versus anticipated environmental conditions (Figures 6 and 7). 

• Endangered species legislation is a potent tool that helped the Truckee River project 

(Rood et al. 2003b). However, this can also challenge ecosystem restoration, since 

measures intended for individual endangered species can further distort flow patterns. For 

example, late summer and autumn flows are deliberately increased for rivers in the 

Columbia River Basin to lower water temperatures and promote downstream passage of 

juvenile salmon, yet this inverts the seasonal flow pattern and disadvantages other native 

fish and riparian vegetation (Polzin and Rood 2000). 

• Dams were initially constructed without comprehensive environmental impact 

assessments (EIA) and many operating licenses are now expiring. The re-licensing 

process involves a comprehensive EIA that considers a broad range of environmental, 

social, and economic factors (Gillilan and Brown 1997). Re-licensing provides an 

impetus for dam operators to be more receptive to revisions in flow management directed 

towards floodplain conservation and restoration (Bovee and Scott 2002). Fewer dams are 

now being built in North America, but new projects require comprehensive EIAs that 

address downstream impacts and suggest mitigation strategies. The introduction of a new 

dam along a previously dammed river may also provide an opportunity to revise the flow 

regimes of the existing dams (Rood and Mahoney 2000). 

• River restoration projects should include both comprehensive pre-project inventory and 

post-project ecological monitoring. Aspects related to flow regulation should include the 

opportunity for refinement according to the monitoring results. Flexible implementation 



of flow regimes provides a component of adaptive management that should not be 

applied by trial and error, but instead should involve learning from mistakes. There 

should be scientific study and appropriate reporting in the refereed literature to ensure 

rigorous scrutiny and public accessibility. Every dam and river restoration project 

presents an opportunity for experimental modification and a chance to broaden our 

knowledge base about riverine and floodplain processes. 

 

What’s next? 

While the case studies described above are promising, the science of river restoration is still in its 

infancy. Deliberate efforts to regulate flows for downstream restoration have been implemented 

on only a few rivers, generally for less than a decade. Some responses have been rapid, but it will 

take many more years to achieve complete recovery, if ever. It is thus essential to continue with 

these initial restoration projects and to expand the numbers and types of rivers involved in 

restoration efforts (Tockner and Stanford 2002). 

We suggest two current priorities for research and application. First, performance 

measures – empirical, quantitative measures of ecosystem response – need to be developed. 

These measures will provide the confirmation and quantification of ecosystem services that may 

be required to justify the restoration programs (Sweeney et al. 2004). Second, the concept of 

resizing rivers has emerged (Trush et al. 2000). With this approach, rather than seeking to restore 

a river system to its pre-development condition, a more practical objective might to establish a 

smaller (or larger) river system that displays the same essential ecosystem functions as the 

original river, but has been scaled to reflect the new hydrologic situation. As it is unlikely that 

pristine, pre-development riverine conditions can ever be recovered, restoring critical ecosystem 

functions may provide a more feasible objective. 
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Figure 1. Two adjacent channels of the Big Lost River, Idaho. (a) One channel in which flow continues 

and narrowleaf cottonwoods and sandbar willows are thriving, and (b) a second channel that has been 

dewatered due to irrigation diversion, leading to severe floodplain mortality. Figure modified from Rood 

et al. (2003a). 

 

Figure 2. The riparian “Recruitment Box model” that describes the seasonal streamflow pattern, 

associated river stage (elevation), and flow ramping that will enable successful seedling establishment of 

cottonwoods and willows. Figure modified from Amlin and Rood (2002). 

 



Figure 3. The stage (elevation) hydrograph for the flood year of 1995 for the South Saskatchewan River, 

Alberta, Canada, that is downstream of both the Oldman and St Mary dams, for which flow ramping, 

gradual flow recession, was implemented. Figure modified from Kalischuk et al. (2001). 

 

Figure 4. (a) Prolific prairie cottonwood seedlings in the establishment year of 1995 along the South 

Saskatchewan River, following the flow pattern displayed in Figure 3, and (b) narrowleaf cottonwood 

saplings in summer 1999 along the lower St Mary River. Figure (a) modified from Kalischuk et al. 

(2001), Figure (b) modified from Rood and Mahoney (2000). 

 

Figure 5. (a) Conditions along the Truckee River in 1977 (winter) versus (b) 1997 (autumn). The photos 

are taken in adjacent locations since the river channel has moved. The comparison shows the prolific 

establishment of Fremont cottonwoods, sandbar willows, and other willows following flow 

naturalization. Figure from Rood et al. (2003b). 

 

Figure 6. (a) Aerial photograph of the middle Truckee River and (b) an artist’s interpretation of the 

restored system after channel meandering has been reestablished by physical excavation, and Fremont 

cottonwoods and other vegetation are established. 

 

Figure 7. (a) A photograph of a small-scale physical model of the lower Truckee River built by Paul 

Wagner (Rood et al. 2003b), representing the apparent pre-development condition based on historic 

records versus (b) the degraded condition in the mid-1980s. The restoration project was intended to 

restore the pre-development condition (a); note the correspondence of the restoration objective and the 

actual result shown in Figure 5. 


