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ABSTRACT. The best previously known algorithm for evaluating the Riemann

zeta function, c,(a + it), with a bounded and t large to moderate accuracy

(within ±t~c for some c > 0, say) was based on the Riemann-Siegel formula

and required on the order of fc1/2 operations for each value that was computed.

New algorithms are presented in this paper which enable one to compute any

single value of c(cr + it) with a fixed and T < t < T + Tlf2 to within ±t~c

in 0(te) operations on numbers of O(logi) bits for any e > 0, for example,

provided a precomputation involving 0(T1f2+e) operations and 0(T1f2+e)

bits of storage is carried out beforehand. These algorithms lead to methods

for numerically verifying the Riemann hypothesis for the first n zeros in what

is expected to be 0(n1+s) operations (as opposed to about n3/2 operations for

the previous method), as well as improved algorithms for the computation of

various arithmetic functions, such as 7r(i). The new zeta function algorithms

use the fast Fourier transform and a new method for the evaluation of certain

rational functions. They can also be applied to the evaluation of L-functions,

Epstein zeta functions, and other Dirichlet series.

1. Introduction. Some of the algorithms for computing the Riemann zeta

function and actual computations have dealt with values of the zeta function at

positive integers, while others dealt with very accurate determinations of small ze-

ros of this function. However, the most extensive computations have been those

directed at verifying the Riemann hypothesis (RH) for large sets of zeros, culmi-

nating in the recent calculations that established the truth of the RH for the first

1.5 ■ IO9 zeros [17] using over a thousand hours on a modern supercomputer. These

calculations involved computing values of the zeta function c(^ + it) for t real and

very large but only to medium accuracy (roughly ±i-2). Other calculations of

actual values of the zeros of the zeta function at even greater heights, designed

to test conjectures about distribution of spacings between consecutive zeros [18,

19], required only slightly greater accuracy. Finally, new algorithms have recently

been invented [16] for the computation of arithmetical functions such as 7r(a;), the

number of primes < x, that are more efficient than any known combinatorial meth-

ods, and which require values of c(s) to be computed at points s = a + it, for a

fixed (typically a = 2) and i large, but again only to accuracy ±i_c for various

c > 0. (For a fuller description of these and other computations of the zeta func-

tion, see [19].) In this paper we will present improved algorithms for computing

such "medium accuracy" values.
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798 A. M. ODLYZKO AND A. SCHONHAGE

The Riemann zeta function is defined for s = a + it by

oo

(1.1) c(8) = J2n~s
n = l

for a > 1, and by analytic continuation can be extended to an analytic function

of s for all s ^ 1 [7, 13, 22]. The definition (1.1) suggests the idea of using the

Euler-Maclaurin summation formula [12, Equation 23.1.30] to evaluate c(s), and

one easily obtains, for any positive integers m and n,

n—1 ^ 1 — s rn

(1.2) c(s) = £ rs + ^Ts + ?—[ + Y, Tk,n(s) + Em,n(s),

3 = 1 S fc=l

where
lk — 2

^m-^"1-'-* II <•+>).

B2 = 1/6, B4 = -1/30,..., are the Bernoulli numbers, and

o -I- Im  -I-  1

(1-3) \Em,n(8)\ <    a + 2m + \Tm + l,n(s)   •

The formula (1.2) with the estimate (1.3) can easily be shown to hold for any

a > -(2m + 1). By taking m and n large enough (and using sufficient accuracy

in basic arithmetic routines), any value of c(s) can be computed to any desired

accuracy by this formula. All calculations of zeros of the zeta function that were

published before 1930 relied on this method. Its advantages include the ease of

estimating the error term. (This is the main reason this formula is still used for

very accurate computations of c(s) for s small, cf. [19].) Its main disadvantage is

its inefficiency. For i large and a = 1/2, say, it is necessary to take n on the order of

i to obtain any kind of accuracy. This is due to the fact that the Euler-Maclaurin

formula basically approximates each term k~s, k > n, by

^.^(^^^((l.I)'-'-!),

and for i much larger than k this is not a good approximation, and cannot be

improved easily even by taking higher degree approximations (which is where the

terms with Bernoulli numbers come from).

A method for computing c(s) that is much more efficient than the Euler-

Maclaurin formula (1.2) was discovered around 1932 in Riemann's unpublished

papers by C. L. Siegel [21]. This formula [21, Equation (32)], now universally

referred to as the Riemann-Siegel formula, is presented in §2. Roughly speaking,

it enables one to compute c(a + it) for t large and o bounded to within ±t~c for

any constant c in about i1/2 steps. (Since c(s) = c(s), we will always assume that

t > 0.) The Riemann-Siegel formula is the fastest method for computing the zeta

function to moderate accuracy that is currently known, and has been used for all

large scale computations since the 1930s.

Only one other method, besides the Euler-Maclaurin and Riemann-Siegel ones,

seems to have been proposed for computing c(s) to moderate accuracy at large
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EVALUATIONS OF THE RIEMANN ZETA FUNCTION 799

neights, namely the one due to Turing [24]. It was designed to provide higher

accuracy than was guaranteed by the crude bounds on the remainder term in the

Riemann-Siegel formula that were available at that time, and at the same time be

more efficient than the Euler-Maclaurin formula. However, very good estimates for

remainder terms in the Riemann-Siegel formula are now available [8], which seem

to make Turing's method unnecessary.

In this paper we propose new methods of computing the zeta function and related

functions which are much faster than the Riemann-Siegel formula method when

many values at closely spaced points are needed. We will obtain upper bounds for

the number of arithmetic operations (multiplication, addition, division, subtrac-

tion) on numbers of O(logT) bits that our algorithms use. Our main result is as

follows.

THEOREM 1.1. Given any positive constants 8, a, andcy, there is an effectively

computable constant c2 = c2(8,a,cy) and an algorithm that for every T > 0 will

perform < c2T1/2+6 elementary arithmetic operations on numbers of< c2 logT bits

using < c2T1f2+s bits of storage, and will then be capable of computing any value

c(a + it), T < t < T + T1/2, to within ±T~Cl in < c2T6 operations using the

precomputed values.

The algorithms referred to in the theorem are described and analyzed in §§2-4.

They offer no advantage over the Riemann-Siegel formula when a single value of

c(s) is desired, and in fact they suffer from the disadvantage of requiring about

T1/2 bits of storage, whereas the Riemann-Siegel formula requires 0(TE) storage.

(The storage requirements of the new algorithms can be lowered at the cost of

decreasing the range in which values can subsequently be computed rapidly, as will

be explained in §5.) On the other hand, in typical applications, such as verifying

the RH for a block of zeros or computing ir(x) by the method of [16], one needs

at least T1/2 values of c(a + it), t E [T,T + T1/2] for all large T, and the new

algorithms allow one to compute these values in average time 0(Te) for all £ > 0

(but with the use of 0(Tll2+e) bits of storage).

The best currently known strategy [4, 7, 17, 19] for verifying the RH for the first

N zeros involves finding N sign changes of the real function Z(t) that is defined by

(1.4) Z(t)=e^\(\+it),

(1-5) 0(i)=arg[7r-''/2r(!+7i/2)],

in the subinterval of [10, oo) where 6(t) < Nir, i.e., t < 27rA^(logTV)-1. This

requries at least N + 1 evaluations of c(| +it), and in practice about 6N/o evalua-

tions suffice [17, 19]. With the Euler-Maclaurin formula, verification of the RH for

the first TV zeros therefore takes in practice 0(N2+£) operations, and in any case

> c3iV2(log A'')-1 operations. With the Riemann-Siegel formula, this same verifica-

tion requires in practice 0(Ar3/2+£) operations, and at least > c\j./V3/2(log./V)~1/'2

operations. With our new algorithms, we expect that this task can be accomplished

in 0(N1+e) operations using 0(Tx/2+e) bits of storage, for every £ > 0, which is

essentially best possible for the basic strategy that is currently used. We cannot

rigorously prove this running time bound because for all we know, counterexamples

to the RH might occur, or else very close pairs of zeros or multiple zeros might cause

the current verification strategy to fail, cf. [19].
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800 A. M. ODLYZKO AND A. SCHONHAGE

In the case of algorithms for computing 7r(a;), the best currently known combina-

torial algorithm [14] requires 0(a;2/3+e) operations and 0(x1/3+e) bits of storage.

A totally different algorithm, proposed in [16], uses numerical integration of ana-

lytic transforms involving the zeta function to compute ir(x). If one employs the

Euler-Maclaurin formula to compute c(s), this algorithm runs in time 0(a;2/3+£)

and space 0(x£). The Riemann-Siegel formula lowers the running time to 0(a;3/5+e)

and keeps the storage requirement to 0(x£). The new algorithms presented in this

paper lead to an algorithm for computing ir(x) that uses 0(xl/2+e) operations and

0(a;1/4+£) bits of storage. Similar running time improvements can be obtained for

other algorithms, such as those for computing M(x), the summatory function of

the Mobius p-function [16].

The basic idea behind our new algorithm comes from the fact that the bulk of

the work in computing c(a + it) or other Dirichlet series occurs in evaluating sums

of the form
M

(1-6) g(t) = J2dkk~lt,
fc=i

see §2. If g(t) and several of its derivatives (which are of the same general form)

are known at a set of regularly spaced i's in some interval, though, g(t) can be

computed at any point of that interval by using Taylor series expansions around

the nearest grid point (§2). On the other hand, the problem of evaluating g(t) at

an evenly spaced set of i's can be transformed, using the fast Fourier transform

(FFT), to the problem of evaluating a rational function of the form

at the n nth roots of unity (§3). In §4 we show how to rapidly evaluate such rational

functions at multiple points.

The basic method outlined above is very general. The specific algorithms referred

to in Theorem 1.1 and described in this paper use the Riemann-Siegel formula as a

starting point. However, they could also be used with other methods. For example,

if we had to rely on the Euler-Maclaurin formula, the precomputation time and

storage requirements in Theorem 1.1 would both go up to 0(T1+S), but individual

values of c(a + it) could again be computed in time 0(T6). (The requirement

tE[T,T + T1'2] would be replaced by i E [T,2T].) In §5 we will mention some of

the applications of our basic method to the computation of other Dirichlet series,

as well as some of the time-space tradeoffs that are possible with our algorithms.

The presentation of the basic method in sections 2-4 is limited to the zeta func-

tion in order to bring out the basic ideas without obscuring them with excessive

notation. The various factors of T6 and the like in our estimates could be replaced

by powers of log T, but we have chosen not to do so in order to keep the presenta-

tion as simple as possible. Actual implementations of our algorithms, which we feel

are likely to be practical, would require substantial modifications of the algorithms

as outlined below and extensive work on good explicit estimates of various error

terms.

2. Reduction to an evenly spaced grid. In this section we show that the

evaluation of c(a + it) for i in a short interval can be reduced to that of evaluating
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EVALUATIONS OF THE RIEMANN ZETA FUNCTION 801

several simple exponential sums at an evenly spaced grid of points. Because of the

functional equation of the zeta function, we can restrict our attention to a > 1/2,

i > 0. We start out by recalling the Riemann-Siegel formula [21], which we write

in the more standard notation of [7, 13, 22], where this formula is proved for

0 < a < 1 only. (We could further simplify our presentation by restricting ourselves

to a = 1/2, in which case a nice proof with very good estimates of the error terms

has been obtained recently by Gabcke [8]. However, the analytic algorithms for

computing 7r(x) presented in [16] require the use of a > 1/2.) Let s = a + it, where

1/2 < o- < 2 is fixed, t > 2ir, N E Z+, and i > c5N for a certain fixed c5 > 0.

Further let m = L(27r)-1/2i1/2J, and for v being the fractional part of t1/2(2ir)-1/2,

let

N — 1 | T—n /9\n/2—r

(2.1)     &(., = y. £ ^hw- (;)      «»w*(-2"m,
n=0 r<n/2     v I \    /

with

/~„n t/   •,        COS7r(|u2 -U- i)(2.2) *(u) =--1-&-,
COS 7TU

and with the coefficients an (s) given by the recurrence

(2.3) o0(s) = l,    ay(s)=a-=^,        a2(s)={a~l)^~2\

(n + l)t1'2an+y(s) = (a - n - l)an(s) +ian-2(s)    for n > 2.

Then an(s) satisfy the bound [21]

(2.4) \an(s)] < c9t-n'6.

We then have

(2.5)
m m

c(s)= ^/c- + x(s)^fcs-1

+ (-l)m-1(2vri)(s-1'/2 exp(-77r(s - l)/2 - it/2 - irr/8)T(l - s)TN(s),

where

(2.6) X(s) = 2s7rs-1sin(^)r(l-s),

(2.7) |Tjv(S) - SN(s)\ < c6{e-^ + (csN/t)N/6}

for some effectively computable constants c&, cj, eg > 0.

We first show that the last term in (2.5) can be computed efficiently.  First of

all, by Stirling's formula [12, Equation 6.1.42],

(2.8) l0gr(l -S)=   Q - S) l0g(l -S)-(1-S) + 1 l0g(27T)

M „
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802 A. M. ODLYZKO AND A. SCHONHAGE

where we choose M = [cy + 10J, and the constant implied by the 0-notation is

(as will be the case for all other such constants) dependent only on a, 8, and cy.

Hence we can compute logr(l — s) using (2.8) to an accuracy of 0(i"Cl"15) in

0(ts) arithmetic operations. Similarly, we can compute

—iir(s — 1)      it      iir
W~ 2 I_ ~8

to within 0(i-Cl-1°) in 0(t6) operations. Since [12, Equation 6.1.45]

|r(i-s)| = o(i1/2-CTe-7rt/2)

(a result that follows from (2.8) also), we have

|(27ri)(s-1>/2eT(l - s)| = 0(t~°/2),

and we can compute it to an accuracy of 0(t~Cl~10) in 0(ts) operations.

Next we consider Sn(s), where we select N = [Ocy + 100J. Note that *(u) is

actually an entire function, and its Taylor series expansion around u = 1/2 can

be used to evaluate $(u) and its first N derivatives in a neighborhood of u = 1/2

(and similarly in a neighborhood of u = —1/2), while away from u = ±1/2, we can

differentiate the expansion (2.5) and evaluate individual terms. Each of the first

N derivatives takes 0(t6) operations to compute to within 0(i-Cl-1°). Finally,

the an(s) for 0 < n < N — 1 can be computed by the recurrence (2.6) to within

0(i-Cl-1°) in 0(t6) operations. Combining all these estimates, we conclude that

the entire term in (2.1) containing Try(s) can be computed to within 0(i-Cl-1°) in

0(ts) operations (using 0(t6) bits of storage).

Stirling's formula (2.8) allows us also to compute \(s) to within 0(i-Cl-1°) in

time 0(t6). Therefore, in order to compute c(s) to within 0(i-Cl-1), it suffices to

be able to compute

m

(2.9) f*(t) = J2ka+it
fc=i

for a = -a and a = a — 1 to within 0(i-Cl-10).

Suppose now that we are interested in computing values of c(o + it) for i E

[T,T + T1/2]. By the discussion above, we will be able to compute each such value

to within 0(i-Cl-1) in 0(ts) additional operations if we can compute f*(t) to

within 0(i-Cl"10), where in the definition (2.9) of f(t), m = [i1/2(27r)-1/2J, and

a ranges over two values E [—2,1]. If we now choose

(2.10) H = LT1/2(2tt)-1/2J

and define

H

(2.11) f(t) = YJka+xt,

fc=2

then for i € [T,T + Tl/2], f(t) and f*(t) differ by at most two terms, namely 1 and

(H + l)a+lt, and this difference can be computed to within 0(T-C'-10) in 0(TS)

operations for any i.
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Since

H

(2.12) /^(i)=r£(logfc)rfca+'',

k=2

we have \f^(t)\ < H2(logH)r for any nonnegative integer r (recall that a < 1).

Let

(2.13) G= |_T(1+6)/2 + 2J,

(2.14) n=Tll2G~1,

(2.15) ti = T + j-n       0<j<G,

and compute the f(r)(tj) iorO<r <R= 10[cy + 10] |"<S-1 + 10] (where [x] denotes

the least integer > x) to within 0(i-Cl-20) each. Then for any i € [^T + T1/2], if

|i — tj] < n (as happens for at least one tj), the first R terms of the Taylor series

expansion of f(t) around tj give the values of f(t) to within 0(i-Cl-1°), since the

remaining terms are

r=fl ' Vr=R ' /

for T sufficiently large (depending only on 8 and ci), and the first R terms are all

0(T).
We have so far proved the last part of Theorem 1.1, namely that if we compute

the f(r)(tj) for 0 < r < R and 0 < j < G to within O(T-Cl-X0) each (where a in

(2.12) ranges over the two values a = —a and a = a-1), then any additional value

of c(a + it) for t E [T,T + T1/2] can be computed in 0(TS) operations to within

O(j--ci-i) for T > T0(a,6,cy). Therefore for T > Ty(a,8,cy), we can compute

c(a + it) to within ±T-Cl in 0(TS) operations. Furthermore, for i < Ty, each value

of c(o+it) can be computed in time < cio (depending on a, 8, and ci above) to the

desired accuracy by means of the Euler-Maclaurin formula. Note that storage of

all the f(r)(tj) takes 0(Tl/2+s) bits. Therefore to complete the proof of Theorem

1.1, we only have to show how to evaluate all the f^(tj) in time 0(T1f2+s) and

space 0(Tl'2+6).

3. Application of the fast Fourier transform. In this section we will show

that if £ > 0 and eyy > 1 are constants and

H

(3.1) g(t) = Y,dkkit,
k=i

where |dfc| < HCu, and the values of the dk are known to within O(r7-100ci1),

then we can compute g(0), g(0),... ,g(9G) for G < 2H1+£, 0 < 9 < 1, each to
within 0(H~Cl1), using 0(H1+2e) operations and 0(Hl+2£) bits of storage. (The

constants implied by the O-notation are to depend only on e and eyy.) To do this,

select n to be a power of 2, n — 2fc, such that

2H1+£ + 2 < n = 2h < 4H1+£ + 4,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



804 A. M. ODLYZKO AND A. SCHONHAGE

and let

(3.2) cj = e27"/",

n-l

(3-3) h(j) = J2 9(™0)ujm>,        0 < j < n - 1.
m=0

The inverse of this discrete Fourier transform yields

1  n—1

(3.4) g(m9) = - Y" h(j)u~mj,        0 < m < n - 1.
n z—'

j=0

If we compute the h(j) to within 0(H{~8ci1), then, since the h(j) are all 0(H4ci1),

we will be able to compute the g(md) to within 0(H~3ci1) using the FFT [1]

in 0(nlogn) arithmetic operations on numbers of O(logn) bits; i.e., a total of

0(H1+2e) operations using 0(Hl+2e) bits of storage.

We now consider the computation of the h(j). By (3.1) and (3.3),

H

(3-5) h(j) = J2dkwk(j),
fc=2

where

n-l

(3.6) wk(j) = £ kim6u,m*.

m = 0

Take any k, 2 < k < H. If there is some j (necessarily unique), say j = J, such

that

(3.7) \l-kteujJ\<H-20ci\

then

wk(J)=n + O(H-10c"),

wk(j) = 0(H~Wc")    for 0 < j < n - 1, j ? J.

If there is no J that satisfies (3.7), then

l-kine    _ k~ie(kin$ - 1)

Wh{j> ~ 1 - k^ujJ ~     ujJ - k-M    '

Let

(3-8) /M = E^F^
fc=2

where ak = 0 if there is some J, 0<J<n-l satisfying (3.7), and

ak = dkk-ie(k™e - 1)

otherwise. If we can now evaluate f(uJ3) IorO<j < n — 1, all to within 0(H~Scir),

and in 0(Hl+2£) operations in 0(H1+2e) bits of storage, then we can compute all

the h(j) to a similar accuracy with the same running time and space bound by

making a single pass through all the fc's to identify those for which (3.7) is satisfied

for some J, and adding to the already computed value of f(ujJ) the number dkn.

Thus to complete the presentation and analysis of our algorithm it remains to show

how rational functions such as (3.8) can be evaluated rapidly and accurately.
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4. Rational function evaluation. In this section we prove the auxiliary result

that is needed to complete the description of our algorithms for evaluating the zeta

function. This result is stated in a form that is much less general than possible. In

fact, the basic method of proof we utilize can be generalized to produce a 0(n1+£)

operations algorithm for the following problem, which has been circulating under

the name of "Trummer's problem" [11].

Given complex numbers Xj and aj, 1 < j < n, \xj\ < 1 and \a,j\ < 1 for all j,

and \aj — ak\ > n~c for some c > 0 and all j ^ k, and a constant c', compute

bk = Y] —^—,        l<k<n,

to within ±n-c .

This problem arises in research on the complexity of conformal mappings [23]

and was first formulated explicitly by Golub [11] in a form similar to that above,

but without the restriction that |a; - ak\ > n~c for j ^ k, with the question

being whether all the 6^ can be computed in fewer than n2 multiplications. By

a result of [9], both versions of this problem are equivalent to a rational function

evaluation problem similar to the one we have to solve. In the algebraic model,

where arithmetic operations are counted at unit cost (as if infinite precision were

possible, which is realistic in the case of small finite field computations, but not

in general), it can be shown that this task can be carried out in 0(n(logn)2)

operations (cf. [10]). Our method yields a 0(n(logm)c ) bit operations algorithm

for the finite precision version stated above.

The method used to evaluate the rational function f(x) given by (3.8) at the nth

roots of unity is based on Taylor series expansions around a small set of points. It

is impossible to use such expansions of the function f(x) itself, because the radii of

convergence would in general be too small. What we show, though, is that there is

a way to form functions fp,q(z), each consisting of some of the summands in (3.8),

such that the Taylor series of each converges in a wide region, and such that for

each j, f(zj) can be written as a sum of a subset of the fP,q(zj), where each of the

fv,q(z) that appears in the sum converges rapidly at z = Zj.

THEOREM 4.1. Given any constant c > 1, there is a constant c' such that if

o-k, 1 < k < n, are complex numbers given to an accuracy of±n~10c with \ak] < 1,

and 0k, 1 < k < n are real number a with 0 < 0k < n, given also to an accuracy of

±n~10c, and moreover if \0k — j] > n~Sc for 1 < k < n and all integers j, then one

can evaluate the function

n

f(z) = 53    _,   .        °k = exp(2iri0k/n), 1 < k < n,
fc=i z    °k

at all the points

Zj = exp(2irij/n),        0 < j < n - 1,

to within ±n~c using < c'u(logn)2 arithmetic operations with complex numbers of

< c' log n bits in < c'n(logn)2 bits of storage.

PROOF. Let (x) denote the nearest integer to x,

(x) = [x + l/2\,
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806 A. M. ODLYZKO AND A. SCHONHAGE

and let ||a;||n denote the "cyclic distance" on R/nZ;

]]x]]n = min \x — kn].
k

For nonnegative integers p and o, p < n, 39 < n/2 + 1, piq < n — 1 + (3q - l)/2,

define

JPi, = {k: 1 < k < n, ]]0k - p3«||n > 3« - 1, \]0k - <p/3)39+1||„ < 3«+1 - 1}.

(The determination of the lVA should be based on the known O(logn) bits of

0k; due to the high precision of the given values of 0k, any mistakes made here

will not perceptibly affect the final answer.) For fixed k and q, k E Ip<q implies

\]0k — (p/3)3?+1||n < 39+1 - 1, which is possible for at most 6 values of p with

0 < p < n - 1, p3« < n - 1 + (3« - l)/2. Therefore each k belongs to at most

10log n of the Ip<q, and they can be determined fast.

Let Q = [log3(n/2 + 1)J. For any j, 0 < j < n — 1, it is easy to see that the

union of the sets I/j3-q)iq, 0 < q < Q, is all of 1,2,...,n. Furthermore, since for

any x, ((x/3)/3) = (x/9), we have

J0.3-,)>9 = {k: \]0k - 0"3-9)3«||„ > 3« - 1, ||/?fc - <i3-(«+1>)39+1||„ < 3*+1 - 1},

and therefore these sets I(j3-<>),q are disjoint. Therefore we define

then for any j, 0 < j < n — 1, we will have

Q

f(Z3) = ^2f{j3-"),q(Z3)-
9=0

The functions fp,q(z) will be evaluated at points Zj with (j3~9) = p. For q = 0,

we use ordinary arithmetic, which requires 0(n) operations on complex numbers

of O(logn) bits. For q > 0, we use a power series expansion around the point

zp,Q = exp(27T7p3«/n). Note that (j'3-9) = p is equivalent to ||j-p3«||„ < (3«-l)/2,

while k E IPiq implies \\0k — p39||n > 39 - 1, so that

zi ~ zv,i   <; 1 _ o-1/2

bk ~ zv,q   ~ 2 cos(7r/4)

Therefore for R > 2000c log n, say,

Afc 0-k (.  _  Zp,q ~ Zj \

Zj - bk      zp<q -bk\       zPA -bkJ

= t(z      \y+i^-*jY+0(n-™%
r=0 ^  p'q k'

and if we choose some scaling factor £g close to 27r3?/n, possibly a power of 2, then

we will have

r=0 \        «9        /
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where

p'q'r~kk>«-bk)r+l'

Hence we will obtain

n*i)=EE%3-),,,rC(^ - zj)t+o(n-4oc).
r=0   q

If we compute the APt<]ir to within ±n-20c, say, which takes 0(n(logn)2) oper-

ations on complex numbers of O(logn) bits and 0(n(logn)2) bits of storage (all

constants implied by the 0-notation depending on c only), then we can compute

each individual f(zj) to within O(n~20c) in 0((logn)2) additional operations.

5. Extensions of basic results. The basic method presented in the preceding

sections can be extended in several ways. In particular, it is possible to partially

overcome the main disadvantage of the algorithm of Theorem 1.1, namely large

space requirement. By breaking up the exponential sums of the form (2.11) into

smaller sums, it is easy to obtain the following generalization of Theorem 1.1.

THEOREM 5.1. For any a E [0, i] and any constants, 8, a, and cy, there is an

effectively computable constant c2 = c'2(8,a,cy,a) and an algorithm that for every

T > 0 will perform < c'2Tlf2+s operations on numbers of < c2logT bits using

< c'2Ta+g bits of storage and will then be capable of computing any value c(cr + it)

for T < t <T + Ta to within ±T-Cl in < c'2Ts operations using the precomputed

values.

The Riemann-Siegel formula was the starting point of our method and was in-

strumental in keeping down the precomputation time and space. However, the same

basic idea could be used with the Euler-Maclaurin formula. In the case of Dirichlet

L-functions, it could be employed either with the Euler-Maclaurin formula or the

generalized Riemann-Siegel formula of Davies [5] and Deuring [6].

A somewhat more interesting application of our method is to the computation

of Epstein zeta functions [3, 15]. There are formulas for them in which the main

contribution to the evaluation of one of these function at s comes either from a sum

of Ky/2-s(z) for various values of z [20], where

Ks{z) = -l    exp(--(u + u-1)}us-1du
2 Jo >■   u )

is the modified Bessel function of the second kind, or else from a sum of G(s, z) for

various values of z [2], where

/oo us-xe-zudu

is a modified incomplete gamma function. It is again easy to reduce the basic

problem of computing these sums of integrals to that of computing the first few

derivatives of such sums at an evenly spaced grid of points. II s = a + iT + inj,

0 < j < n - 1, though (cf. §2), then for u> an nth root of unity (cf. §3),

"Zi /-oo i _    ir/n

53 G(a + iT + in], z)<J = /    e~*uu'-W—.— du,
j=0 Jl
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and similar expressions arise when we consider sums of Ky/2_s(z). When this

is summed over the various values of z, we reduce to the problem of evaluating

integrals with respect to u involving rational functions F(ui,uin) of two variables,

where we need to evaluate these integrals at all nth roots of unity uj. It appears

that this could often be done using the method of §4.

Our basic method might very well be practical for computing 7r(a;) and other

arithmetical functions, using the algorithms of [16]. However, very substantial

work would be required to actually put it in practice, since good error bounds

would have to be obtained for the remainders in the Riemann-Siegel formula away

from the critical line, and good contours of integration, kernels, and quadrature

rules would have to be chosen (cf. [16]). On the other hand, since the Riemann-

Siegel formula is much simpler on the critical line a = 1/2, and very good estimates

for it are known there [8], it would be easier to implement our method there for

the purpose of computing zeros of the zeta function.
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