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Sale of Price Information by Exchanges: Does it Promote Price

Discovery?⇤

Giovanni Cespa† and Thierry Foucault‡

February 8, 2013

Abstract

Exchanges sell both trading services and price information. We study how the joint
pricing of these products affects price discovery and the distribution of gains from trade in
an asset market. A wider dissemination of price information reduces pricing errors and the
transfer from liquidity traders to speculators. This effect reduces the fee that speculators are
willing to pay for trading. Therefore, to raise its revenue from trading, a for-profit exchange
optimally charges a high fee for price information so that only a fraction of speculators buy
this information. As a result, price discovery is not as efficient as it would be with free price
information. This problem is less severe if the exchange must compensate liquidity traders
for a fraction of their losses.

Keywords: Sale of Market Data, Transparency, Price Discovery.

JEL Classification Numbers: G10, G12, G14

1 Introduction

“No member of this board, nor any partner of a member, shall hereafter give the prices of any kind of

Stock, Exchange or Specie, to any printer for publication [...]” Constitution of the NYSE board, 1817

(quoted in Mulherin et al.(1991), p.597).

“Black box traders, direct market access traders and algorithmic traders are all in a race to beat the

other guy. And the best way to do that is to get their hands on the market data first [...].” Traders

Magazine, October 2009.

An essential function of securities markets is to discover asset values (see Baumol (1965),

Breshanan, Milgrom, and Paul (1992), O’Hara (2003)). This function is critical for an efficient
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allocation of capital in the economy, as better price discovery in the stock market translates

into better capital allocation decisions (see for instance Subrahmanyam and Titman (1999) and

Bond, Edmans, and Goldstein (2012)). For this reason, regulators and academics often see the

maximization of price discovery as one important goal. For instance, O’Hara (1997) writes (p.

270): “How well and how quickly a market aggregates and impounds information into the price

must surely be a fundamental goal of market design [...] If market prices reflect true asset values

more quickly and accurately then presumably the allocation of capital can better reflect its best

uses.” Market design depends in large part on the decisions of stock exchanges, that now are

for-profit firms. Exchanges’ income derives from trading revenues and increasingly from the

sale of information on prices.1 In this paper, we show that the efficiency of price discovery is,

among other factors, determined by the fee charged by exchanges for price information.2

Exchanges often supply information at various speeds, charging a higher fee to traders

who receive price information more quickly.3 In the past, trading was taking place on the

floor of stock or derivatives exchanges. In this case, floor brokers had, thanks to their physical

presence on the floor, a much faster access to price information than off-floor traders (see Easley,

Hendershott, and Ramadorai (2009)). Today, trading is increasingly electronic, which greatly

accelerates the speed at which price information can be delivered to market participants. Yet,

there are still fast and slow traders in terms of access to price and trade data (see Hasbrouck and

Saar (2011)). Indeed, some proprietary trading firms buy a direct access to trading platforms’

data feeds while other market participants obtain the same information with a delay, at a

lower cost.4 Trading firms buying direct access to streaming prices enjoy, in cyberspace, the

informational advantage that floor traders used to have in physical space.

Do exchanges have sufficient incentives to price their real time data feeds so that price

discovery is maximized or is there reason for regulatory intervention in this market? Should

regulators allow fast and slow tracks for access to price information? How does differential

access to price information affect the distribution of gains from trades among traders? Economic

analyses of these questions are scarce despite their importance in recent regulatory debates (see

for instance SEC (2010)).

To fill this gap, we consider the market for a security featuring risk averse speculators and

1Major exchanges (e.g., NYSE-Euronext, Nasdaq, London Stock Exchange, Chicago Mercantile Exchange)
are for-profit. See Aggarwal and Dahiya (2006) for a survey of exchanges’ governances around the world. A 2010
report of the Aite Group estimates that market data revenue accounts for 19% of revenue on average for NYSE-
Euronext, Nasdaq, Deutsche Börse and the Tokyo Stock Exchange. See “Exchange Data Solutions: Reeling in
the Revenue” (Aite Group, 2010). Other revenues stem from the sale of listing services.

2We do not model how price discovery affects investment because this link is already formalized in several
papers (sometimes in the CARA-Gaussian rational expectations framework used here; see Subrahmanyam and
Titman (1999) for instance).

3Information on past trades is generally available for free only after some delay (e.g., twenty minutes on the
NYSE, fifteen minutes on Nasdaq and Euronext). See http://finance.yahoo.com/exchanges, for the delays
after which information on transaction prices from major stock exchanges is freely released on yahoo.com. Real-
time price information is not free and given the speed at which trading takes place in electronic securities markets,
an information delayed by one second is already stale.

4This delay can be very small but is still sufficient to give an informational advantage to traders with direct
access to market data. For instance, U.S. trading platforms must also transmit their data to plan processors (the
Consolidated Tape Association and Consolidated Quote Association) that consolidate the data and distribute
them to the public (the proceeds are then redistributed among contributors). As this process takes time, mar-
ket participants with a direct access to the trading platforms’ data feeds can obtain market data faster than
participants who obtain the data from plan sponsors. See the SEC (2010), Section IV.B.2 for a discussion.
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liquidity traders. We interpret speculators as proprietary trading firms (the sell-side) specialized

in liquidity provision. They post a schedule of prices (limit orders) at which they are willing to

absorb liquidity traders’ orders. There are two types of speculators: the “insiders” who observe

prices in real time (that is, they know all prices up to the last transaction before submitting

their orders) and the “outsiders” who observe past prices with a lag (latency). As transaction

prices contain information on the asset payoff, insiders have an informational advantage over

outsiders. The market structures in which speculators are either all insiders or all outsiders

result in a level playing field since, in either case, speculators have access to price information

at the same speed. Otherwise some traders (the insiders) receive price information faster than

others.

The market is organized by a for-profit exchange who charges a fee for real time price

information and a trading fee (a fixed participation fee) to speculators. In equilibrium, the

fraction of insiders is inversely related to the fee for real-time price information. We show that

a decrease in this fee is associated with smaller pricing errors (the average squared deviation

between the payoff of the security and the transaction price). Indeed, speculators bet more

aggressively against pricing errors when they have information on past prices as they face

less uncertainty on the final payoff of their position. Accordingly, price discovery is improved

(pricing errors are reduced) when more speculators are insiders, that is, when the fee for price

information is low enough.

A reduction in this fee however lowers the expected profit of the exchange in two ways: (i) a

direct way (common in models of information sales): the exchange earns less revenue from the

sale of information per insider and (ii) an indirect way (specific to the information sale problem

studied in our paper): the fee that speculators are willing to pay for trading is smaller because

pricing errors are smaller. In particular, we show that speculators’ welfare is always smaller

when they are all insiders compared to the case in which they are all outsiders. Accordingly, the

exchange optimally restricts access to price information: it sets a high fee for price information

so that either no speculator purchases price information or only a fraction of speculators buy

this information. In the second case, the market features fast and slow traders in terms of access

to price information, very much as is observed in today’s markets. In either case, price discovery

is not maximal.

This policy makes the market more illiquid because it reduces competition among insiders,

which increases the adverse price impact of liquidity traders’ orders and therefore their trading

losses. Hence, by charging a high fee for price information, an exchange risks losing liquidity

traders unless it reduces the cost of trading for these investors. We account for this effect by

considering the possibility that the exchange compensates liquidity traders for a fraction of

their trading losses. We show numerically that as this fraction increases, the exchange lowers

its price for information, which works to improve price discovery and market liquidity.

To sum up, limited access to information on past prices softens competition among spec-

ulators. Hence, it increases speculators’ average welfare at the expense of liquidity traders

and price discovery. In the past, exchanges were owned by proprietary trading firms and they

strove to restrict the dissemination of information on prices (see the opening quotation in the

introduction). This was indeed in the best interest of their members according to the model.
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In today’s markets, exchanges are for profit and regulation does not allow them to disclose

transaction prices selectively (e.g., only to their members).5 However, by setting a high fee for

price information, they can still soften competition among trading firms and recover a fraction

of their rents by charging participation fees. Our model suggests that this practice harms price

discovery and liquidity traders. It therefore offers a rationale for regulating the sale of price

information by exchanges.

Our framework is closely related to Easley at al. (2011) and some of our findings are similar.

For instance, as in Easley et al. (2011), liquidity traders’ losses (or speculators’ welfare) are

minimal when price information is free in our model. Our paper differs from their paper in three

important ways, however. First, our focus is different: Easley et al. (2011) show that the cost of

capital is minimal when all investors have price information while we show that price discovery

is maximal in this case. Both results imply that a greater dissemination of price information

should affect firms’ real decisions but for different reasons: a lower cost of capital enables firms

to invest more while a more informationally efficient market enables firms to better identify

positive NPV projects (Bond, Edmans, and Goldstein (2012)).

Second, we do not model information sale in the same way: in Easley et al. (2011), the seller

of price information does not derive revenues from trading fees while it does in our model. As

shown in Section 7.3 and discussed further in Section 7.4, this difference matters. Depending

on the extent to which the exchange internalizes liquidity traders’ losses, allowing the exchange

to sell price information reduces or increases the price of price information relative to the price

charged by a pure information seller. Thus, the way in which price information is sold affects

welfare and price discovery. Moreover, in our setting, it can be optimal for the exchange to

abstain from selling price information while this is never the case when the exchange only

derives revenues from information.

Last, we show that there exist cases in which speculators’ average welfare is maximal for an

interior fraction of insiders, that is, when there is differential access to price information among

speculators. This result, which plays an important role for the analysis of the exchange’s optimal

selling policy, is not derived by Easley et al. (2011).

2 Related Literature

Our paper is also related to the literature on financial markets transparency (see, e.g., Biais

(1993), Madhavan (1995), Pagano and Roëll (1996), Bloomfield and O’Hara (2000), Boehmer,

Saar and Yu (2005) or Rindi (2008)) and the literature on information sales (e.g., Admati and

Pfleiderer (1986, 1987, 1990), Fishman and Hagerthy (1995), Veldkamp (2006), Cespa (2008),

Lee (2009) or Garcia and Sangiorgi (2012)).

The literature on transparency mainly focuses on pre-trade transparency: the information

on current quotes and orders (e.g., information on posted limit orders). In contrast, post-trade

transparency (the swift dissemination of information on the terms of trades) has not received

much attention although it is frequently discussed in regulatory debates. One issue is whether

5In the U.S., stock exchanges must make their data available since 1975 according to the so called “Quote
Rule.” See Mulherin et al. (1991) for an historical account of how exchanges established their property rights
over market data.
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exchanges have natural incentives to be post-trade transparent. We contribute to this question

by showing that an exchange always optimally restricts access to post-trade information when

its revenues primarily derive from the sell-side (proprietary trading firms). It may even be

sometimes optimal for the exchange to provide no post-trade information at all, which provides

an explanation for the existence of market structures with high post-trade opacity (e.g., OTC

markets).

We depart from the literature on information sales because an exchange is not a pure infor-

mation seller (as in, for instance, Admati and Pfleiderer (1986)): it also obtains revenues from

the sale of trading services. As shown in Section 7.3, this feature creates systematic differences

between the optimal pricing of its information by an exchange and that of a pure information

seller. Furthermore, the literature on information sales has shown that it is sometimes optimal

for the information seller to add noise to its information. Exchanges do not add noise to their

price reports, maybe because this would be considered illegal. Instead, they have the possibility

to delay the moment at which they disclose post-trade information for free, an aspect not ana-

lyzed in the literature on information sales. In section 7.3 we show that a pure information seller

never releases delayed information for free (unless obliged by regulation) whereas an exchange

sometimes finds optimal to do so.6

In reality, proprietary trading firms buy information on two distinct types of prices: (i)

quotes in the market at a given point in time (the entire limit order book for a security)

and (ii) prices at which transactions actually took place (including the most recent transaction

price). Both types of data are useful to reduce uncertainty on execution prices for market orders

(“execution risk”). This motivation for buying price information is analyzed by Boulatov and

Dierker (2007). It is not present in our model: as speculators submit limit orders, they face no

uncertainty on the price at which they trade a given quantity. Yet, as shown below, speculators

value information on prices because prices help them to better forecast future price changes.

This is another major reason for which proprietary trading firms (e.g., high frequency traders)

want to get super fast access to prices in real-time.7 Thus our approach is complementary to

Boulatov and Dierker (2007).

Last our paper contributes to the research agenda described in Cantillon and Yin (2011).

They call for using a combination of industrial organization and finance to understand market

structures as the “microstructure of exchanges is often part of their business models.” (p. 335).

This is precisely our approach: the post-trade transparency of the market (the fraction of

insiders) and the efficiency of price discovery are ultimately determined by the optimal pricing

decisions of the exchange in our model.

6In the literature on information sale, the information seller must commit to provide information thruthfully
because his information is in general not verifiable. This commitment problem does not arise for transaction
prices since these prices are verifiable. This is another reason for which the sale of price information is different
from other types of information sale.

7For instance, in describing the activity of one major high frequency trading firm on Chi-X (the 3rd largest
European trading platform), Jovanovic and Menkveld (2011) write (p.38) that this firm: “is particularly well

positioned to quickly do the statistics and infer a security’s change in fundamental value by tracking price series

that are correlated with it, e.g., the index level, same industry stocks, foreign exchange rate etc.” In the same
vein, Brogaard, Hendershott, and Riordan (2012) show that high-frequency traders exploit the information about
subsequent returns contained in posted limit orders.
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3 Model

We consider the market for a risky asset with payoff v ⇠ N(0, ⌧−1
v ). Trade take place at dates

1, 2, . . . , N between two types of traders: (i) a continuum of speculators (indexed by i 2 [0, 1])

and (ii) liquidity traders. Traders leave the market at the end of each trading round, and are

replaced by a new cohort of traders. We denote by en the net trade from liquidity traders at

date n. A positive (negative) value of en means that liquidity traders are net sellers (buyers) of

the security. Variable, en, is normally distributed with mean e and variance ⌧−1
e . We set e = 0,

that is, the asset is in zero net aggregate supply. This assumption simplifies some derivations

and it is not key for our main findings, as shown in the companion Internet Appendix (Section

A).

Each speculator i at date n observes a private signal sin about the payoff of the security:

sin = v + ✏in, (1)

where ✏in ⇠ N(0, ⌧−1
✏n

). The precision of private signals ⌧ ✏n is the same for all speculators in

any period n, but can change across periods. “Fresh” information is available at date n if the

precision of speculators’ signals at this date is strictly positive, ⌧ ✏n > 0. Error terms ✏in are

independent across speculators, across periods, and from v and en. Moreover, they cancel out

on average (i.e.,
R 1
0 sindi = v, a.s.).

We denote by pn the clearing price at date n and by pn the record of all transaction prices

up to date n (the “ticker”):

pn = {pt}
n
t=0, with p0 = E[v] = 0. (2)

Speculators differ in their speed of access to ticker information. Speculators with type I (the

insiders) observe the ticker in real-time while speculators with type O (the outsiders) observe the

ticker with a lag equal to l ≥ 2 periods. That is, insiders arriving at date n observe pn−1 before

submitting their orders and outsiders arriving at date n observe pn−l∗ where l∗ = min{n, l}.

That is,

pn−l∗ =

(

{p0, p1, p2, . . . , pn−l}, if n > l,

p0, if n  l.
(3)

We refer to pn as the “real-time ticker” and to pn−l∗ as the “lagged ticker.” The “delayed ticker”

is the set of prices unobserved by outsiders (i.e., pn\pn−l∗). The proportion of insiders at date

n is denoted by µ. When 0 < µ < 1, some speculators (the insiders) have access to ticker

information faster than other speculators. In the first period, the distinction between insiders

and outsiders is irrelevant since there are no prior transactions. We refer to l as the latency

in information dissemination and to µ as the scope of information dissemination (in real-time).

Figure 1 describes the timing of the model.

[Insert Figure 1 about here]

Each speculator has a CARA utility function with risk tolerance γ. Thus, if speculator i
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holds xin shares of the risky security at date n, her expected utility is

E[U(⇡in)|sin,Ω
k
n] = E[− exp{−γ−1⇡in}|sin,Ω

k
n], (4)

where ⇡in = (v−pn)xin and Ωk
n is the price information available at date n to a speculator with

type k 2 {I,O}.

As usual in a rational expectations model, the clearing price in each period aggregates

speculators’ private signals and constitutes therefore an additional signal about the asset payoff.

As speculators submit price contingent demand functions, they all act as if they were observing

the contemporaneous clearing price (whether or not they have information on past transaction

prices). Thus, in period n ≥ 2, we have ΩI
n = {pn} and ΩO

n = {pn−l∗ , pn}. We denote the

demand function of an insider by xIn(sin, p
n) and that of an outsider by xOn (sin, p

n−l∗ , pn). The

clearing price in period n, pn, is such that speculators’ aggregate demand is equal to the asset

supply, en, in this period, i.e.,

Z µ

0
xIn(sin, p

n)di+

Z 1

µ

xOn (sin, p
n−l∗ , pn)di = en, 8n. (5)

The structure of the model in each period is similar to other rational expectations model

(e.g., Hellwig (1980)). Multi-periods rational expectations models usually assume that all in-

vestors have information on past prices, i.e., µ = 1 (see, e.g., Grundy and McNichols (1989),

or Cespa and Vives (2012)). We consider the more general case in which 0  µ  1, so that

some speculators have a faster access to information on past prices than others. The first step

in our analysis is to study the equilibrium of the security market in each period (next section).

We then analyze the effect of varying µ on price discovery and speculators’ welfare. Finally

we endogenize the scope of information dissemination, µ, by introducing a market for price

information.

Investors (including proprietary trading firms) buy information about past transaction prices

because they do not participate to all transactions and therefore they do not automatically know

the terms of prior transactions. To capture this in the simplest way, we assume that speculators

stay in the market for only one period. A more general model could also feature speculators who

participate to all trading rounds (“recurrent speculators”) in addition to “episodic” speculators

who stay for one trading round. Only episodic speculators need information on the price history

(recurrent speculators know this history because they participate to all trades). We have studied

this more general case when n = 2 (see Section B in the Internet Appendix). The model becomes

significantly more difficult to analyze but it does not deliver additional insights relative to the

case with only episodic speculators.

4 Equilibrium prices with differential access to price informa-

tion

We refer to ⌧n(µ, l)
def
= (Var[v|pn])−1 as the informativeness of the real-time ticker at date n

and to ⌧̂n(µ, l)
def
= (Var[v|pn−l∗ , pn])

−1 – the precision of outsiders’ forecast conditional on their
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price information at date n – as the informativeness of the “truncated” ticker. The next lemma

provides a characterization of the unique linear rational expectations equilibrium in each period.

Lemma 1 In any period n, there is a unique linear rational expectations equilibrium. In this

equilibrium, the price is given by

pn = Anv −

l∗−1
X

j=0

Bn,jen−j +DnE[v | pn−l∗ ], (6)

where An, {Bn,j}
l∗−1
j=0 , Dn are positive constants characterized in the proof of the lemma. More-

over, speculators’ demand functions are given by

xIn(sin, p
n) = γ(⌧n + ⌧ ✏n)(E[v|sin, p

n]− pn), (7)

xOn (sin, p
n−l∗ , pn) = γ(⌧̂n + ⌧ ✏n)(E[v|sin, p

n−l∗ , pn]− pn), (8)

where ⌧n + ⌧ ✏n ⌘ Var[v|pn, sin]
−1 and ⌧̂n + ⌧ ✏n ⌘ Var[v|pn, p

n−l∗ , sin]
−1.

To interpret the expression for the equilibrium price, consider the case in which l = 2 (the

same interpretation applies for l > 2). In this case, equation (6) is:

pn = Anv −Bn,0en −Bn,1en−1 +DnE[v | pn−2], for n ≥ 2. (9)

We now contrast two particular cases: in the first case, speculators do not receive fresh infor-

mation at dates n− 1 and n, whereas in the second case, fresh information is available at date

n− 1 but not at date n. For the discussion, we define zn
def
= anv − en and an

def
= γ⌧ ✏n .

Case 1. No fresh information is available at dates n − 1 and n (⌧ ✏n−1
= ⌧ ✏n = 0, for n ≥ 3).

In this case, An = 0, Bn,0 = (γ⌧n−2)
−1, Bn,1 = 0, and Dn = 1 (see the expressions for these

coefficients in the Appendix). Thus, the equilibrium price at date n is

pn = E[v | pn−2]− (γ⌧n−2)
−1en. (10)

As speculators entering the market at dates n and n− 1 do not possess fresh information, the

clearing price at date n cannot reflect information above and beyond that contained in the

lagged ticker, pn−2. Thus, the clearing price is equal to the expected value of the security

conditional on the lagged ticker adjusted by a risk premium (the compensation required by

speculators to absorb liquidity traders’ net supply). ⇤

Case 2. Fresh information is available at date n− 1 but not at date n (⌧ ✏n = 0 but ⌧ ✏n−1
> 0).

In this case, the transaction price at date n − 1 contains new information on the asset payoff

(An−1 > 0). Specifically, we show in the proof of Lemma 1 that the observation of the price at

date n− 1 conveys a signal zn−1 = an−1v− en−1 on the asset payoff. Moreover, the equilibrium

price at date n can be written as follows

pn = E[v | pn−2] +Ana
−1
n−1

(

zn−1 − E
⇥

zn−1 | p
n−2
⇤)

−Bn,0en. (11)

8



If µ = 0, we have An = 0 and the expression for the equilibrium price at date n is identical to

its formulation in Case 1 (equation (10)). Indeed, in this case, no speculator observes the last

transaction price. Thus, the information contained in this price (zn−1) cannot transpire into

the price at date n.

In contrast, if µ > 0 some speculators at date n observe the last transaction price and trade

on this information. Thus, the information contained in the price at date n − 1 “percolates”

into the price at date n and the latter is informative (An > 0), even though there is no fresh

information at date n. Specifically, equation (11) shows that an outsider can extract a signal

ẑn, from the clearing price at date n:

ẑn = ↵1zn−1 − ↵0en = ↵1zn−1 + ↵0zn, (12)

with ↵0
def
= A−1

n Bn,0 and ↵1
def
= a−1

n−1. This signal does not perfectly reveal insiders’ information

(zn−1) as it also depends on the supply of the risky security at date n (en). Thus, at date n,

outsiders obtain information (ẑn) from the clearing price but this information is not as precise

as insiders’ information (since ↵0 > 0). For this reason, being an insider is valuable in our

set-up. ⇤

When no fresh information is available at dates {n − 1, . . . , n − l∗ + 1} (as in Case 1),

observing the delayed ticker is useless and there is no difference between insiders and outsiders.

Thus, to focus on the interesting case, we assume from now on that, at any date n, there is at

least one date j 2 {n− 1, . . . , n− l∗ + 1} at which fresh information is available (i.e., ⌧ ✏j > 0).

This restriction does not exclude the possibility that no fresh information is available at date n

(i.e., ⌧ ✏n = 0 , as in Case 2).

In general, the price at date n contains information on the asset payoff (i.e., An > 0) because

(a) speculators’ demand depends on their private signals (when ⌧ ✏n > 0) and (b) insiders’

demand depends on the signals {zn−j}
l∗−1
j=1 that they extract from the prices yet unobserved

by outsiders at date n (as in Case 2). For outsiders, the clearing price at date n conveys the

following signal (see the proof of Lemma 1):

ẑn =
l∗−1
X

j=0

↵jzn−j , (13)

where the coefficient ↵j is positive, for j = 0, 1, . . . , l∗ − 1. Intuitively, the signal ẑn provides

a less precise estimate of the asset payoff than the set of signals {zn−j}
l∗−1
j=0 since ẑn is a linear

combination of the signals in this set. Hence, the current clearing price is not a sufficient statistic

for the entire price history as the latter enables insiders to recover the signals {zn−j}
l∗−1
j=1 . For

this reason, observing past prices has value even though speculators can condition their demand

on the contemporaneous clearing price.8 We analyze the determinants of this value in Section

7.

8In Brown and Jennings (1989) or Grundy and McNichols (1989)) clearing prices are not a sufficient statistic
for past prices as well. In contrast, Brennan and Cao (1996) and Vives (1995) develop multi-period models of
trading in which the clearing price in each period is a sufficient statistic for the entire price history. In this case,
observing past prices has no informational value.
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5 Price discovery and the scope of information dissemination

We now study the effect of the scope of information dissemination (µ) and of latency (l) on price

discovery. We first consider how these variables affect (i) the informativeness of the “truncated

ticker,” ⌧̂n(µ, l) = (Var[v|pn−l∗ , pn])
−1, and (ii) the informativeness of the real-time ticker,

⌧n(µ, l) = (Var[v|pn])−1. The first measure of price informativeness takes outsiders’ viewpoint

since it measures the residual uncertainty on the asset payoff conditional on the prices that

outsiders observe. The second measure takes insiders’ viewpoint.

Let  m
n (µ, l)

def
= (Var[ẑn|v])

−1. The next proposition shows that  m
n is the contribution of

the nth clearing price to the informativeness of the truncated ticker. For this reason, we refer

to  m
n as the informativeness of the nth clearing price for outsiders.

Proposition 1 At any date n ≥ 2,

1. The informativeness of the truncated ticker, ⌧̂n, is:

⌧̂n(µ, l) = ⌧n−l∗ +  m
n (µ, l). (14)

⌧̂n(µ, l) increases in the scope of information dissemination (µ), (weakly) decreases in

latency (l), and is strictly smaller than the informativeness of the real-time ticker, ⌧n.

2. The informativeness of the real-time ticker, ⌧n, is independent of latency and the scope

of information dissemination. It is given by

⌧n(µ, l) = ⌧v + ⌧ e

n
X

t=1

a2t , with at = γ⌧ ✏t . (15)

Proof. To save space, the proof of this result and the proofs of all subsequent results are given

in the Internet Appendix. ⇤

As explained previously, the nth clearing price is informative about the signals {zn−j}
l∗−1
j=1

obtained by insiders from the delayed ticker (the prices yet unobserved by outsiders). For this

reason the precision of an outsider’s forecast at date n is greater than if he could not condition

his forecast on the contemporaneous clearing price (⌧̂n > ⌧n−l∗). Yet, an insider’s forecast is

more precise than an outsider’s forecast (⌧̂n < ⌧n) because the clearing price at date n is not a

sufficient statistic for the delayed ticker.

As the proportion of insiders increases, their demand (and therefore their signals) weighs

more on the clearing price realized in each period. Hence, the informativeness of the truncated

ticker increases in µ. In addition, the informativeness of the truncated ticker decreases with

latency because a higher latency implies that outsiders (i) have access to a shorter and, therefore

less informative, price history, and (ii) are uninformed about a greater number of transaction

prices. As they have only one signal (the current clearing price) about the information contained

in these prices, their inference is less precise.

In contrast, the informativeness of the real-time ticker, pn, does not depend on µ (second

10



part of the proposition). Actually, in equilibrium, a speculator’s demand can be written as

xkn(sin,Ω
k
n) = (γ⌧ ✏n)sin − 'k

n(Ω
k
n), (16)

where 'k
n is a linear function of the prices observed by a speculator with type k 2 {I,O}.

Thus, the sensitivity of speculators’ demand (γ⌧ ✏n) to their private signals (sin) is identical for

outsiders and insiders. Accordingly, the sensitivity of each clearing price to fresh information

and therefore the informativeness of the entire price history do not depend on the proportion

of insiders.

Price discovery is more efficient when transaction prices are closer to an asset fundamental

value. Hence, we measure the efficiency of price discovery by the mean squared deviation

between the payoff of the security and the clearing price (the average “pricing error” at date

n).9 As the average order imbalance, e, from liquidity traders is zero, the average pricing error

at date n is equal to Var[v − pn].
10

Proposition 2 At any date n ≥ 2, Var[v−pn] and therefore the average pricing error decreases

with µ, the proportion of insiders at date n.

When the fraction of insiders increases, the clearing price in each period becomes closer to

their forecast. This effect improves price discovery since insiders’ forecast of the asset value is

closer to the true value of the asset than outsiders’ forecast (Proposition 1).

[Insert Figure 2 about here]

We have not been able to study analytically the effect of an increase in latency on the average

pricing error. However, extensive numerical simulations indicate that an increase in latency has

a positive impact on the average pricing error at each date n ≥ 2, as illustrated in Figure 2

(compare for instance the pricing error for l = 10 and l = 20) where we assume that fresh

information arrives at each date (⌧ ✏n > 0, 8n). This information is reflected into subsequent

prices through trades by insiders and outsiders. For this reason, the pricing error decreases over

time (i.e., n). Interestingly, Figure 2 shows that the speed at which the pricing error decays

with n increases sharply when outsiders start obtaining information on past prices, that is,

when l < n. Intuitively, in this case, the information contained in past prices is better reflected

into current prices because all speculators (insiders and outsiders) trade on this information.

This effect dramatically accelerates the speed of learning about the asset payoff compared to

the case in which outsiders trade in the “dark” (n  l).

6 Investors’ welfare and the dissemination of price information

The effects of the dissemination of price information on welfare are often discussed in regulatory

debates. To study these effects, in this section, we analyze how a change in the scope of

9This measure of market efficiency is often used in experimental studies where the asset payoff is known to
the econometrician (see Bloomfield and O’Hara (1999) for instance).

10Indeed, E[(v − pn)
2] = E[v − pn]

2 + Var[v − pn]. Using equation (6) and the Law of iterated expectations,
we deduce that E[v − pn] = 0 when e = 0. We show in Section A of the Internet Appendix that Proposition 2
holds even when e 6= 0
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information dissemination, µ, affects the welfare of the different groups of traders in the model.

This analysis also lays the ground for the next section, in which we study the optimal pricing

policy for the sale of price information by the exchange.

We first analyze how a change in the fraction of insiders affects speculators’ expected utilities.

In particular, we compare speculators’ welfare in three market structures: (i) the market in

which all speculators are outsiders (µ = 0), (ii) the market in which all speculators are insiders

(µ = 1), and (iii) a two-tiered market in which only a fraction of speculators observe prices in

real time (0 < µ < 1).

To facilitate the exposition, we measure speculators’ welfare by the certainty equivalent

of their ex-ante expected utility (as in Dow and Rahi (2003)). Findings are identical if we

work directly with speculators’ expected utilities. By definition, the certainty equivalent is the

maximal fee that a speculator is willing to pay to participate to the market. We denote this

fee by Ck
n(µ, l) for a speculator with type k entering the market at date n and we call it the

speculator’s payoff.

Speculators’ payoffs can be written as follows:11

Ck
n(µ, l) =

γ

2
ln

✓

Var[v − pn]

Var[v | sin,Ωk
in]

◆

=
γ

2
ln(1 + γ−1Cov[xkin, v − pn]). (17)

Thus, a speculator’s payoff increases in the covariance between the true return on the security

(v − pn) and its position in the security (xkn). This covariance is positive (speculators tend to

buy the asset when it is undervalued and sell it otherwise) and higher when pricing errors are

larger.12 As the precision of insiders’ forecast is higher, they are more likely to buy the asset

when it is undervalued (pn < v) and sell it when it is overvalued (pn > v). As a result, the

covariance between their position and the return on their position (v − pn) is higher and they

obtain a higher expected payoff than outsiders, as shown in the next proposition.

Proposition 3 At any date n, other things equal, an insider’s ex-ante expected utility is strictly

greater than an outsider’s expected utility. Specifically:

CI
n(µ, l)− CO

n (µ, l) =
γ

2
ln

✓

⌧ ✏n + ⌧n(µ, l)

⌧ ✏n + ⌧̂n(µ, l)

◆

> 0. (18)

When µ increases, some speculators shift from being outsiders to being insiders. If the

increase in µ is small, those who switch are always better off (Proposition 3). Speculators who

do not shift group, that we call “incumbent insiders” and “remaining outsiders,” are always

worse off however, as shown in the next proposition.

Proposition 4 At any date n ≥ 2, the welfare of incumbent insiders and remaining outsiders

declines when the proportion of insiders increases.

11The derivation for investors’ certainty equivalent in the CARA-Gaussian framework is standard (see for
instance Admati and Pfleiderer (1987)). When the average demand of liquidity traders is different from zero,
e 6= 0, the expression for speculators’ payoffs is more complex, which precludes a formal proof for Proposition 5
below. However, we have checked (analytically for n = 2 and numerically otherwise) that this proposition still
holds when e 6= 0 (see Section A in the Internet Appendix).

12Take the extreme case in which the pricing error vanishes (pn = v). Then, the covariance between a
speculator’s position and the true return on the security would be zero.
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Hence, acquisition of ticker information by one speculator exerts a negative externality on

other speculators. The reason is that it reduces pricing errors (Proposition 2) and thereby spec-

ulators’ expected profits since the latter take positions against these errors. Figure 3 illustrates

Propositions 3 and 4 for specific parameter values and n = l = 2.

All speculators have equal access to price information when either µ = 0 or µ = 1. However,

the next proposition shows that they prefer the market structure in which price information

is delayed for all speculators (µ = 0) to the market structure in which price information is

available in real time to all speculators (µ = 1).

Proposition 5 At any date n ≥ 2, speculators’ welfare is higher when µ = 0 than when µ = 1,

i.e., CI
n(1, l) < CO

n (0, l).

In this proposition, we are not comparing the expected utilities of a given group of specula-

tors for two different values of µ as in Proposition 4. Instead we compare the expected utility

of speculators when they are all insiders (µ = 1) with their expected utility when they are all

outsiders (µ = 0). All speculators trade more aggressively against deviations between their

forecast of the final payoff and the price of the asset when µ = 1 than when µ = 0 because their

forecast is more precise in the former case.13 As a result, the clearing price in each period bet-

ter reflects the information contained in speculators’ positions (xIin) when µ = 1, which in turn

implies that the covariance between each speculator’s position and the future return, v − pn,

is smaller when µ = 1 than when µ = 0. Consequently, speculators’ payoffs are smaller in the

former case than in the latter case (see equation (17)).

Thus, speculators prefer post trade opacity to full post trade transparency because opacity

is a way to soften competition among speculators. As an illustration, consider Figure 3. Spec-

ulators have a payoff equal to CO
2 (0, 2) = 0.206 when they are all outsiders and a payoff equal

to CI
2 (1, 2) = 0.147 when they are all insiders.

[Insert Figure 3 about here]

Now, we compare the market structure in which information is delayed for all speculators

(µ = 0) with a two-tiered market structure in which only some investors have access to infor-

mation in real time (µ > 0). To this end, let µn be the fraction of insiders at date n such

that CI
n(µn, l) = CO

n (0, l). That is, when µ = µn, insiders have exactly the same payoff in a

two-tiered market structure with µ = µn or a market structure in which information is delayed

for all speculators. Proposition 3 implies that CI
n(0, l) > CO

n (0, l) while Proposition 5 implies

that CI
n(1, l) < CO

n (0, l). As CI
n(µ, l) decreases with µ, µn is strictly greater than zero and

strictly smaller than one. Moreover:

CI
n(µ, l) < CO

n (0, l) if µn < µ  1, (19)

CI
n(µ, l) > CO

n (0, l) if 0 < µ < µn. (20)

13To see this, observe that the sensitivity of speculators’ demand to the difference between their forecast of the
asset and its price is γ(τn + τ ✏n) when µ = 1 and γ(bτn + τ ✏n) when µ = 0. As τn(1, l) > bτn(0, l) (Proposition 1),
speculators trade against deviations between the price and their forecast more forcefully when µ = 1 than when
µ = 0.
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We deduce the following proposition.

Proposition 6 1. If µn < µ  1 then, at date n, insiders and outsiders would be better off

if information was delayed for all speculators.

2. If µ < µn then, at date n, insiders would be worse off if information was delayed for all

speculators and outsiders would be better off.

As an illustration, consider Figure 3 again. In this example, µ2 = 0.696. Moreover, if

information is delayed for all speculators, their payoff is equal to CO
2 (0, 2) = 0.206. Now

suppose that µ switches from zero to 10%. The speculators who become insiders are better off

since their payoff becomes CI
2 (0.1, 2) = 0.381 while those who remain outsiders are worse off

since their payoff becomes CO
2 (0.1, 2) = 0.187.

Let Wn(µ, l)
def
= µCI

n(µ, l) + (1 − µ)CO
n (µ, l) be the average payoff of speculators at date

n when the fraction of insiders is µ and µmax
n be the value of µ that maximizes Wn(µ, l).

Proposition 6 implies that Wn(0, l) > Wn(1, l). Thus, µmax
n is always strictly less than one.

However, it is not necessarily equal to zero. For instance, for the parameter values considered

in Figure 3, W2(0, 2) = 0.206 and W2(0.1, 2) = 0.207. In this case, the aggregate increase in the

payoff of speculators who become insiders when µ increases from zero to 10% more than offsets

the welfare loss of speculators who remain outsiders.

This happens because insiders obtain a higher expected profit than outsiders.14 Thus, spec-

ulators switching from outsiders to insiders work to increase the expected profit on speculators’

average position (µxIn + (1 − µ)xOn ), at the expense of liquidity traders since speculators’ net

position is the opposite of liquidity traders’ net trade. However, as the fraction of insiders

increases, the average pricing error decreases which lowers the expected profit of all speculators.

This countervailing effect always dominates for µ large enough but may not for small values

of µ, which explains why µmax
n > 0 for some parameter values. As a result a two-tier market

structure in which some speculators access price information faster than other, can sometimes

be Pareto superior from speculators’ viewpoint, provided a fraction of the gains from insiders

are used to compensate outsiders for their losses relative to the case in which µ = 0.

In any case, an increase in speculators’ expected profits is obtained at the expense of liquidity

traders. As an increase in µ reduces all speculators’ expected payoffs, the expected trading loss

for liquidity traders, E[(v − pn)en], should be minimal (in absolute value) when all speculators

have access to price information.15 This is indeed the case as shown by the next proposition.

Proposition 7 Liquidity traders’ expected trading loss, |E[(pn − v)en]|, is minimal for µ = 1.

In our model, the sensitivity of the clearing price in a given period to liquidity traders’

supply is given by Bn,0 (see equation (6)). This sensitivity is often used as a measure of market

14Indeed, a speculator’s expected profit is E[xk
in(v − pn)] = Cov[xk

in, v − pn] where the equality follows from
the fact that E[xk

in] = 0. We have E[(v − pn)x
I
in] > E[(v − pn)x

O
in] since Cov[xI

in, v − pn] > Cov[xO
in, v − pn] (a

consequence of Proposition 3).
15As in Easley et al. (2011) or Leland (1992), we assume that the expected trading loss of liquidity traders is

a proxy for their gains from trade.
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illiquidity (see for instance Kyle (1985)) and determines liquidity traders’ expected trading

losses. Using equation (6), we have:

E[(pn − v)en] = −Bn,0⌧
−1
e . (21)

It follows from Proposition 7 that, as for price discovery, liquidity is maximal when µ = 1.

To sum up, sell-side traders (proprietary trading firms specialized in liquidity provision)

will oppose a too wide distribution of real time price information since µmax
n < 1. In contrast,

liquidity traders prefer a market structure in which this information is widely available since

price impact costs are minimized when all speculators are insiders. These implications are

consistent with the fact that changes in the scope of access to real time price information

are very often controversial in reality. Another implication of this section is that enforcing a

situation in which the fraction of insiders is less than one is difficult since speculators who can

switch from being outsiders to being insiders always enjoy an increase in their payoff. Hence,

speculators will individually seek to obtain post trade information, even though collectively

speculators would be better off with no access (µmax
n = 0) or moderate access (µmax

n > 0) to

price information.

7 Optimal sale of price information by for profit exchanges

As explained in the introduction, in today’s markets exchanges cannot directly control who is

an insider and who is not. Rather, price information is sold and the number of insiders in the

market is ultimately equal to the number of speculators who choose to buy price information.

This number of course is ultimately determined by the fee for price information set by exchanges.

We now analyze the determination of this fee and the resulting equilibrium value for the fraction

of insiders.

In each period, the price at which speculators can observe the real time ticker is set by a

for-profit exchange. In reality, exchanges obtain revenues from both the sale of information and

from trading fees. Accordingly, we assume that in each period, the exchange charges two fees:

a fee for real-time ticker information, φn, and a market access fee, Fn (a “membership fee”).16

All speculators pay the access fee and only insiders pay the fee for real time information. In

Section 7.1, we first consider the case in which the exchange does not account for liquidity

traders’ losses in setting its fees. We then relax this assumption in Section 7.2.

7.1 Baseline case: free participation for liquidity traders

At the beginning of each period, before receiving their private signals, speculators decide (i)

whether to participate to the market and (ii) whether to purchase ticker information. Let

φn(µ, l) be the maximum fee that a speculator is willing to pay for observing the real-time

16In reality, participation fees usually have both a fixed component (for instance, exchanges charge annual or
monthly membership fees) and a variable component (members pay a fee per share traded). See http://www.

nasdaqtrader.com/Trader.aspx?id=PriceListTrading2#membership for an example of these fees on Nasdaq.
In our model, the membership fee is sufficient for the exchange to extract all surplus from speculators. Hence, to
simplify the analysis, we assume that the trading fee per share is zero (the analysis is much less tractable with a
fee per share).
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ticker at date n. This fee is:

φn(µ, l) = CI
n(µ, l)− CO

n (µ, l). (22)

We call it the value of the ticker. Using equation (18), we obtain that

φn(µ, l) =
γ

2
ln

✓

⌧ ✏n + ⌧n(µ, l)

⌧ ✏n + ⌧̂n(µ, l)

◆

=
γ

2
ln

✓

1 +
⌧n(µ, l)− ⌧̂n(µ, l)

⌧ ✏n + ⌧̂n(µ, l)

◆

> 0. (23)

The value of the ticker increases with the difference between the informativeness of the real-time

ticker and the informativeness of the truncated ticker. Proposition 1 implies that this difference

is reduced when the proportion of insiders increases or when latency is reduced. Thus, we obtain

the following result.

Proposition 8 For a fixed latency, the value of the real-time ticker at any date n ≥ 2 decreases

with the proportion of insiders. Moreover, for a fixed proportion of insiders, the value of the real-

time ticker weakly increases with the latency in information dissemination, l. More precisely:

φn(µ, l) < φn(µ, l + 1) for n > l,

φn(µ, l) = φn(µ, l + 1) for n  l.

At date n, a speculator buys ticker information if the price of the ticker is strictly less

than the value of the ticker (φn < φn(µ, l)). She does not buy information if φn > φn(µ, l).

Finally, she is indifferent between buying ticker information or not if φn = φn(µ, l). Thus, the

equilibrium proportion of insiders, µe(φn, l), is

µe(φn, l) =

8

>

<

>

:

1 if φn  φn(1, l),

µ if φn = φn(µ, l),

0 if φn ≥ φn(0, l).

(24)

Figure 4 shows how the equilibrium proportion of insiders is determined. As the value of the

ticker declines with µ (Proposition 8), for each price of the ticker there is a unique equilibrium

proportion of insiders µe(φn, l). Moreover, the equilibrium proportion of insiders decreases with

the price of ticker information (to see this, consider an upward shift in φ10 in Figure 4).

[Insert Figure 4 about here]

In each period, the for-profit exchange chooses its tariff (φn, Fn) to maximize its expected

profit:17

Πn(µ
e(φn, l), l) = µe(φn, l)φn + Fn.

17The choice of a tariff in a given period does not influence the exchange’s expected profits in subsequent
periods because the speculators’ payoffs in each period only depend on the fraction of insiders in this period
and investors’ signals are exogenous. Hence, the tariffs that maximize the exchange’s per period expected profits
also maximize the total expected profit of the exchange over all periods. This will not hold if investors’ signals
are endogenous and n > 2. Indeed, in this case the precision of signals acquired in a given period will affect
the informativeness of the price in this period for investors arriving at subsequent dates. In Section 7.4, we
endogenize the precision of investors’ signals but we focus on the case n = 2 only.
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As the exchange is a monopolist, it optimally chooses its tariff to extract all gains from trade

from speculators. Hence:

Fn = CO
n (µe(φn, l), l) (outsiders’ net payoff is zero), (25)

φn + Fn = CI
n(µ

e(φn, l), l) (insiders’ net payoff is zero). (26)

The access fee, Fn, is determined by the fee for real time ticker information since this fee

determines the equilibrium proportion of insiders. Hence, ultimately, φn is the only decision

variable of the for-profit exchange. Equations (25) and (26) imply:

φn = CI
n(µ

e(φn, l), l)− CO
n (µe(φn, l), l) = φn(µ

e(φn, l), l),

where the last equality follows from the the definition of φn(µ
e(φn, l), l). Thus, the objective

function of the for-profit exchange is:

max
φn

Πn(µ
e(φn, l), l) = µe(φn, l)φn(µ

e(φn, l), l) + CO
n (µe(φn, l), l). (27)

The solution to this optimization problem can be found by solving

max
µ

Πn(µ, l) = µφn(µ, l) + CO
n (µ, l), (28)

because there is a one-to-one relationship between the equilibrium fraction of insiders and the

fee charged for ticker information. Consequently, if µ∗n is the solution of (28) then φ∗n = φn(µ
∗
n, l)

solves (27).

The for-profit exchange faces the following trade-off. On the one hand, by increasing the

fraction of insiders, it gets a larger revenue from the sale of information (µφn(µ, l)). However,

the exchange must lower (i) the price for ticker information (since @φn(µ, l)/@µ < 0) and (ii)

the access fee since speculators’ gain from market participation decreases with the proportion

of insiders (@CO
n (µ, l)/@µ < 0). Using the definition of φn(µ, l), we rewrite (28) as:

max
µ

Πn(µ, l) = µCI
n(µ, l) + (1− µ)CO

n (µ, l) =Wn(µ, l). (29)

Hence, the exchange’s expected profit is equal to the average payoff of all speculators. This is

intuitive since the exchange’s fees are set to extract all speculators’ surplus.

Proposition 9 At any date n ≥ 2 and for all values of the parameters, the for-profit exchange

chooses its tariff so that the proportion of speculators buying ticker information maximizes

speculators’ average payoff. That is, µ∗n = µmax
n and φ∗n = φn(µ

max
n , l). Thus, the exchange

never sells price information to all speculators (µ∗n < 1) and sometimes finds it optimal not to

sell price information at all (µ∗n = 0).

Figure 5 illustrates Proposition 9 by plotting the exchange’s profit (Π2) as a function of the

proportion of insiders, for specific parameter values (⌧v = 2, and ⌧ e = γ = ⌧ ✏1 = 1). For these

parameters, when ⌧ ✏2 = 0.05, the exchange’s expected profit peaks when µ∗2 = µmax
2 ' 6%, in

which case φ(µ∗2, 2) ' 0.2; when ⌧ ✏2 increases to 1, then the exchange chooses or µ∗2 = µmax
2 = 0,
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setting φ(µ∗2, 2) ' 0.11. In the first case, a two-tier market structure with fast and slow traders

optimally strikes a balance between two opposite goals: (i) maximize speculators’ willingness

to pay for trading, which requires to restrict access to price information and (ii) make profits

on the sale of information, which requires to sell information to at least some speculators. In

the second case, the exchange optimally chooses not to sell price information at all so as to

maximize the access fee.

[Insert Figure 5 about here]

We have assumed that the exchange is a monopolist, so that it leaves no surplus to spec-

ulators. Obviously, the same findings are obtained if the exchange can only recover a fixed

fraction δ > 0 of the payoffs earned by insiders and outsiders. In this case, its expected profit

is Πn(µ, l) = δWn(µ, l) and is therefore maximized for the same value of µ. It is reasonable

to assume that exchanges exert market power in pricing their own price information (δ > 0).

Indeed, many studies, starting with Hasbrouck (1995), have gauged the contribution of each

trading venue for a stock to price discovery for this stock. These studies typically find that each

trading venue for a stock has an “information share” higher than zero, which means that the

transaction price on one trading venue is not a sufficient statistic for prices on all trading venues.

Hence, the signals contained by real time prices from different trading platforms are not perfect

substitutes, even when they are for the same asset. This suggests that competition between

exchanges in the market for information is a form of monopolistic competition. Analyzing this

competition in detail raises complex modeling issues that are beyond the scope of this paper.18

7.2 Extension: subsidized participation for liquidity traders

The previous section emphasizes one mechanism: by restricting access to price information, an

exchange raises speculators’ expected trading profits and can accordingly charge them higher

trading fees. As a result, liquidity traders obtain smaller expected profits since speculators’

profits are obtained at the expense of liquidity traders. If exchanges’ pricing policy harms

liquidity traders too much, the latter may trade less on the exchange.

To account for this possibility while keeping the model simple, we assume now that the

exchange must compensate liquidity traders for a fraction β of their trading losses. Specifically,

the exchange subsidizes liquidity traders for an amount Ln(µ) = βE[(pn−v)en] with β 2 [0, 1].19

We interpret this subsidy as the rebate that the exchange should concede to liquidity traders

to prevent them from migrating to another market.20 Insofar as traders’ types (e.g., retail

investors vs. proprietary trading firms) are informative on trading motivations, exchanges can

charge different prices for clienteles with different trading motives.21 For instance, they could

18There is yet no standard model of imperfect competition among sellers in the literature on information sale
in securities markets, in particular when sellers sell different signals. To our knowledge, Simonov (1999) and Lee
(2009) are the only two models in which two sellers compete for the sale of two different signals. Veldkamp (2006)
considers a case with multiple sellers but they all have the same signal.

19Boulatov and Dierker (2007) use a similar approach.
20This rebate must be interpreted as a discount given to liquidity traders relative to a fixed baseline fee, which

is implicitly normalized to zero in our analysis.
21Linnainmaa and Saar (2012) show that broker’s identities are informative about their clientele type (unin-

formed vs. informed). In particular, they show that orders from brokers who mainly channel orders from retail
investors are perceived as uninformative by market participants.
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charge lower fees for brokers who mainly channel orders from retail investors, as these orders

are more likely to come from liquidity traders.22

The case β = 0 corresponds to the case analyzed in the previous section (liquidity traders

are captive) while the case β = 1 corresponds to the case in which the exchange must fully

compensate liquidity traders for their trading losses. A higher β captures (in reduced-form) the

effect of increased competition for order flow from other exchanges.

The expected profit of the exchange is now:

max
µ

Πn(µ, l, β) =Wn(µ, l) + βLn(µ, l). (30)

We have not been able to study analytically the effect of β on the optimal fraction of insiders, µ∗n,

chosen by the exchange. However, in line with the intuition, numerical simulations show that as

β increases from zero to one, the exchange optimally reduces its fee for price information so that

it disseminates price information to a wider number of speculators. In this way, the exchange

intensifies competition among speculators, which reduces trading costs for liquidity traders.

As an example, Table 1 shows the evolution of the optimal fee charged by the exchange, the

resulting fraction of insiders, the average welfare of speculators, and liquidity traders’ trading

losses when β increases from 0 to 1.

[Insert Table 1 about here]

In recent years, competition among stock exchanges has increased with the emergence of

new trading platforms (such as BATS in the U.S. or Chi-X in Europe) trading shares of stocks

listed on incumbent markets such as NYSE-Euronext and Nasdaq. As explained in the previous

section, this competition does not per-se reduce exchanges market power with respect to their

price information because transaction prices from different platforms are not perfect substitutes.

Yet, it could force exchanges to reduce their fees for price information since the coexistence of

multiple trading platforms makes liquidity traders less captive, which should therefore induce

exchanges to care more about liquidity traders’ losses (an increase in β in our model) and cut

their fees for price information.

7.3 Pure information sellers vs. exchanges

The literature on information sales in securities markets (e.g., Admati and Pfleiderer (1986)’s

pioneering paper) has focused on pure information sellers, that is, sellers who derive revenues

only from the sale of information.23 In this section, we compare the optimal selling of price

information by a pure information seller and an exchange.

The pure information seller faces the same problem as the exchange except that by definition

it cannot charge an access fee. Hence, at date n, the pure information seller optimally chooses a

22This is in fact what some exchanges do. For instance, some options exchanges (e.g., the AMEX or the CBOE)
charge little or nothing to execute retail customer orders (they actually pay for retail customer order flow) while
charging “marketing fees” to market-makers who execute retail customer orders (see Battalio, Shkilko, and Van
Ness (2012) for instance).

23An exception is the case in which the information seller can also obtain profits by trading on his information
(e.g., Admati and Pfleiderer (1988)). This case however is not relevant for exchanges since they do not trade
securities for their own account.
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fee φn(µ
∗∗(l), l) where µ∗∗(l) maximizes Πpure

n (µ, l) = µφn(µ, l) with respect to µ. In contrast to

the exchange, the pure seller does not internalize the effect of disseminating price information

on speculators’ willingness to pay for trading since it cannot charge speculators for market

participation. Consequently, when β is small enough, the exchange charges a higher fee for

price information than a pure information seller because the exchange internalizes the negative

effect of disseminating price information on speculators’ revenues while the pure information

seller does not. As shown in Figure 5, the exchange may even find it optimal not to sell

price information at all (µ∗n = 0), whereas this is clearly never optimal for a pure information

seller. In contrast, when β is high enough, the exchange wants to disseminate price information

more widely than a pure information seller to minimize trading costs for liquidity traders.

Accordingly, the fee charged by the pure information seller is at least as high as that chosen by

the exchange. Table 2 illustrates this point by comparing, for different values of β, the optimal

fee for price information charged by the exchange and a pure information seller and the fractions

of speculators buying price information in each case. The table also reports the size of pricing

errors (Var[v − pn]), speculators’ average payoffs, and liquidity traders’ losses.

[Insert Table 2 about here]

As shown by Admati and Pfleiderer (1986) and others, an information seller can optimally

add noise to the information it sells to increase his profit. This is not a possibility for exchanges

since, in reality, they must report a price “as is.”24 However, exchanges have another tool at

their disposal, not analyzed in the literature on information sales: they can delay the moment

at which price information becomes available for free, i.e., increase the latency in information

dissemination, l. Using the envelope theorem, it is immediate that the optimal latency for the

exchange maximizes Πn(µ
∗(l), l) where µ∗(l) solves (30).

Again, the optimal policy of an exchange and a pure information seller with respect to l do

not necessarily coincide. A pure information seller chooses l to maximize µ∗∗n (l)φn(µ
∗∗
n (l), l). The

value of information increases with l (Proposition 8), for a fixed fraction of insiders. Accordingly,

the pure information seller always chooses the highest possible latency, l = N .25 In contrast,

when l increases the exchange faces a trade-off: on the one hand, a higher latency increases

the value of price information, on the other hand it reduces the fee speculators are willing to

pay for trading and it aggravates liquidity traders’ losses, forcing the exchange to grant them

a greater discount (if β > 0). Accordingly, there exist parameter values for which the exchange

optimally sets a latency smaller than the highest possible latency (that is, less than N).

Figure 6 provides a numerical example of this situation (the complexity of the optimization

problem for the exchange precludes an analytic solution for the choice of its latency by the

exchange). In the figure we assume that there are N = 10 trading rounds and plot the expected

profits of the exchange (plain line) and the pure information seller (dotted lone) in the last

24This precludes the possibility of adding personalized error terms to the information sold by the exchange
(what Admati and Pfleiderer (1986) calls personalized signals).

25Suppose that this is not true. Then, there is a date n at which the pure information seller optimally sets
l < n. Its expected profit is then µ∗∗(l)φn(µ

∗∗
n (l), l). Now consider the following alternative policy for the pure

information seller. It set l = n and a price information fee equal to φn(µ
∗∗
n (l), n). With this policy, the pure

information seller’s expected profit is µ∗∗(l)φn(µ
∗∗
n (l), n), which is strictly higher than µ∗∗(l)φn(µ

∗∗
n (l), l) since

φn(µ
∗∗
n (l), n) > φn(µ

∗∗
n (l), l) (Proposition 8). A contradiction.
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trading round, for three different latencies: l 2 {2, 3, 10}. As expected, the pure information

seller’s expected profit is maximal when l = N = 10. In contrast, the exchange’s expected profit

is maximal when latency is shorter and equal to l = 3. This choice strikes a balance between the

revenues from the sale of price information (which are maximal for l = 10), and the revenues

from market participation, which tends to be higher when l is smaller.

[Insert Figure 6 about here]

7.4 Implications

Does the sale of price information by exchanges promote price discovery? The previous sec-

tions show that the answer to this question depends on the extent to which exchanges need to

compensate liquidity traders for trading costs, that is, β. If β is small (for instance, because

liquidity traders are captive), the answer is clearly negative since the exchange always optimally

restricts access to price information by charging a high fee for this information. As the efficiency

of price discovery increases with the fraction of insiders, the exchange pricing policy harms price

discovery. If β is high, the answer is less clear-cut. Actually, the exchange optimally charges

a smaller fee for price information than a pure information seller would, and therefore dissem-

inates more price information than a pure information seller. The sale of price information by

the exchange results therefore in more efficient price discovery than if price information was

sold by a pure information seller. Yet, it may still be the case that only a fraction of speculators

buy information, leaving room for an improvement in price discovery by lowering the fee for

price information (see for instance the case β = 0.31 in Table 2).

Accordingly, if regulators’ objective is to maximize the efficiency of price discovery, they

should consider capping the fee for price information to make sure that a large fraction of

investors choose to buy this information. One drawback however is that as price information

becomes more widely available, speculators might have less incentive to acquire information

from other sources. A decrease in the fee for price information could then negatively affect price

discovery, instead of strengthening it. To study this point, we have considered an extension of

the model in which, as in Verrechia (1982), speculators can choose the precision ⌧ ✏n of their

fresh information, sin, at a cost c(⌧ ✏n) where c(·) is quadratic. For brevity, we present this

extension in details in the Internet Appendix (Section C) and for tractability we only consider

the case n = 2. We find that when the fraction of insiders, µ, increases, speculators choose

a private signal of lower precision in equilibrium. Hence, in line with intuition, speculators

substitute fresh information with price information. However, despite this substitution effect,

we show through numerical simulations that pricing errors still decrease with µ. Hence price

discovery remains maximal when µ = 1, that is, when the fee for price information is low.

Of course regulators should also care about welfare. On this front, a decrease in the fee

for price information has ambiguous effects because, as shown in Section 6, there is no Pareto

dominant level for µ: an increase in µ harms incumbent insiders and remaining outsiders while

making better off those new insiders (Proposition 4). Moreover, speculators always prefer a

fully opaque market (µ = 0) to a fully transparent market (µ = 1) while liquidity traders have

exactly opposite views. If regulators primarily care about liquidity traders, the recommendation
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however is non ambiguous because, as for price discovery, liquidity traders’ losses are minimized

when µ = 1. As the fee charged by an exchange or a pure information seller may be too high

to obtain this outcome, regulators may again want to cap the fee for price information.

One way to test the model is to study empirically effects of variations in the fee for price

information. The model implies that a reduction in this fee should improve price discovery

and liquidity by intensifying competition among liquidity providers. Testing this prediction

is challenging as the fee for price information is endogenous. Hence, empiricists need to find

adequate instruments for variations in these fees.

8 Conclusions

Exchanges play an important role by providing venues for risk sharing and price discovery.

However, they are not per-se interested in maximizing the efficiency of price discovery or risk

sharing. Rather, they make their decisions so as to maximize their profits, which derive in large

part from the sale of trading services and the sale of information on prices. In this paper, we

show that there is a conflict between the efficiency of price discovery and profit maximization

by exchanges.

This conflict arises because selling real-time price information to more speculators (pro-

prietary trading firms specialized in the provision of liquidity) enhances price discovery but it

reduces speculators’ expected trading profits and therefore the fee (e.g., membership fee) that

they are willing to pay for trading. Hence, a for-profit exchange faces a trade-off between its

expected trading revenue from speculators and its expected revenue from the sale of price in-

formation. When the exchange does not need to compensate liquidity traders for their losses, it

always resolves this trade-off by choosing a high fee for price information, so that no speculator

or only a fraction of all speculators buy access to price information in real-time. This pricing

policy is detrimental to price discovery since price discovery is most efficient when all specula-

tors observe prices in real-time. It also harms liquidity traders since their losses are minimal

when all speculators observe price information in real-time. Overall, these findings suggest that

there is ground for regulating the sale of price information by exchanges.
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Appendix

Proof of Lemma 1

Step 1. Informational content of equilibrium prices.

In a symmetric linear equilibrium, speculators’ demand functions in period n ≥ 1 can be written

as follows:

xIn(sin, p
n) = aInsin − 'I

n(p
n), (31)

xOn (sin, p
n−2, pn) = aOn sin − 'O

n (p
n−l∗ , pn), (32)

where 'k
n(.) is a linear function of the clearing price at date n and the past prices observed by

a speculator with type k 2 {I,O} ('I
1(.) = 'O

1 (.) since price information is identical for insiders

and outsiders at date 1). In any period n, the clearing condition is
R µ

0 x
I
indi +

R 1
µ
xOindi = en.

Thus, using equations (31) and (32), we deduce that at date n

anv − µ'I
n(p

n)− (1− µ)'O
n (p

n−l∗ , pn) = en, 8n ≥ 2, (33)

with an
def
= µaIn + (1 − µ)aOn . We deduce that pn is observationally equivalent to zn =

{z1,z2, . . . , zn} with zn = anv − en.

Step 2. Equilibrium in period n.
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Insiders. An insider’s demand function in period n, xIn(sin, p
n), maximizes

E[− exp

⇢

−
(v − pn)x

I
in

γ

}

|sin, p
n].

We deduce that

xIn(sin, p
n) = γ

E[v − pn|sin, p
n]

Var[v − pn|sin, pn]
= γ

E[v|sin, p
n]− pn

Var[v|sin, pn]
.

As pn is observationally equivalent to zn, we deduce (using well-known properties of normal

random variables)

E[v|sin, p
n] = E[v|sin, z

n] = (⌧n(µ, l) + ⌧ ✏n)
−1(⌧n(µ, l)E[v|zn] + ⌧ ✏nsin),

Var[v|sin, p
n] = Var[v|sin, z

n] = (⌧n(µ, l) + ⌧ ✏n)
−1,

where

⌧n(µ, l)
def
= (Var[v|pn])−1 = (Var[v|zn])−1 = ⌧ v + ⌧ e

n
X

t=1

a2t , (34)

and

E[v|sin, p
n] =

⌧ e
Pn

t=1 atzt + ⌧ ✏nsin
⌧n(µ, l) + ⌧ ✏n

.

Thus,

xIn(sin, p
n) = γ(⌧n + ⌧ ✏n)(E[v|sin, p

n]− pn)

= aIn(sin − pn) + γ⌧n(E[v|pn]− pn), (35)

where aIn = γ⌧ ✏n .

Outsiders. An outsider’s demand function in period n, xOn (sin, p
n−l∗ , pn), maximizes:

E



− exp

⇢

−
(v − pn)x

O
in

γ

}

|sin, p
n−l∗ , pn

]

.

We deduce that

xOn (sin, p
n−l∗ , pn) = γ

E[v − pn|sin, p
n−l∗ , pn]

Var[v − pn|sin, pn−l∗ , pn]
= γ

E[v|sin, p
n−l∗ , pn]− pn

Var[v − pn|sin, pn−l∗ , pn]
.

In equilibrium, outsiders correctly anticipate that the clearing price at each date is given by

pn = Anv −

l∗−1
X

j=0

Bn,jen−j +DnE[v | pn−l∗ ], for n ≥ 1. (36)

When An 6= 0, the price at date n is informative about v. This happens iff (i) µ > 0 and

⌧ ✏n−j
> 0 for some j 2 {1, . . . , l∗ − 1} or (ii) ⌧ ✏n > 0. In this case, let ẑn be the signal on v

that an outsider can obtain from the equilibrium price pn, given that he observes pn−l∗ . Using
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equation (36), we obtain that

ẑn =
pn −DnE[v | pn−l∗ ]

An

= v −

l∗−1
X

j=0

Bn,j

An
en−j (37)

Thus, {sin, p
n−l∗ , pn} is observationally equivalent to {sin, p

n−l∗ , ẑn}. Moreover, equation (37)

implies

ẑn|v ⇠ N

0

@v,A−2
n

0

@

l∗−1
X

j=0

B2
n,j

1

A ⌧−1
e

1

A .

Let Γ
def
= A2

n(
Pl∗−1

j=0 B
2
n,j)

−1. Using well known properties of normal random variables, we obtain

E[v|sin, p
n−l∗ , pn] = (⌧̂n(µ, l)+⌧ ✏n)

−1(⌧̂n(µ, l)E[v|pn−l∗ , pn]+⌧ ✏nsin), and Var[v|sin, p
n−l∗ , pn] =

(⌧̂n(µ, l) + ⌧ ✏n)
−1, where

⌧̂n(µ, l)
def
= (Var[v|pn−l∗ , pn])

−1 = (Var[v|zn−l∗ , ẑn])
−1 = ⌧n−l∗(µ, l) + Γ⌧ e. (38)

When An = 0 (which happens when (i) µ = 0 or ⌧ ✏n−j
= 0 for all j 2 {1, . . . , l∗ − 1}, and (ii)

⌧ ✏n = 0), the price at date n does not provide information about v. This is as if the precision

of the signal inferred from the price at date n by insiders were nil, that is Γ = 0. This is indeed

what we obtain for Γ when An = 0.

Thus, for all values of µ and ⌧ ✏n , we have:

xOn (sin, p
n−l∗ , pn) = γ (⌧̂n(µ, l) + ⌧ ✏n) (E[v|sin, p

n−l∗ , pn]− pn)

= aOn (sin − pn) + γ⌧̂n(µ, l)(E[v|pn−l∗ , pn]− pn). (39)

with aOn = aIn = γ⌧ ✏n . In the rest of the proofs, we sometimes omit arguments µ and l in ⌧̂n(µ, l)

and ⌧n(µ, l) for brevity.

Clearing price in period n. The clearing condition in period n imposes
R µ

0 x
I
indi+

R 1
µ
xOindi =

en. Using equations (35) and (39), we solve for the equilibrium price and we obtain

pn =
1

Kn

⇣

zn + µγ⌧nE[v|pn] + (1− µ)γ⌧̂nE[v|pn−l∗ , pn]
⌘

, (40)

where

Kn = an + γ(µ⌧n + (1− µ)⌧̂n), (41)

with an = µaIn + (1− µ)aOn = γ⌧ ✏n . Observe that

E[v|pn−l∗ , pn] = E[v|pn−l∗ , ẑn] = ⌧̂−1
n

⇣

⌧n−l∗E[v|pn−l∗ ] + Γ⌧ eẑn

⌘

,

and

E[v|pn] = E[v|pn−l∗ , {zn−j}
l∗−1
j=0 ] = ⌧−1

n

0

@⌧n−l∗E[v|pn−l∗ ] + ⌧ e

l∗−1
X

j=0

an−jzn−j

1

A .
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Substituting E[v|pn−l∗ , pn] and E[v|pn] by these expressions in equation (40), we can express pn

as a function of v, {en−j}
l∗−1
j=0 , and E[v|pn−l∗ ]. In equilibrium, the coefficients on these variables

must be identical to those in equation (36). This condition imposes

An =
(an + µγ⌧ e

Pn
t=n−(l∗−1) a

2
t ) + (1− µ)γΓ⌧ e

Kn
, (42)

Bn,0 =
1 + µγan⌧ e + (1− µ)γ⌧ eΓBn,0A

−1
n

Kn
, (43)

Bn,j =
µγan−j⌧ e + (1− µ)γ⌧ eΓBn,jA

−1
n

Kn
, 8j 2 {1, . . . , l∗ − 1}, (44)

Dn =
γ⌧n−l∗

Kn
. (45)

Equations (42), (43), (44) form a system with l∗ + 1 unknowns: An and {Bn,j}
j=l∗−1
j=0 . Solving

this system of equations, we obtain

An =
an + µγ(⌧n − ⌧n−l∗)

Kn

 

1 +
(1− µ)γ⌧ e(an + µγ(⌧n − ⌧n−l∗))

(1 + µγan⌧ e)2 +
Pl∗−1

j=1 (µγan−j⌧ e)2

!

, (46)

Bn,0 =
An(1 + µγan⌧ e)

an + µγ(⌧n − ⌧n−l∗)
, (47)

Bn,j =
An(µγan−j⌧ e)

an + µγ(⌧n − ⌧n−l∗)
, for 1  j  l∗ − 1, (48)

Dn =
γ⌧n−l∗

Kn
. (49)

Observe that An is positive. Moreover, it is equal to zero iff (i) µ = 0 or ⌧ ✏n−j
= 0 for all

j 2 {1, . . . , l∗ − 1}, and (ii) ⌧ ✏n = 0, as conjectured. Last, we deduce from these expressions

and equation (38) that

⌧̂n(µ, l) = ⌧n−l∗ +
(an + µγ(⌧n − ⌧n−l∗))

2

(1 + µγan⌧ e)2 +
Pl∗−1

j=1 (µγan−j⌧ e)2
⌧ e. (50)

This achieves the characterization of the equilibrium in each period in closed-form.

Remark. Remember that when An > 0, the observation of the nth transaction price at date n

conveys the following signal to outsiders: ẑn = v −
Pl∗−1

j=0 (Bn,j/An)en−j . Using equations (43),

(46) and (48), we deduce that: ẑn =
Pl∗−1

j=0 ↵jzn−j , with

↵0 = (1 + µγ⌧ e)

0

@an(1 + µγ⌧ e) + µγ⌧ e

0

@

l∗−1
X

j=1

an−j

1

A

1

A

−1

,

and

↵j = (µγ⌧ e)

0

@an(1 + µγ⌧ e) + µγ⌧ e

0

@

l∗−1
X

j=1

an−j

1

A

1

A

−1

.

⇤

The proofs of the remaining results of the paper are available in the Internet Appendix.
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