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Abstract

Solving large polynomial systems with coefficient parameters are ubiquitous and

constitute an important class of problems. We demonstrate the computational power

of two methods–a symbolic one called the Comprehensive Gröbner basis and a nu-

merical one called the cheater’s homotopy–applied to studying both potential energy

landscapes and a variety of questions arising from geometry and phenomenology.

Particular attention is paid to an example in flux compactification where important

physical quantities such as the gravitino and moduli masses and the string coupling

can be efficiently extracted.
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1 Introduction

The hypersurface defined by a potential energy function V (~x;~a), with ~x = (x1, . . . , xN)

being the variables and ~a = (a1, . . . , ak) being a set of parameters, is called the poten-

tial energy landscape (PEL) of a given physical model. The landscape, in particular,

refers to the potentially large number of parameters which constitutes a moduli space.

The special points of a PEL, defined as the critical (or stationary) points of ∂V (~x)
∂xi

= 0,

with 1 ≤ i ≤ N , give crucial information about the physical system depending on

the problem at hand.

In recent years, a huge influx of advancements have come through from many

areas in theoretical physics and chemistry in understanding the PEL and its rela-

tion to various physical and chemical properties. The research areas where the PEL

methods have have been immensely successful in explaining the underlying physics or

chemistry include clusters [1–6], disordered systems and glasses [7, 8], biomolecules,

protein folding, string phenomenology [9], and within this area flux compactifica-

tions [10–16].

Due to the importance of these critical points of the PELs, finding them in real-

istic models has been an active research area for quite some time. The stationary

equations for any realistic model are invariably non-linear which are known to be

extremely difficult to solve in general. Various numerical techniques exist based on

the Newton-Raphson method and its sophisticated variants [17–21] where a random
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initial guess is refined to attain a single solution of the system. However, in all these

methods, even after feeding a large number of random initial guesses, one can never

be sure of obtaining all the solutions.

Whilemany solutions as opposed to all solutions may be fine in many applications,

often one has to find all the solutions. The problem of not obtaining all the solutions

becomes crucial when one needs the information about all the local minima or the

global minimum, etc. For example, in string theory models, where in many cases the

potential energy landscape is defined by an effective four-dimensional, N = 1 super-

gravity scalar potential V (K,W ) given a Kähler potential K, and a superpotential

W , one has to find all the minima. These minima are called string vacua and ad-

dressing the plethora of solutions is one of the most important of current theoretical

challenges.

Fortunately, in a large class of models, the equations are polynomials, or at least

they have polynomial-like non-linearity.1 Once they are identified as a system of

polynomial equations, we can use techniques from algebraic geometry, or more specif-

ically, computational algebraic geometry to solve them by systematically transform-

ing a given system of multivariate polynomial equations to another system which is

easier to solve and has the same solutions as the original one. The new system of

equations is called a Gröbner basis (GB), and the algorithm to compute one is called

the Buchberger algorithm (BA).

The biggest advantage here is that one can find all the solutions of the given

system once the computation is finished. Computational algebraic geometry, which

is essentially a set of techniques based on the Gröbner basis method, has become

one of the most useful tools to study a number of phenomena in theoretical physics.

Recently, the rich interplay between algebraic geometry and theoretical physics, espe-

cially in gauge and string theory, has been an active area of research [23]. Activities

in these areas have been enhanced with the increased power of computers and the

development of algorithms in computational algebraic geometry.

More specifically, a variety of methods have been used to study the moduli space

of vacua over the past few years [24, 25] based on symbolic computational algebraic

geometry, most of whose sub-methods and sub-algorithms rely on Gröbner basis

techniques (cf. [26] for an overview on the method). For convenience, a freely avail-

able computational package, StringVacua, which is aMathematica package specifically

designed for phenomenologists [22, 27, 28] exists. StringVacua interfaces with the ad-

vanced computational algebraic geometry package Singular [29]. Using StringVacua,

one can extract important information such as the dimension of the vacuum, the

number of real roots in the system, stability and supersymmetry of the potential,

1 In the presence of non-perturbative effects where exponential terms contribute, one could still

reduce the system into polynomials of Lambert functions, perform standard polynomials manipu-

lations and treat the Lambert functions numerically [22].
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or the branches of moduli space of vacua, etc., using a regular desktop machine in

many circumstances.

However, the GB method is known to suffer from exponential complexity, i.e., the

computation time and the RAM required by the BA algorithm increases exponen-

tially with the number of variables, equations, degree, and terms in each polynomial;

it is usually less efficient for systems with irrational coefficient parameters ~a; and it

is also highly sequential, i.e., very difficult to parallelize the algorithm and put on a

big cluster.

To overcome these shortcomings of the GB methods, a different approach called

numerical algebraic geometry (NAG) was recently introduced. Its core algorithm,

called numerical polynomial homotopy continuation (NPHC), guarantees to find all

of the solutions unlike other numerical methods such as the Newton-Raphson and

its variants. Moreover, unlike the Gröbner basis techniques, the NPHC method is

“embarrassingly parallelizable”, and hence one can solve more complicated systems

efficiently using computer clusters.

NAG was introduced in particle theory and statistical mechanics areas in Ref. [30].

Subsequently, the NPHC method was used to solve systems arising in numerous phys-

ical phenomena in lattice field theories [31, 32], statistical physics [33–36], particle

phenomenology [37, 38], and string phenomenology [39–41].

1.1 Parametric Potentials

As mentioned above, in generic physical applications, the potential energy function is

defined over a possibly vast parameter-space, where each point ~a represents a differ-

ent physical situation. For example, in a statistical mechanics model, the parameters

are the disorders [7]. Another example in theoretical chemistry where the models are

Morse clusters, the parameters represent the strength of the inter-particle potential

[42–45]. As a third example, in lattice field theory the parameters represent different

background fields in the models [31, 32, 46, 47]. Another situation is in flux com-

pactifications within string phenomenology where the parameters represent the flux

quanta.

The flux quanta are discrete parameters that are given as integrals of n-forms along

n-cycles in a compact space, see §4. Their discreteness arises as a Dirac quantization

condition. For many compactification manifolds, for instance Calabi-Yau spaces,

these cycles exist on the order of 10 to 100 where the flux quanta can be chosen

independently. This yields an exponentially large parameter space that is only limited

by conditions of conservation of certain charges in the compact space.

The parametric potentials adds one more, rather severe, problem where as the

parameters enter the system of equations, one has to solve the system of parametric

equations. This is in fact a quite difficult problem. If we use the above mentioned

methods directly, we have to specify numerical values of the parameters before using

the methods. In other words, we have to solve the system separately from scratch
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for each point in the parameter space. In practice, due to the large number of phys-

ically interesting parameter-points, this crude way of solving the problem becomes

prohibitively time consuming as well as computationally expensive. Traditionally,

one resorts to assigning generic, random values to these parameters. However, this

misses the intricacies of special parameters.

In this paper, we introduce two methods which deal with parametric systems ex-

tremely efficiently. The first method is called the Comprehensive Gröbner basis

(CGB) method. This is a completely symbolic method where given a parametric

system of equations, CGB yields a new system, leaving all the parameters in the

symbolic form, which is a GB for all values of the parameters and also for all the

specializations, i.e., special values of the parameters. Once we obtain a CGB for a

given system, it then only amounts to inputting the specific values of parameters and

extracting the corresponding solutions out. Thus, we can efficiently solve the system

for as many parameter-points as we desire since the system is solved for the whole

parameter space. However, as one may surmise, this method has the same afore-

mentioned short-comings as the usual GB method. Nevertheless, when successful in

finishing the computation, the CGB method reduces the amount of work in finding

string vacua over a large space of flux parameters drastically.

The second method is called the cheater’s homotopy (CH) method, which is

based on NAG. In NPHC, one first has to estimate an upper bound on the number

of solutions of the given system so that one can then construct another system which

has the same number of solutions as the estimate. To reduce the computation in this

method, we must come up with a tighter upper bound on the number of solutions.

Three of the most important solution bounds were demonstrated in our previous

works [30, 31, 33, 40]. However, in most of the realistic systems, the sparsity of the

systems (i.e., the number of monomials in each equation may be only a few) is not

fully taken into account. Thus, even though the original system may have only a few

solutions, we may have to track many paths making it computationally expensive.

Cheater’s homotopy relies on the fact that the maximum number of solutions of a

parametric system of polynomial equations over all the parameter-points is that at

a generic parameter-point. The number of paths to be tracked is usually drastically

smaller than any of the other upper bounds for the cheater’s homotopy [48].

The second, and perhaps the most crucial, advantage is that in the cheater’s

homotopy we obtain the start system once for for a generic parametric system, i.e.,

we then can use the same start system for arbitrary parameter-points in the entire

parameter-space. Several more advantages of this method exist when solving these

systems on a computer cluster, but most importantly the method is “embarrassingly

parallelizable”, a subject matter to which we shall later return. A very efficient

package, which is yet to be publicly available, called Paramotopy [49], uses all the

computational advantages of the method in our favor and can deal with hundreds of

thousands of parameter-points. In this paper, we heavily rely on Paramotopy for our
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computations.

We would like to make the clarification that the above two methods are based

on complex algebraic geometry which means that the variables are first considered

to be complex, and then once the solutions are obtained, only purely real solutions

are retained for analysis if the system was supposed to be made of real variables.

However, there is a more recent method from real algebraic geometry, based on

the discriminant varieties [50, 51], which treats both variables and parameters as

reals from the beginning and gives a different set of information than the methods

described in this paper. The details on this method with applications arising from

physics will be addressed in forthcoming works.

We first introduce the Comprehensive Gröbner basis method and solve a few toy

models in §2. Then, to make the paper self-contained, we briefly explain the NPHC

method before explaining the cheater’s homotopy method in §3. Therein, we also

introduce the salient features of the Paramotopy package. In §4, we solve several toy

models as well as more realistic models such as flux compactifications on the quintic

manifold. We will extract some interesting physics using the string vacua of these

models over a large space of fluxes. Finally, we conclude with remarks and prospects

in §5.

2 Algebraic Geometry & the Comprehensive Gröbner Basis

Method

In this section, we explain the concept of a Comprehensive Gröbner basis in more

detail and some basics of algebraic geometry to set the nomenclature and also to

facilitate the reader. We first introduce few technical terms leading to the definition

of a Gröbner basis. Then, we will explain what a Comprehensive Gröbner basis is.

Readers uninterested in the technicalities involved in the definition may freely skip

subsection §2.1 after reading the next two paragraphs.

Roughly speaking, given a system of polynomial equations, the Buchberger Algo-

rithm (BA), or its refined variants, compute a new equivalent system of polynomials,

called a Gröbner basis [52] which has nicer properties; using the BA on multivariate

polynomial systems is analogous to Gaussian elimination for linear systems. Nowa-

days, efficient variants of the BA are available, e.g., F4 [53], F5 [54], and Involution

Algorithms [55]. Symbolic computation packages such as Mathematica, Maple, Re-

duce, etc., have built-in commands to calculate a Gröbner basis. Moreover, Singular

[29], COCOA [56], and Macaulay2 [57] are specialized packages for computational al-

gebraic geometry available freely. MAGMA [58] is also such a specialized package

available commercially.

A system of polynomial equations with parameters is called a parametric system;

finding the critical points of a polynomial PEL is precisely such a system. If one
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is interested in solving the system at finitely many points on the parameter-space,

then inserting the numerical values of the parameters in the system and obtaining a

Gröbner basis is a quick escape, especially for a small number of parameters. A nat-

ural question to ask is if it is possible to obtain a Gröbner basis for a given monomial

ordering in terms of the symbolic form of the parametric coefficients, valid for all

its special cases, called specializations. One can indeed compute such a ‘parametric

Gröbner basis’ called Comprehensive Gröbner basis (CGB) [59]. Algorithmically, we

use the internal libraries of Singular to compute the CGB in this paper.

2.1 The Comprehensive Gröbner Basis

The technicalities in this subsection will lead to a very useful result, namely that

we can transform a given system of multivariate polynomial equations to another

one which has the same solutions but is easier to solve. Here, the original system

is considered as a basis of an algebraic object, called an ideal. Then an important

result, that an appropriate change of this basis leaves the solution space unchanged,

is used.

Polynomial Rings

We define a polynomial f as

f =
∑

α

aαx
α. (2.1)

Here, the sum is over a finite number of m-tuples α = (α1, . . . , αm) and xα =

xα1

1 . . . xαm
m is a monomial with all αi being non-negative integers. The coefficients

aα and the variables xi take values from the field K. However, to use the results of

Algebraic Geometry to its full extent, unless otherwise specified, we will take K = C.

Now, if K[x1, . . . , xm] is the set of all polynomials in variables x1, . . . , xm with

coefficients in K, then f ∈ K[x1, . . . , xm] can be viewed as a function f : Km −→ K

where Km is the affine space of all coefficients. Thus, the sum and product of

two polynomials is a polynomial, and a polynomial f divides a polynomial g if

and only if g = fh, for some h ∈ K[x1, . . . , xm]. Using this, it can be shown

that under addition and multiplication, K[x1, . . . , xm] satisfies all of the field axioms

except for the existence of a multiplicative inverse because 1
x
is not a polynomial.

Indeed, K[x1, . . . , xm] satisfies the axioms for a commutative ring, or more precisely

a polynomial ring 2.

Ideal

One can now view all the polynomials of a system of polynomial equations as elements

of a polynomial ring. Hence, one can also define a corresponding vector space, called

an ideal. More specifically, an ideal I is a subset of K[x1, . . . , xm] with the following

properties:

2For a nice discussion on related topics, the reader is referred to [52, 60].
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1. 0 ∈ I,

2. f + g ∈ I for all f, g ∈ I, and

3. hf ∈ I for f ∈ I and h ∈ K[x1 . . . , xm].

Consider any f ∈ I ⊂ K[x1, . . . , xm]. If f can be written as f =
∑

α aαhα with

aα ∈ K and hα ∈ K[x1, . . . , xm], then we write I = 〈hα〉 ⊂ K[x1, . . . , xm]. If the

indexing set α is finite, say with cardinality t, then I is called a finitely generated

ideal. The polynomials h1, . . . , ht are then said to be a finite basis of I, and we write

I = 〈h1, . . . , ht〉.

Affine Variety

So far, we have introduced the algebraic counterpart of Algebraic Geometry. The

solution space of a given ideal is called a variety. Specifically, an affine variety of an

ideal I = 〈h1, . . . , ht〉 is the set of common zeros of polynomials h1 . . . , ht in affine

space, denoted as V (h1, . . . , ht) or V (I).

Gröbner Basis

The formalism of Algebraic Geometry turns out to be very helpful. Interpreting the

polynomials hi as a basis of I, we can change the basis to, say, 〈H1, . . . , Hs〉. Then,

it can be shown that the solution space remains unchanged in an appropriate change

of basis, that is, V (h1, . . . , ht) = V (H1, . . . , Hs). In essence, we use computational

techniques to find a basis that is easier to deal with than the original one, in a certain

sense. Such a basis is called a Gröbner basis.

In linear algebra, such a change of basis can be done via Gaussian Elimination, and

the new basis is the familiar Row-Echelon form. In general, an algorithm to obtain

a Gröbner basis performs a specific set of algebraic operations including factorizing

and dividing the polynomials. In any algorithm that computes a Gröbner basis, the

division requires one to impose a total order among the monomials. This is called a

monomial ordering.

A monomial ordering is a relation ‘≻’ on the set of monomials xα, α ∈ Z
n
≥0,

satisfying the following properties:

1. the ordering always tells which of two distinct monomials is greater,

2. the relative order of two monomials does not change when they are each mul-

tiplied by the same monomial, and

3. every strictly decreasing sequence of monomials eventually terminates [61].
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Different types of monomial orderings exist that satisfy the aforementioned prop-

erties such as lexicographic, graded lexicographic, graded reverse lexicographic, or

degree lexicographic. Different monomial orderings are useful depending on the al-

gorithm that is employed to compute the Gröbner Basis. Lexicographic orderings

will be primarily used throughout our discussion. To learn more about monomial

ordering, the reader is referred to [52, 60].

By fixing a monomial order, we define a leading term for each polynomial of a

given ideal, denoted as 〈LT (h1), . . . , LT (ht)〉. One can always find a finite subset

G = 〈H1, . . . , Hs〉 of an ideal I (except for the trivial case I = 〈0〉) such that every

leading term of f ∈ I can be generated by 〈LT (H1), . . . , LT (Hs)〉. Here, f ∈ I

means that f is an algebraic combination of h1, . . . , ht, as is required for I to be an

ideal. Such a subset G is called a Gröbner basis with respect to the specific monomial

order.3

One can show that for any given monomial order, every nontrivial ideal I ⊂

K[x1, . . . , xm], has a Gröbner basis and that any Gröbner basis for an ideal I is a

basis of I. One can also show that V (I) can be computed by any basis of I, and so

the solutions of I are the same as that of any of its Gröbner basis for any monomial

ordering.

A well-defined procedure exists to compute a Gröbner basis for any given ideal

and monomial ordering, called the Buchberger algorithm. It should be noted that the

Buchberger algorithm reduces to Gaussian elimination in the case of linear equations,

as it is a generalization of the latter. Similarly, it is a generalization of the Euclidean

algorithm for the computation of the Greatest Common Divisors of a univariate

polynomial.

Comprehensive Gröbner Basis

If the leading coefficient of each element of the basis is 1 and no monomial in any

element of the basis is in the ideal generated by the leading terms of the other

elements of the basis, the basis is called a reduced Gröbner basis. A reduced Gröbner

basis is unique for a given ideal and monomial ordering, unlike a Gröbner basis.

Now, if we have a parametric ideal, i.e., I = 〈f1, . . . , fs〉 ⊂ R[x1, . . . , xn; a1, . . . , am],

where R is a unique factorization domain, then a Comprehensive Gröbner basis

(CGB) is the distinct reduced Gröbner basis for all possible values of the parameters

a1, . . . , am [59]. There are several algorithms available to compute the CGB [62–64].

We refer the reader willing to learn more about the actual algorithm and related

issues to these references, and leave the section by noting that we use the internal

libraries of Singular to compute the CGB in this paper.

3It should be noted here that a Gröbner basis may not be unique for a fixed monomial ordering.

So, we call it a Gröbner basis rather than the Gröbner basis. However, the so-called reduced

Gröbner basis is unique for a given monomial ordering. The reader is referred to Ref. [52, 60] for

more details.
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Let us illustrate with a trivial example of a nonlinear parametric equation ax2 +

bx+c = 0; this equation defines an ideal in C[x] with parameters a, b, c in one variable

x. Singular’s CGB library yields that there are three cases:

1. Case-1: for a = b = c = 0, the solution is the whole C, i.e. all x ∈ C;

2. Case-2: for a = 0 and b 6= 0, the solution is the line bx+ c = 0; and

3. Case-3: for a 6= 0, the solution is the quadric ax2 + bx+ c = 0,

as is clearly expected.

Next, let us consider a more involved example. Take the bi-variate system of two

equations 〈f1 = ax2y2 + bxy + 2 = 0, f2 = bx + ay + 2 = 0〉, where a and b are

parameters and x and y are variables. Fix the lexicographic ordering x ≻ y. Then,

the leading terms are clearly LT (f1) = ax2y2 and LT (f2) = bx. The Comprehensive

Gröbner basis is as follows:

1. Case-1: for a = b = 0, the solution set empty;

2. Case-2: a 6= 0, b = 0, the solution space is given by ay + 2 = 0 = −2x2 − a;

3. Case-3: a = 0, b 6= 0, the solution space is given by −y + 1 = 0 = bx+ 2;

4. Case-4: ab 6= 0, the solution space is given be −a3y4 − 4a2y3 + (b2 − 4)ay2 +

2b2y − 2b2 = 0 and bx+ ay + 2 = 0;

the last three cases can, of course, be checked by simple substitution.

3 Numerical Algebraic Geometry and Cheater’s Homotopy

Having expounded on the virtues of the CGB, we now introduce a parallel method,

which attacks our problem from an entirely different perspective. The numerical

polynomial homotopy continuation (NPHC) method [61] is a recently introduced

numerical method that finds all the solutions of the given system of polynomial

equations. It has been used in various problems in particle theory and statistical

mechanics in Refs. [30–37, 39, 40]. Here we briefly explain the NPHC method to

make the paper self-contained.

For a system of polynomial equations, P (x) = 0, where P (x) = (p1(x), . . . , pm(x))
T

and x = (x1, . . . , xm)
T , which is known to have isolated solutions, the Classical Bézout

Theorem asserts that for generic values of coefficients, the maximum number of iso-

lated solutions in C
m is

∏m
i=1 di, where di is the degree of the ith polynomial. This

bound, the classical Bézout bound (CBB), is exact for generic values. The genericity

is well-defined and the interested reader is referred to Ref. [61, 65] for details.
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Based on the CBB, a homotopy H(x, t) can be constructed as

H(x, t) = γ(1− t)Q(x) + t P (x), (3.1)

where γ is a generic complex number and Q(x) = (q1(x), . . . , qm(x))
T is a system of

polynomial equations with the following properties:

1. the solutions of Q(x) = H(x, 0) = 0 are known or can be easily obtained. Q(x)

is called the start system and the solutions are called the start solutions ;

2. the number of solutions of Q(x) = H(x, 0) = 0 is equal to the CBB;

3. the solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists of a finite number of

smooth paths, called homotopy paths, each parameterized by t ∈ [0, 1); and

4. every isolated solution of H(x, 1) = P (x) = 0 can be reached by some path

originating at a solution of H(x, 0) = Q(x) = 0.

We can then track all the paths corresponding to each solution of Q(x) = 0 from

t = 0 to t = 1. The paths which reach P (x) = 0 = H(x, 1) are the solutions of

P (x) = 0. By implementing an efficient path tracker algorithm, all isolated solutions

of a system of multivariate polynomials system can be obtained: it is shown [61]

that for a generic γ, there are no singularities (i.e., paths do not cross each other) for

t ∈ [0, 1). Thus, in the end, we obtain all the solutions of the system P (x) = 0. In

this respect, the NPHC method has a great advantage over all other known methods

for finding stationary points.

Several sophisticated numerical packages well-equipped with path trackers exist,

such as Bertini [66], PHCpack [67], HOMPACK [68], and HOM4PS2 [69, 70], which are

all available as freewares from the respective research groups.

3.1 Cheater’s Homotopy

The advantages of the homotopy based on the CBB are (1) the CBB is easy to

compute, and (2) the start system based on the CBB can be solved quickly. The

drawback of it is that the CBB does not take the sparsity of the system into account;

systems arising in practice have far fewer solutions than the CBB, so a large portion

of the computational effort is wasted.

Hence, one can also use homotopies based on tighter upper bounds. For example,

the 2-Homogeneous Homotopy is constructed by first writing C
m = C

k × C
k−m for

some k where 0 < k < m, which is accomplished by partitioning the original variables

into two groups. This has the advantage of incorporating some of the structure of

the given polynomial system P (x) into the start system Q(x). The corresponding

bound, called the 2-Homogeneous Bézout Bound (2HomBB), is often tighter than

the CBB when the polynomial system P (x) has a naturally arising partition of the
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variables, which occurs in the examples below. Given a partition, the 2HomBB is

easy to compute and the start system can be solved quickly via linear algebra.

Another important homotopy is the Polyhedral Homotopy which uses the mono-

mial structure of the given polynomial system P (x) based on the Bernstein-Khovanskii-

Kushnirenko (BKK) Theorem [71–73] to yield the BKK bound. Essentially, this up-

per bound on the number of complex solutions is obtained by computing the mixed

volume of the convex hull of the Newton polytope (which is based on the exponents of

the monomials appearing) of each equation. The interested reader from the physics

community is referred to Ref. [30, 40] for these above two bounds. We note that,

as with the CBB, the 2HomBB and BKK bounds are also generically sharp with

respect to the family of polynomial systems under consideration.

However, in the realistic systems, we do need to take the sparsity of the systems

fully into account. Indeed, even though the original system may have only a few

solutions, we may have to track many paths making it computationally expensive.

The cheater’s homotopy is a much more practical method to overcome this diffi-

culty. The crux of cheater’s homotopy relies on a theorem, which we state without

its proof below, that states that the maximum number of solutions of a parametric

system of polynomial equations over all the parameter-points is the one at a generic

parameter-point [48]:

Theorem 1. Let P (x, λ) = 0 be a system of polynomial equations, p1(x, λ), . . . , pn(x, λ) =

0, where λ = (λ1, . . . , λm) ∈ C
m are parameters and x = (x1, . . . , xn) ∈ C

n be vari-

ables. Then, there exists an open, dense, full-measure set U ⊂ C
n+m such that for

(b∗1, . . . , b
∗
n, λ

∗
1, . . . , λ

∗
m) ∈ U the following holds:

1. The set X∗ of solutions x = (x1, . . . , xn) of the system

p1(x1, . . . , xn, λ
∗
1, . . . , λ

∗
m) + b∗1 = 0,

. . .

pn(x1, . . . , xn, λ
∗
1, . . . , λ

∗
m) + b∗n = 0

consists of d0 isolated points for d0 ≤ d, where d is the total degree of the system

for a generic λ.

2. Smoothness and accessibility properties (Properties 3 and 4 of homotopies) still

hold for the cheater’s homotopy which is given as follows:

H(x, t) = P (x1, . . . , xn, (1− t)λ∗1 + t1, . . . , (1− t)λ∗m + tλm) + (1− t)b∗

where b∗ = (b∗1, . . . , b
∗
n). It follows that every solution of P (x) = 0 is reached by

a path beginning at a point of X∗.

12



Another way of viewing this is to say that a “special” choice of our coefficients

may cause the system to be deficient in the maximum number of solutions. If we

let D be the set of all λ that cause these deficiencies, then D is a set of measure

0. Hence, cheater’s homotopy relies on the fact that we choose generic, or random,

values of the coefficients. If we choose random values for λ∗, then with probability

1, λ∗ /∈ D.

Algorithmically, for a given parametric system P (x, λ) = 0 where λ = (λ1, . . . , λm)

are parameters, we first simply need to solve P (x, λ) at a generic parameter-point

λ∗ ∈ C
m. This part has to be solved using a homotopy based on total degree,

2-homogeneous, or the BKK root counts. Then, in the second part, the system

P (x, λ∗) = 0 becomes the start system of all other parameter-points λ ∈ C
m − {λ∗}

and the solutions of this system become the start solutions. Finally, each path is

tracked with the below homotopy:

H(x, λ, t) = (1− t)P (x, λ∗) + t P (x, λ). (3.2)

The most important trick here is to choose the generic parameter-point from the

complex space. Once the generic parameter-point is chosen from the complex space,

the other parameter point can be chosen to be real if the physical situation requires.

Also note that the gamma trick is implicitly employed since the λ∗ are generic.

The advantage of the cheater’s homotopy over the usual NPHC is huge. In the

cheater’s homotopy, the number of start solutions is drastically smaller than any of

the other upper bounds usually (in the worst case, it is equal to the smallest of all the

other upper bounds), and hence the number of paths to be tracked reduces a lot. A

crucial advantage is that in the cheater’s homotopy, we can obtain the start system

for a generic parametric system once during a computationally expensive ‘offline’

run. This allows us to use the same start system for any number of parameter-points

in the parameter-space and compute the solutions at each parameter point of interest

with a much faster ‘online’ run.

Moreover, the system at each parameter-point can be solved completely indepen-

dent from any other parameter-point. In addition, while solving the system at each

parameter-point, each path can also be tracked independently of all others, making

it “doubly parallelizable”. We should emphasize that the packages like Bertini and

PHCpack now have an implementation of cheater’s homotopy method in addition to

the usual NPHC method.

A recently developed software module of Bertini, called Paramotopy [49], is a dif-

ferent implementation of cheater’s homotopy than the standard one already provided

with Bertini and can deal with a huge number of parameter points in parallel. In this

paper we have extensively used this software. Several salient features of this new

software are:

1. It offers a few options on choosing the parameter-points: the user can de-

mand the package to discretize the parameter-space within a given range in as
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many parameter-points as required or the package can also be fed in a list of

parameter-points provided by the user.

2. Paramotopy first stores the data in the RAM before writing to the hard-disk

which is an efficient data-management practice making the package more effi-

cient while dealing with many parameter-points simultaneously.

3. The package is able to disregard any information other than the type of solu-

tions the user requires in the end, i.e., it can be asked to save only real affine

solutions, or only non-singular solutions, etc. This is an important aspect of

the package because by not including all the information produced in a regular

run, it eliminates massive data proliferation.

4. If, for any parameter-point where certain paths require higher precision, Paramo-

topy informs us so that the user can re-run these specific parameter-points at

higher precision settings. Note that the parameter-points may lie on some al-

gebraic subset in which exists an algebraic relationship on the parameters. In

this case, the number of complex solutions shrinks, and hence the related paths

may require higher precision.

4 Illustrative Examples

Having explained our methods in detail, in this section, we will illustrate with ex-

amples coming from a variety of physical situations, commencing with a toy model

and moving onto more serious and involved cases.

4.1 Sys1 : A Single-Modulus Example

We begin with a single-modulus toy example. First, we recall that given the Kähler

potential K and superpotential W , both as polynomials in fields φA=1,...,n one can

proceed to construct the scalar potential from the standard formulae [74]:

V = eK
[

KAB̄DAWDB̄W̄ − 3|W |2
]

. (4.1)

As usual the DA represents the Kähler derivative ∂A+∂A(K), and KAB̄ is the inverse

of the field space metric

KAB̄ = ∂A∂B̄K . (4.2)

Our example of this problem requires the solution of the critical set

∂AV = 0, for A = 1, . . . , n . (4.3)

We can further classify the solutions to (4.3) by the amount of supersymmetry they

preserve, the value of the bare cosmological constant they dictate, and so forth. The

most relevant examples are:
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• SUSY, Minkowski: ∂AV = 0, DAW = 0 for all A and W = 0;

• SUSY, AdS: ∂AV = 0, DAW = 0 for all A but W 6= 0.

Thus prepared, let us take a single field example, which is addressed in the demo

of StringVacua and with which we can compare. Let the Kähler potential K and

superpotential W of an N = 1 supersymmetric theory in a single complex moduli

field T be given as

K = −3 log(T + T̄ ) , W = a+ bT 8 . (4.4)

Note that the field T comes along with its complex conjugate. Even though they

can be treated as different variables by merely relabeling them, they are not actually

independent variables. To avoid this problem, we can write them in terms of real

and imaginary parts, i.e., T = t + i τ where t and τ are real. The potential, using

(4.1), is

V =
1

3t
(4b(5b(t2 + τ 2)7 − 3a(t6 − 21t4τ 2 + 35t2τ 4 − 7τ 6))) (4.5)

which has 2 variables. To find the stationary points of V , we need to compute the

zero locus of the partial derivatives of V with respect to variables t and τ :

∂V

∂t
=

1

3t2
(4b(5b(13t2 − τ 2)(t2 + τ 2)6 − 3a(5t6 − 63t4τ 2 + 35t2τ 4 + 7τ 6))) = 0,

∂V

∂τ
=

1

3t
(56bτ(5b(t2 + τ 2)6 + a(9t4 − 30t2τ 2 + 9τ 4))) = 0 . (4.6)

For general values of parameters a and b the system already becomes difficult to

analyze using symbolic methods and one could solve the system for specific values

such as a = b = 1 [26, 27].

We also note that the stationary equations in this example involve denominators.

Since we are not interested in the solutions for which the denominators are zero,

we clear them out by multiplying them with the numerators appropriately. In these

equations, all the denominators are multiples of t. The condition that none of the

denominators is zero can be imposed algebraically by adding an additional equation,

1 − y t = 0, with y being an additional variable. Thus, we now have 3 equations in

3 variables. The CGB library of Singular can deal with this system. The expression

of the CGB of this system is quite large so we do not write it down here.

We can also solve this system using Cheater’s homotopy. For the range of values

of a and b given in Figure 1 we find that there are either 6 solutions for a, b > 0

and a, b < 0 or 4 solutions for a < 0, b > 0 and a > 0, b < 0; these are indicated

by different colors in Figure 1. We scan over a total of 100,150 parameter points

and find a total of 582,676 solutions. Exactly half of the solutions are physical, i.e.

t > 0 which corresponds to a positive volume of the cycle associated to the Kähler

modulus T . We did our computation on a desktop machine on single processor (Linux
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Figure 1. Scanned values for a and b for the one-modulus example in Sys1. The corre-

sponding number of solutions of the system per parameter point is indicated by the color.

The total number of parameter points is 100,150 and the spacing between the points is

equidistant.

machine with 2.1GHz cloak speed). First, Bertini takes around 30 minutes to solve

the system from scratch for a given parameter-point. This means that it would have

taken around 5.731 years to solve the system at all the 100, 150 parameter-points.

With the CH method, however, we solved them in only 55 hours.

The scalar masses of the moduli t and τ which can be calculated as the eigenvalues

of the Hessian of V are found to be positive for all parameter points with t > 0. We

give the moduli masses and the gravitino mass

m2
3/2 = eK |W |2 , (4.7)

which determines the scale of supersymmetry breaking in Figure 2, which is a fre-

quency plot of the mass values for our space of 100, 150 parameters.

4.2 Sys2 : A Two-Moduli Model

Now, let us move on to a model with two moduli fields. Consider the Kähler potential

and superpotential

K = −3 log(T + T̄ )− log(S + S̄),

W = aS + bST + cT 2, (4.8)
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Figure 2. Masses of the moduli t and τ as eigenvalues of the Hessian (left) and the

gravitino mass (right) for the one-modulus model Sys1.

with two fields, a Kähler modulus T = t+ iτ and the axio-dilaton S = s+ iσ. Hence,

using (4.1), the stationary equations to be solved are:

0 = (3a2(s− σ)(s+ σ) + 6at(b(−s2 + σ2) + 2cστ) + 2bcστ(t2 − 3τ 2)

−b2(s− σ)(s+ σ)(5t2 − 3τ 2) + c2(5t2 − 3τ 2)(t2 + τ 2)),

0 = (−9a2(s2 + σ2) + b2(s2 + σ2)(5t2 − 9τ 2) + 2bcτ(σt2 + 18stτ − 9στ 2)

+c2(−5t4 + 2t2τ 2 − 9τ 4) + 6a(2b(s2 + σ2)t+ c(5st2 + 4σtτ − 3sτ 2))),

0 = (−(cσt(6a+ bt)) + (6acs+ 3b2(s2 + σ2)− 18bcst− 2c2t2)τ + 9bcστ 2 + 6c2τ 3),

0 = (3a2σ − 6at(bσ + cτ) + b(−5bσt2 − ct2τ + 3bστ 2 + 3cτ 3)),

0 = 1− zts .

The first four equations arise from setting the numerators of the various partial

derivatives of V to zero, and the last is an auxiliary equation to ensure that the

denominator does not vanish. Therefore, this system is 5 equations in 5 variables

with 3 parameters. Again, this is an example used in StringVacua, but a, b and c

are parameters that were chosen to be 1,−1, 1 respectively in [26, 27]. Now, we can

undertake the much more challenging task of taking a huge range of parameter-values

in our computation.

Again, for generic choice of the values for a, b and c, it becomes difficult for the

traditional GB method. However, we can compute the CGB for this system; The

output from Singular of the CGB for this system is quite large, and, hence, we do

not write it here.

Using Paramotopy on the other hand, we easily scan over 100, 672 parameter

points, see Figure 3. We find 6 solutions per parameter point which yields a total of
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Figure 3. Scanned values for a and b and c for the two-moduli example Sys2. The total

number of parameter points is 100, 672, and the spacing between the points is equidistant.

The blue regions indicate that there are 6 solutions to Sys2.

604, 032 solutions. The physicality condition for the case of this model demands again

t > 0 and also s = g−1
s > 0, i.e. positive string coupling. This is fulfilled by 503, 299

solutions. As for Sys1, we did our computation on a desktop machine. Bertini takes

around 40 minutes to solve the system from scratch for a given parameter-point.

Hence, for all the 100, 672 parameter-points, it would have taken 7.682 years. How-

ever, using the CH method, we solved them all in 125 hours. When evaluating the

Hessian of V , we find that there is always at least one negative eigenvalue, i.e. no

vacua exist for this model for the set of parameters we considered.

4.3 Sys3 : The Quintic

An area of string phenomenology where one can make use of the power of Cheater’s

homotopy is the landscape of flux vacua in type IIB string theory [12, 13, 15, 16].

As mentioned in Sys1, if one goes to a particular corner of the moduli space, the

equations

DiW = 0 (4.9)

that determine the supersymmetric vacuum state of the no-scale scalar potential [75,

76]

V = eKKab̄DaWDbW , (4.10)

are polynomial equations in the complex structure moduli fields φa = τ, U1, .., Uh2,1 ,

where τ = σ + i s (= iS̄) is the axio-dilaton. The parameters of these equations are

the flux integers

1

(2π)2α′

∫

Aa

F3 = f1a ∈ Z ,
1

(2π)2α′

∫

Ba

F3 = f2a ∈ Z ,

1

(2π)2α′

∫

Aa

H3 = h1a ∈ Z ,
1

(2π)2α′

∫

Ba

H3 = h2a ∈ Z ,

(4.11)
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where F3 and H3 are the RR and NS three-form flux of type IIB string theory, and

〈Aa, B
b〉 is a symplectic basis for the b3 = 2h2,1 + 2 three-cycles. The flux integers

are to be chosen freely as long as the D3 tadpole constraint

L =
1

(2π)4(α′)2

∫

X3

H3 ∧ F3 = h1f2 − h2f1 (4.12)

is not violated.

For supersymmetric flux configurations, F3 andH3 always combine into an imaginary-

self-dual (ISD) flux G3 = F3 − τ H3 [12, 77], which can be written as [9]

∗6 sH3 = −(F3 − σH3) . (4.13)

Consequently, one only has to consider 2h2,1+2 independent directions of the original

4h2,1 + 4 flux integers defining

H3 =

(

h1
h2

)

and F3 =

(

−h2
h1

)

, (4.14)

Then, the D3 tadpole eq. (4.12) manifests as a positive definite form, i.e.

L = h21 + h22 , (4.15)

for a symplectic basis of three-cycles. With this form of the D3 tadpole, we can use

Paramotopy to find all flux vacua, i.e. solutions to eq. (4.9) for all flux configurations

h1, h2 with D3 tadpole L < Lmax for a given maximal tadpole Lmax. We have to

take into account the SL(2,Z) invariance of IIB string theory in order to consider

only physically equivalent flux configurations. It was shown in [78] that for fluxes of

the form (4.14), only the configurations
(

h1
h2

)

∼=

(

−h1
−h2

)

∼=

(

−h2
h1

)

∼=

(

h2
−h1

)

. (4.16)

are related by SL(2,Z), and hence physically equivalent.

This problem to find all supersymmetric flux vacua in the large complex structure

limit was carried out for the compactification manifold CP
4
11169[18] in [78] in the

context of de Sitter model building in the Kähler uplifting scenario [79, 80]. To

present a simple example, we consider the one complex structure modulus ψ of the

mirror quintic which has h1,1 = 101 and h2,1 = 1. In the limit of large complex

structure, this describes the one moduli subspace of the quintic [81] given by the

vanishing of the polynomial

x50 + x51 + x52 + x53 + x54 − 5ψ x0x1x2x3x4 , (4.17)

in CP
4
11111 with coordinates x0, .., x4. To obtain a polynomial system let us introduce

the complex coordinate U = ν + i u which relates to ψ as

U ≃ −
5

2πi
log(5ψ) , (4.18)
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up to corrections of O(Uke2πiU) that are exponentially suppressed in the large com-

plex structure limit Im(U) → ∞. This moduli space can be described by an approx-

imately polynomial prepotential in the large complex structure limit

G = ω2
0

(

−
5

6

(

ω1

ω0

)3

−
11

4

(

ω1

ω0

)2

+
25

12

ω1

ω0

−
25ζ(3)χ

2(2πi)3

)

, (4.19)

with χ = 2(h1,1 − h2,1) = 200 and ωa and Gb are the periods

ωa =

∫

Aa

Ω , Gb =

∫

Bb

Ω . (4.20)

for a, b = 1, 2 and Gb = ∂ωb
G. ω0 can be interpreted as the normalization Ω of the

holomorphic three-form, such that the one physical variable is U = ω1/ω0. Eq. (4.19)

is valid up to corrections O(e2πikU) that are exponentially small in the limit of the

large complex structure. We define the large complex structure limit as Im(U) > 2

such that these corrections to G are smaller than 10−3G.4

Together with the axio-dilaton, τ this yields a two moduli example described by

the Kähler potential and superpotential

K = Kk − log

(

−i

∫

X3

Ω(U) ∧ Ω̄(Ū)

)

− log (−i(τ − τ̄)) ,

= − log

(

i

2
∑

a=1

(ω̄aGa − ωaḠa)

)

− log (−i(τ − τ̄)) ,

W0 =
1

2π

∫

X3

(F3 − τH3) ∧ Ω(U) ,

= 2π
2
∑

a=1

[(f1a − τ h1a)Ga − (f2a − τ h2a)Ua] ,

(4.21)

where Kk is the Kähler potential of the Kähler moduli and setting α′ = 1.

We solve eqs. (4.9) for (4.21) up to a maximal tadpole of Lmax = 625. This

corresponds to 481, 825 flux parameter points for which we find a total of 1, 726, 334

solutions, i.e. on average ∼ 3.6 solutions per parameter point. Only 20, 280 are

physical solutions, i.e. g−1
s = s > 0 and u > 2, see Figure 4. If we were to solve it

at each parameter-point from scratch, then it takes 72 minutes per parameter-point.

This means that for total 481, 825 parameter-points that we solved the system for, we

would have taken 481, 825× 72/60 = 578, 190 hours. But instead, using Paramotopy,

we solved all of them in only 3776 hours, i.e., around 26.4 human hours with a cluster

of 144 processors. We could not obtain the CGB for this system in a reasonable time.

4Note that there is a conifold singularity at ψ5 = 1 that is excluded from the large complex

structure limit Im(U) > 2 according to eq. (4.18).
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Figure 4. Left: Distribution of all algebraic solutions to eq. (4.9) with s > 0 and u > 0

for the Kähler potential and superpotential (4.21) in Sys3. The gray shaded area indicates

the space of physical solutions, i.e. s > 0 and u > 2. Middle: Distribution of the dilaton

τ = σ + i s. Right: Distribution of the superpotential W0.

We can make use of the SL(2,Z) symmetry of IIB string theory, to transform

each solution to the fundamental domain

−
1

2
≤ Re(τ) ≤

1

2
and |τ | > 1 , (4.22)

via the successive transformations

τ ′ = τ + b , W ′
0 = W0 , and τ ′ = −1/τ , W ′

0 = W0/τ (4.23)

with b ∈ Z. We show the distribution of the obtained values for τ = σ + i s and

the flux superpotential W0 in Figure 4. We see that the the strongly coupled region

s = 1/gs ∼ 1 is preferred and values of W0 ∼ O(102 − 103) are preferred. The same

qualitative behavior was observed in [78] for the manifold CP
4
11169[18].

Finally, we give the masses m2 of the moduli t, τ, s and σ and the gravitino mass

m2
3/2 in Figure 5. For this, we have to specify the value of the Kähler moduli

Kähler potential in eq. (4.21). For a Calabi-Yau compactification, this is given as

Kk = −2 logV , where V is the volume modulus of the Calabi-Yau and its vacuum ex-

pectation value depends on the stabilization mechanism of the Kähler moduli. Here

we choose V = 100 in string units for definiteness.

4.4 Further Applications: Sys4

As mentioned in the introduction, large systems with a multitude of parameters are

ubiquitous. Thus, our methods above should be applicable to far more situations than

finding the extrema of a PEL in the context of effective supersymmetric Lagrangians.

In this subsection, as a parting example, let us see the power of Cheater’s homotopy

applied to the geometry of Calabi-Yau manifolds.
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Figure 5. For Sys3 ((4.9) and (4.21)), the distribution of the masses m2 of the moduli

t, τ, s and σ, i.e. all eigenvalues of the Hessian of V (left) and the gravitino mass m2
3/2

(right) in units of M2
P for V = 100.

For concreteness and continuing along the vein of Sys3, let us focus on the problem

of finding the singular locus (or the absence thereof) given a family of quintics.5

Let us consider the family of quintic manifolds given by as a homogeneous hyper-

surface in CP
4 with coordinates x0, . . . , x4, and let

Q(x0, . . . , x4; a, b, c) = x50+x
5
1+x

5
2+x

5
3+x

5
4+ax0x1x2x3x4+bx

4
0x1+cx

3
1x2x3, (4.24)

where a, b, c are complex parameters. Of course, the most general family of quintics

has 101 deformation parameters corresponding to h2,1 of the manifold, but this ex-

ample suffices to show the power of the method. Now, for b = c = 0, we have the

one most familiar to us, with a = −5 being the conifold point in the complex struc-

ture moduli space. The singular locus of Q is given by the Jacobian ideal 〈∂xi
Q〉

for i = 0, . . . , 4, excluding the origin and defined up to scaling of the projective

coordinates.

It is more convenient to work over affine patches of CP4 which can be rescaled to

be Pi = {xi = 1} for i = 0, . . . , 4. For each of the five patches, we compute the four

remaining partial derivatives, the solution of which is then the system we need to

analyze. That is, we need to perform Paramotopy on

∂xj 6=i
Q(xi = 1; a, b, c) = 0 , i = 0, . . . , 4 . (4.25)

5 Recently there has been much activity in study the database of so-called complete intersection

Calabi-Yau (CICY) manifolds of which the quintic is the simplest example as well their smooth

quotients. Checking smoothness for models with this database of 7890 Calabi-Yau threefolds and

their descendents, for example, is a crucial step [82–84].
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Figure 6. The number of solutions at each parameter point {a, b, c} for system P0 (top

left), P1 (top right), P2 and P3 (bottom left) and P4 (bottom right) indicated by the

different colors.

All of the 5 systems are of the same size and we take a, b, c ∈ [−25, 25] in increments

of one, i.e. 513 = 132, 651 parameter points. Bertini takes from 144 to 223 seconds

at a parameter-point if solved from scratch, hence it would have taken from 0.6057

to 0.938854 years for all 132651 parameter-points. Paramotopy solved each of these

systems for all parameter-points in from 19.216 to 92.9002 hours (using 72 processors,

it took 960.812 to 4645.01 seconds). Obtaining the CGB for this system is quite fast

as well; however, obtaining the solutions for each parameter-point from the CGB

takes the same amount of time as Paramotopy. Hence, we show the results only

obtained from Paramotopy here. We show the number of solutions per parameter

point indicated by the different colors in Figure 6 and Table 1. The solution space

of the systems P2 and P3 is identical since eq. (4.24) is invariant under x2 ↔ x3.

5 Conclusion and Outlook

Parametric systems of non-linear equations arise very naturally and frequently in

theoretical physics. The parameters add one more hurdle in solving such systems in
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#sol 0 1− 10 11− 100 101− 240

P0 35, 613 93, 162 1, 250 2, 626

P1 0 109, 326 20, 724 2, 601

P2, P3 0 126, 159 6, 441 51

P4 60 129, 990 0 2, 601

Table 1. Distributions of the number of solutions #sol for the five systems Pi.

addition to the non-linearity of the equations as one has to solve the system many

times. In the present paper, we have demonstrated that two of the sophisticated

algebraic geometry methods can solve such systems very efficiently provided that

the nonlinearity is polynomial-like.

The first method is the Comprehensive Gröbner basis (CGB) which is a symbolic

method based on Gröbner bases. Given a (non-parametric) system of equations,

we can systematically find another system of equations which has the same solution

space as the original one and is easier to solve, called a Gröbner basis. If we have a

parametric system of equations, then we can compute the CGB which is a Gröbner

basis for all values of the parameters including their special values. To obtain the

solutions of the system at a specific parameter-point, one then needs to input the

values of the parameters in the CGB and solve the system using the traditional

methods. However, the algorithmic complexity to compute the CGB is the same, or

in many cases even worse, as the Gröbner basis method, i.e., the memory required by

the algorithm blows up exponentially with increasing number of variables, equations,

monomials, and degree. Moreover, the related algorithm is highly sequential and

unparallelizable. Hence, though the CGB method is extremely useful in the cases

where we can finish the computation, but for many physical systems the method

often falls short.

The second method we described in this paper is called the cheater’s homo-

topy. Here, one first solves the given parametric system of polynomial equations

at a generic parameter-point because it is shown that the number of solutions at

such a parameter-point is an upper bound on the number of solutions at any other

parameter-points. Then, one tracks solution-paths from the solutions at the generic

parameter-point to the ones at which the system needs to be solved using the numeri-

cal polynomial homotopy continuation method. This method is highly parallelizable,

and, hence, we can solve the system at thousands of parameter-points in a short time

on a computer cluster. We use a package called Paramotopy which is not only a highly

efficient implementation of the related algorithm, but also does data and memory

management effectively. These features allow for a huge number of parameter-points

to be solved simultaneously.

We have used these two methods on various examples arising from computing the

extrema of potential energy landscapes, especially in the context of moduli stabiliza-
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tion in string phenomenology. However, obtaining the solutions for each parameter-

point from the CGB (for the cases it is possible to obtain the CGB) takes the same

amount of time as Paramotopy; hence, we show the results only obtained from the

cheater’s homotopy in this paper.

The examples are given as a 4D N = 1 effective supergravity scalar potential,

defined by a Kähler potential K and a superpotential W . Our first two examples

Sys1 and Sys2 are toy models of one and two complex scalar fields, respectively.

We looked for stationary points of these scalar potentials for ∼ 105 parameter

points, finding half of the stationary points are vacua in the case of Sys1 and finding

no vacua in the case of Sys2, i.e., at least one tachyonic direction always exists.

Finally, we looked at flux compactifications on a realistic Calabi-Yau, the quintic in

the case of two moduli. We look for flux vacua for ∼ 5 ·105 flux configurations, which

corresponds to a maximal D3 tadpole of L = 625. Our results indicate preferences of

strongly coupled vacua gs & 1 and values of the superpotential W0 ∼ O(102 − 103).

The applicability of the methods described here is, of course, much wider and is in-

tended for any large parametric polynomial systems, with the parameters appearing

explicitly as coefficients. Indeed, these methods should provide an extremely pow-

erful tool for many areas in theoretical physics such as potential energy landscape,

statistical mechanics, particle phenomenology, string phenomenology, and non-linear

dynamics. As an illustration, we have applied Cheater’s homotopy to the geometry

of Calabi-Yau manifolds in the case of Sys4.

If we were to solve Sys1, Sys2, the quintic, and the Calabi-Yau systems from

scratch for each parameter-point using the numerical homotopy continuation method,

a single processor machine would have taken 5.731 years, 7.682 years, 66.003 years,

and 0.6057-0.938854 years, respectively. But using the cheater’s homotopy method

we solved them in 55 hours, 125 hours, 3776 hours and 19.216-92.9002 hours, respec-

tively. This is a drastic reduction of the computational efforts, see also Table 2.

System Number of parameter points single-processor Cheater’s homotopy

Sys1 100, 150 5.731 yr 55 h

Sys2 100, 672 7.682 yr 125 h

Sys3 481, 825 66.003 yr 3776 h

Sys4 132, 651 0.6− 0.9 yr 19.2− 92.9 h

Table 2. Number of parameter points and computation time for the examples under

consideration.

We emphasize that the two methods are based on complex algebraic geometry

which means that the variables are first considered to be complex, and then only

purely real solutions are retained, if desired. Because in many applications we only

have real parameters and only real solutions are physically important, a natural ques-

tion to ask is if any method exists which can deal with systems with both parameters

25



and variables defined over reals. Indeed, a more recent method exists from symbolic

real algebraic geometry, based on the discriminant varieties [50, 51], which treats

both variables and parameters as reals from the beginning and gives a different set

of information than the methods described in this paper. This certainly constitutes

a direction worthy of pursuit. On the numerical side, little progress exists in this

direction, and so far methods exist to extract only limited information out for the

whole parameter space. For example, in Ref. [85], a numerical method is proposed

which can tell us the maximum and minimum number of real solutions over the

whole parameter-space. It is our hope that the applications in this paper will also

become a motivation to develop such methods and making them more for real-life

applications.
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