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ABSTRACT

Existence of solution of impulsive Lipschitzian gtiam stochastic differential equations (QSDES) eisted
with the Kurzweil equations are introduced and ®dd This is accomplished within the framework dfet
Hudson-Parthasarathy formulation of quantum std@haalculus and the associated Kurzweil equatibtese again, the
solutions of a QSDE are functions of bounded viamatthat is they have the same properties as tihreweil equations
associated with QSDEs introduced in [1, 4]. Thiseagalizes similar results for classical initial walproblems to the
noncommutative quantum setting.
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INTRODUCTION

Impulsive effects exist widely in many evolutionopesses in which states are changed abruptly &dircer
moments of time, involving such fields as biologyedicine, economics, mechanics, electronics, Psysatc
[2, 3, 8,9, 12, 13, 15, 18]. Thus the qualitativeperties of the mathematical theory of impulsiiféerential systems are
very important. A lot of dynamical systems haveiaale structure subject to stochastic abrupt cheinglich may result
from abrupt phenomena such as stochastic failunes rapairs of components, sudden environmental ggsgnetc
[8, 10, 20-22].

Recently, stochastic differential equations havmeted a great attention, since they have beet esensively
in many areas of application including finance aodial science [8-10, 12, 13, 20-22] The existencggueness and
asymptotic behavior of solutions of stochasticeatihtial equations have been considered by mampeauf2, 3, 8, 9, 13].
However, within the framework of the Hudson andtRasarathy [11] formulation of QSDE not much hasrbeone.

In [15] the existence of QSDE that exhibit imputsigffects was established using fixed point theorem

In [1], the equivalence of the non classical ODESPE) and the associated Kurzweil equation was kst
along side with some numerical examples. It is wonentioning that the results in [1] have proveddéovery efficient
when compared with results obtained from other s Again using this method in [4], we studied Mea quantum
stochastic differential systems (systems that eitibcontinuous solutions) with examples. We dgthbd such results by
considering the associated Kurzweil equations [4,18. The motivation for studying the existence saflution for
impulsive QSDE associated with Kurzweil equatiosa that we can subsequently use the method to [dfjtain similar
approximate results for this class of QSDEs.

In this paper we describe another approach to mwstéhat exhibit impulsive behaviour. We rely on the
formulations of [1] concerning the equivalent QSBEd the associated Kurzweil equation. The methodssanple

extension of the methods applied in [14, 16-19}His non commutative quantum setting involving wntded linear
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operators in locally convex spaces. Hence the teslitained here are generalizations of similaultesobtained in

[16, 17] concerning classical initial value probkerfhe rest of this paper is organized as follows.

In section 2 we present some definitions, prelimin@sults and notations. In section 3, we estabili® main

results.

All through the remaining sections, as in [1, 47pwe employ the locally convex topological sp@®f non
commutative stochastic processes. We also adoptetfigitions and notations of the following spade{(A), Ad(A)yac,
(A, Li,.(Ry) , C(Ax[a, b], W),F(A x [a, b], he, W) and the integrator processag, Af,A,. We consider the

guantum stochastic differential equation in inté¢wem given by
X(t) = Xo + [, (E(t,X(5))dAr(s) + F(s5,X(5))dAF (s) + G(5,X(5))dAy(s) + H(s,X(5))ds), t € [t,,T] (1.1)

In equation (1.1), the coefficients E, F, G, antdieHin a certain class of stochastic processesvfich quantum
stochastic integrals against the gauge, creatiomh#ation processes,, Af, A, and the Lebesgue measure t are defined

in [7]. In the work of [7], the Hudson and Parthashy [11] quantum stochastic calculus was empldgedstablish the

equivalent form of quantum stochastic differenéigliation (1.1) given by
= (0, X(£)€) = PX (1), )1, 6)
X(to) =X0,t6 [to, T] ) (12)

wheren, € lie in some dense subspaces of some Hilbert spatieh has been defined in [7]. For the explicitnfor
of the mapP(x,t) — P(x,t)(n, &) appearing in equation (1.2), see [1, 7]. EquafibR) is a first order non-classical
ordinary differential equation with a sesquilindarm valued map P as the right hand side. In |14, équivalence of the

non-classical ordinary differential equation (1u&bh the associated Kurzweil equation
=, X)) = DFX(@), ), §) , t € [to, T] 1.3)
was established along with some numerical examples.map F in (1.3) is given by
FQ,)(n,8) = J, P (x,5)(n, §)ds (1.4)
2. NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS
We shall employ certain spaces of maps (introdatee) whose values are sesquilinear formé»® E ).
2.1 Definition
A memberz € L°(,D Q E) is:
+  Absolutely continuous if the map-t z(t)(n, §) is absolutely continuous for arbitragyé € D @ E
+  of bounded variation if over all partiticis;}7_, of |,
Sup; (B4 |2(t)(0,8) — Z(t-) (M 9)|) < .

» of essentially bounded variation if z is equal ateverywhere to some memberlBtI,D@IE) of bounded

variation.

« A stochastic process: [t,, T] — A is of bounded variation if
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Sup B [(n, X()8) — (, X(-1)E)]) < .
for arbitraryn, § € D ® E and where supremum is taken over all partitions
{tj}j=o Of I
2.2 Notation
We denote by BV(A}jhe set of all stochastic processes of boundeatiamion I.
2.3 Definition

For xe BV(A), define for arbitrary), & € D QE,
Varj s = Supe(ZjallX(6) = X0l )

wherer is the collection of all partitions of the intehfa, b] c I. If [a, b] = I, we simply writéVar X, ; = VarX,;.

Then{VarX,;,n,§ € D ® E } is a family of seminorms which generates a locetigvex topology on BV(A).
2.4 Notation
«  We denote b8V (A) the completion of BV(A) in the said topology.

» For any member Z d®(I,D ® E) of bounded variation, we writéarZ,; for its variation on [a, b I.

+ We denote by A:= BV(A) Ad(A).. the stochastic process that are weakly, absolutehtinuous and of

bounded variation ort{, T].

«  We denote by (A X [t,, T], W) the class of sesquilinear form — valued maps whighLipschitzian and satisfy

the Caratheodory conditions as defined below.

«  We denote byF (A x [to, T], hye, W) the class of sesquilinear form — valued mapsat@Kurzweil integrable as

defined below.
2.5 Definition

For eachn, ¢ € D ® Elet hy.: [t,, T] — Rbe a family of non decreasing function defined og [I] and

W:[0,:0) — R be a continuous and increasing function suchithél) = 0. Then we say that the mBp A X [t,, T] —
sesq(D ® E ) belongs to the clasi(A X [to, T], hye, W) for eactn, & e D @ Eiffor all x,y € A, t,t; € [t,,T]

o JFut)(1,8) = FOo t) (@, O] < |hye(t2) = hye(t)] (2.1)
o FCot)(,8) — FOot)m, ) + F, t.)(1,8) — F(, t1)(,§) |
W (llx = Yllye) [ Ry (£2) = hye (8] (2.2)
Next we give a result that connects the clagd X [t,, T, W)with the classF (A x [to, T], hye, W).
2.6 Definition
AmapP : A X [ty, T] — sesq(D @ E) is of the clasg (A x [t,, T], W) if for arbitraryn,§ € D @ E.

«  P(x,.)(n, & is measurable for each € A.
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+ There exists a family of measurable functidfys: [t,, T] — R, such that
ftz Mye(s)ds < oo and|P(x,s)(1, &)| < Mpe(s), (x,5) € A X [to,T] (2.3)

e There exists a family of measurable functidﬁ?: [to, T1 — R, such that for each € [t,, T],ftz Kp:(s)ds < o,

and
IP(x,5)(1,€) = PCx, )1, 6| < K2 (YW (llx = yllye) (2.4)
For (x,5), (v, s) € A x [t,, T] and all throughw (t) = t.

MAJOR RESULTS

Assume that the set(n,&) defined in [6] is compact i€, [t,, T] S 1. Let P : A X [t,, T] — sesq(D ® E)

satisfy the conditions (2.3) and (2.4). Furtherddinite set of points; € [t,, T], i =1, 2, ..., k be given with; < t;,, for
i =1, 2, ...k-1 and a system d&fcontinuous maps

ziiA > sesq(D@E),i =1,2,..,k

The QSDE with impulsive action at the fixed poittst,, ..., t; is of the form

X(t) =X, + ft(E(t,X(s))dAn(s) + F(s, X(s))dA}r (s) + G(s,X(s))dAg(s) + H(s, X(s))ds)

+ Z ZOH (D), t#t; 3.1)
Ax|eee, = x(t]) — x(t7) = z(x(t)) (3.2)

The equivalent form of (3.1) and (3.2) is given by

d
am"“(t”’)ZP(""*)(”'WOZ 7 Mg () € % 1 (33)
(1,85 emg, = 0,2 = (0, 2(EE) = (0,263 (3:4)

The equation (3.3) describes the behaviour of thte st the points different from,i = 1,2, ...,k and (3.4)

represents the discontinuity from the right of #wdution fort = t; and satisfy the Lipschitz conditions defined in.2.6

Equation (3.3) is given in integral form as
t
(0, x(©)€) ~ (. x(0)§) = f PO, S)01,E)ds + ) 2ty Hygs, ()
0 0<s;<s
The Kurzweil equation associated with equation)(& gjiven by
d
2 Mx(@8) = DIF(x(0), (. ) + Z 2 (g ) Hner, (O], t# ¢ (3.5)
o<t;<t
The differential system with impulses (3.3) andl|3s best described by its solution as follows:

3.1 Definition

A stochastic process:[a,b] c [t,,T] = A is called a solution of the quantum stochastidfedential
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equation (3.3) and (3.4) (i(t),t) € A x [t,, T] for t € [a, b], x € Ad(A),qc ON every intervalty, t;] N [a, b], (t;, tiz1] N
la,b],i=1,2,..,k—1,(t,b] Nn[a,b] and

M, x(t2)8) — (n, x(t1)€) = fotP (x,8)(,$)ds + ZO<ti<tZi (xns)an,ti(t)'tl'tz € [to, T].
For a givend € [t,, b) defineH,¢ 4(t) = 0 fort < d, Hy; 4(t) = 1fort > d.
Where the relationship between the mB@ndF is as defined below in definition 3.2.

3.2 Definition

P00 = [ PED0OES+ Y 2l et =0 (36)

o<t;<t
WhereF : A X [t,, T] — sesq(D @ E) belongs to the clasi(A x [to, T], hye, W) for eactn,é € D @ E.
The following result is a consequence of definitgh.

3.2 Theorem

A stochastic procesga, b] — A, [a,b] < [t,, T] is a solution of the nonclassical differential ation (3.3) with

impulses (3.4) offa, b] if and only ifx satisfies definition (3.1).
Proof

Assume that the stochastic procesft,, T] — A is a solution of equation (3.3), then o€ (¢;, t;44],

Iy PGe(), ), §)ds = [} = (n, x(s)§)ds

[ 5 x()E)ds + [7 - (n, x()E)ds + -+ [ -, x(s))ds

= [, x(t1)§) — (1, x(0)] + [, x(¢2)§) — (, x(tHE] + -+ +
+n, x (7)) — (n, x()E)]

= [, x(e)€) — (0, x(0))] + [, x(¢2)§) — (n, x(6DE] + -+ +
+[(n, x(O§) — (m, x(6)$)]

=, x(0)§) — [{n, x(t)E) — (n, (e — [, x(£5)§) — (n, x(t)E)] — -+ —
=, x(t)E) — (m, x(EE] + (1, x(O)E)

Hence

m,x(£)§) = (,x(0)$) = fotP(x(S), s)(@,§)ds + [(n, x(6)§) — (m, x(e)E)] +

+[(m, x () — M, x (] + -+ + [, x(¢)E) — (n, x(£7)$)]
= (1, x(0)$) +LCP(X(S),S)(77,§)dS+ Z Axye (t;)

o<t;<t

= x5 + [ PGEHDM s+ D 7 ays(60) Hyg O (37)
0

o<t;<t
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Conversely, ifc(.) € A satisfies (3.7) fot € (t;, t;41), SINCEXg<¢,<¢ Zi (xne (t:)) is @ constant and its derivative is

zero fort #t;,i = 1,2, ..., k. Hence, we deduce that
=0, x(0)8) = P(r, )0, €) ,t # ¢;

(n,x(0)¢) = (n,x0¢),and

m,x(t)E) = m,x(tHE) — (. x(£)E)

t; k
= [(n,x(0)) + f PGe(s), ), E)ds + Y 7 (g (6)) Hie (0]

¢ k-1
= (05 0) + [ PG5 9) s + Y 71 (33 (6)) o (O]

= 7 (5 (8)) = (0, 2:(x(t)8).
We have the following results that connect the tlesses of mapB and P together.
3.2 Theorem

For eachn,§ €D Q® EAssume that the map : A X[to, T] — sesq(D® E) belongs to the class
F(A X [to, T],hye, W) and P : A X [t,, T] — sesq(D @ E) belongs to the claséA X [t,, T],W). Then for every

x,y €A, tyt, €[ty T, F(x,t)(n, &) defined by (3.6) satisfies
+ F@ )M = Fert), 9] < [ Mye(s)ds +Cye [, My (s)ds
* |F(t)®,8) — FOo, t)(,9) + F, t)(1,8) — F, t) (@, ) |
<W(llx = yllye) J;, Kl (s)ds

The mapF (x,t)(n, §) is of classF (A X [t,, T], hye, W) for eachy, & € D ® E, where

t t
hye (t) = ft M”f(s)ds+£ Ky (s)ds
0 0

Proof

Since A(n,§) is compact and the maps are continuous, theretsexs constantC,: >0 such that

I(n,z;(x)¢)| < Cye for all x,; € A(n,§) and i = 1,2, ..., k. Therefore since (2.3) holds we have by (3.6) amddl

x € A, &), ty, ty € [t,,T]

[F(x, 62)(0,6) — Fx, t)(m, )| <

k
< +C7]$ Z an,ti(tz) - an,ti(tl)

i=1

f "P(x,5)(,§)ds

1

< 7 Mye(s)ds +Cog [ Mie(s)ds

< |hyg (t5) = hye (t) |+ Coe [ Rie (82) — hie(ty)]
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where h,llfs[to,b] - R is as defined in [4] wherd,(x,t)(n, &) = fotP(x,s)(n,E)ds belongs to the class
F(A X [to,T], hye, W;) and

k

B2e(®) = D Hyg (0.t € [t T,

i=1

Clearlyhf,f is nondecreasing and continuous from the lefftgyT]. If W, is the common modulus of continuity

of the finite systems of mappingsi = 1, 2, ..., k then
llz;(x) — z;(W)llpe < Walllx — yllye)
for x,y € A. Using the information from [1, 4] on the Caratilery equations, we obtain
IFCx, )0, 6) — F(x, t)(0,8) + F(y, t2)(1,§) — F(y, t)(,6) |
< Wi (llx = lly) [hye (t2) = hpe (E) [+ Wallx = yllye) | hre (£2) — hie (8]

for x,y € A(n, &) andt,, t; € [ty, T]. The first term correspond ®and for the second term in (3.6) we have the

following estimate

k
D (@) = 210)) (e (82) = Hg (1))

<W,(llx — yllye) Z£€=1(Hn5,ti(fz) — Hyer, (61))
< Wo(llx — }’||n§)|h72,§(t2) - hrzlf(t1)|

where If we takeh,; (t) = hye(t) + hige(t) for t € [t,, T] andW (1) = W, (r) + W, (r) then we obtain that the
mapF (x, t)(n, ) defined by (3.6) belongs to the cl&&@ x [a, b], he, W).

We now present the major result in this section.
3.3 Theorem

A stochastic procesga, b] — A, [a, b] < [t,, T] is a solution of the nonclassical differential ation (3.3) with

impulses (3.4) offa, b] if and only ifx is a solution of (3.5).
Proof

That a stochastic process[a, b] — A is a solution of the nonclassical differential etipma (3.3) with impulses

(3.4) on[a, b]. By theorems 3.2 and 4.4 in [1], the integ?éleF(x(r), t)(n, &) exists and

t k-1
(n,2(t,)§) — (1, x(8,)§) = f PG, 0, )5 + ) 20t (6)) Hyg (O
i=1

i

t k-1
= [ DIFGE@.060.0 + Y 20 ) Hyee, O] (38)

1

for all t;,t, € [a, b]. Hencex is a solution of (3.5).
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Conversely, ifx is a solution of (3.5), then by theorem 3.3atisfies eq. (3.3). Sind&(x(1),t)(n, &) is of class
F(A x [a, b], he, W), we have

t k-1
03698 = (x@)E) = || DIFG@, O, + . 71Cing (60 o (O]

1

< [rpe(ts) = hpe(t)|+Coe |7 (£2) — hie (8 (3.9)
Hence by theorem 5.1 in [1], we have

t k-1 t k=1
[ Pa@.006)ds + Y mee @) Hyea© = | DIFGE,O0E) + Y 70055 (00) Hyg O
t 1 t1 i=1

1 i=

The theorem has established the fact thas a solution of (3.5) if and only if (3.8) holdyy equation (3.9).
This follows if and only if equation (3.3) and (Blbld, and the theorem is established.

REMARK

The above result holds since the equivalence ofwlbeequations have been established in [1]. Thigkwvould
have applications in the theory of quantum contimuoneasurements and in areas such as mechanicsjcale

engineering, medicine biology, and ecology.
CONCLUSIONS

We have established existence of solutions foraascbf impulsive quantum stochastic differentialiapns

associated with the Kurzweil equations, which galiegs analogous results due to the referencesl[39].
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