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ABSTRACT 

 

English 

 

Glucose regulation, in healthy subjects, relies on a complex control system 

that keeps blood glucose level within a narrow range around its basal value. 

Impairment of the glucose regulatory system is the cause of several metabolic 

derangements, including diabetes, which is characterized by chronic 

hyperglycemia which leads to severe micro and macro-vascular complications. 

Diabetes is generally classified into two categories, type 1 and type 2 diabetes. 

Both arise from complex interactions between genes and the environment, and are 

characterized by an absolute deficiency of insulin production (type 1) or a relative 

deficiency of the pancreas to produce insulin in amounts sufficient to meet the 

body needs (type 2). The prevalence of diabetes is increasing dramatically in 

populations of the world, and its global incidence has been increasing steadily in 

the past several years. Traditional medications for type 2 diabetes, including 

insulin, sulfonylureas, glitinides, acarbose, metformin, and thiazolidinediones, 

lower blood glucose through diverse mechanisms of action. However, many of the 

oral hypoglycemic agents lose their efficacy over time, resulting in progressive 

deterioration in β-cell function and loss of glycemic control due to progressive 

loss of β-cell mass. Consequently, there is an increasing interest in developing 

therapeutic agents that preserve or restore functional β-cells mass such as the 

incretin hormone Glucagon-Like Peptide-1 (GLP-1). It not only acutely lowers 

blood glucose by promoting insulin secretion and inhibiting glucagon release, but 
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also engages signaling pathways in the islet β-cells that leads to stimulation of β-

cells proliferation and neo-genesis and inhibition of β-cell apoptosis. 

Impairment of insulin secretion and glucagon suppression suggests that decreased 

-cells responsiveness to GLP-1 is part of the pathogenesis of type 2 diabetes. 

Thus the ability to measure the effect of GLP-1 on insulin secretion can be useful 

to understand the pathogenesis of type 2 diabetes. Moreover it can be employed to 

optimized GLP-1 based therapy by determining those individuals who may benefit 

more from such therapy. However, a mechanistic model enabling direct 

quantitation of pancreatic response to GLP-1 has never been developed. 

In this contribution a mathematical model which describes the mechanism of 

GLP-1 action on insulin secretion is proposed. It provides a direct measure of the 

β-cells responsivity indexes to glucose and GLP-1. Three databases were used to 

develop, test and validate the model. 

Data of 88 healthy individuals, who underwent a hyperglycemic clamp with a 

concomitant GLP-1 intravenous infusion, were used for model formulation. A set 

of models of increasing complexity describing GLP-1 action on insulin secretion 

were tested. All models share the common assumption that insulin secretion is 

made up of two components, one proportional to glucose rate of change through 

dynamic responsivity, Φd, and one proportional to glucose through static 

responsivity, Φs, but differ in the modality of GLP-1 control on β-cells. For each 

model potentiation index П was derived representing the percent increase in 

secretion due to 1 pmol/l of circulating GLP-1. All the models fit the data well, as 

confirmed by the run test, which supported randomness of residuals in 70% of the 

subjects and provide precise estimate of model parameters. Model selection was 

tackled using standard criteria (e.g. ability to describe the data, precision of 

parameter estimates, model parsimony, residual independence). The most 

parsimonious model in most subjects assumes that above-basal insulin secretion 

depends linearly on GLP-1 concentration and its rate of change. 

However, the hyperglycemic clamp with concomitant intravenous infusion of 

GLP-1, is not physiological and easy to perfume in large scale studies. Thus data 

of 22 impairing fasting glucose (IFG) subjects, studied twice with a mixed meal, 
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were used to test the model performance in a more physiological condition. We 

found that during an oral test, a simpler model is sufficient to describe the data. 

Validation of the model was performed using both simulations and real data of 10 

healthy subjects studied with an OGTT and matched intravenous glucose 

challenge (I-IVG). The protocol allows to calculate a model-independent index 

(PI) from the comparison of insulin secretion rate estimated in these two 

occasions. The comparison between model-derived Π and incretin potentiation 

index PI shows that they are very similar (П = 6.55, CV = 65%; PI = 6.15 % per 

pmol/l). In addition in silico validation proved the ability of the model to single 

out the effect of GLP-1 on insulin secretion since it correctly estimated П in the 

93 ± 1% of the simulations. 

 

 

 

Italiano 

 

La regolazione della glicemia in soggetti sani, si basa su un complesso 

sistema di controllo che permette di mantenere il livello di glucosio nel sangue 

all’interno di un range ristretto che oscilla attorno al suo valore basale. Il mal 

funzionamento di tale sistema è la causa di patologie metaboliche, ad esempio il 

diabete. Questa patologia è caratterizzata da iperglicemia cronica che, se non 

curata, a lungo termine comporta gravi complicanze micro e marco vascolari. Il 

diabete è comunemente classificato in tipo 1 e tipo 2. Entrambi derivano da 

complesse interazioni tra ambente e geni, e sono caratterizzati da una totale 

mancanza di produzione di insulina, nel tipo 1, o da una carenza da parte del 

pancreas nel produrre insulina in quantità sufficiente per soddisfare le necessità 

dell’organismo, nel tipo 2. La prevalenza del diabete è in costante aumento in 

tutto il mondo, così come la sua incidenza è in costante crescita negli ultimi anni. I 

farmaci tradizionali per la terapia del diabete di tipo 2, come l’insulina, 

sulfaniluree, metformina e tiazolidinedioni, riducono la glicemia attraverso diversi 

meccanismi di azione. Tuttavia, molti degli agenti ipoglicemizzanti assunti per via 
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orale, perdono di efficacia con il tempo causando un progressivo deterioramento 

della funzionalità e riduzione della massa delle β-cellule con conseguente 

riduzione del controllo glicemico. Di conseguenza vi è un crescente interesse nello 

sviluppo di nuovi agenti terapeutici che preservino la massa e ripristino la 

funzionalità delle β-cellule. Uno di questi è l’ormone Glucagon-Like Peptide-1 

(GLP-1), che non solo riduce la glicemia aumentando la secrezione di insulina, ma 

agisce anche nel signaling nelle isole di Langherans stimolando la proliferazione e 

la neo-genesi delle β-cellule e inibendone l’apoptosi. La ridotta secrezione di 

insulina e la mancata soppressione del glucagone inducono ad ipotizzare che la 

diminuita risposata delle β-cellule al GLP-1 possa essere parte della patogenesi 

del diabete di tipo 2. Pertanto la capacità di misurare l’effetto del GLP-1 sulla 

secrezione dell’insulina è utile per studiare la patogenesi della malattia ed 

ottimizzare valutare l’efficacia delle terapie basate sul GLP-1. Infatti è cruciale 

determinare quali soggetti possono beneficiare maggiormente di tale terapia per 

ottimizzare le risorse. Tuttavia, non è ancora disponibile un modello che descriva 

l’azione del GLP-1 sulla secrezione di insulina e permetta di quantificarne l’entità. 

In questo lavoro viene proposto un modello matematico che descrive i 

meccanismi di azione del GLP-1 sulla secrezione di insulina, fornendo una misura 

diretta dell’aumento della secrezione dell’insulina dovuto all’effetto del GLP-1. 

Sono stati utilizzati tre database per sviluppare, testare e validare i modelli 

proposti. 

I dati di 88 soggetti sani sottoposti ad un clamp iperglicemico con contemporanea 

infusione intravenosa di GLP-1, sono stati utilizzati per lo sviluppo del modello. 

Sono stati testati una serie di modelli dell’azione del GLP-1 sulla secrezione di 

insulina di complessità crescente. Tutti i modelli si basano sulla comune 

assunzione che la secrezione di insulina è costituita da due componenti, una 

proporzionale alla concentrazione ed una alla velocità di variazione del glucosio 

plasmatico, modulate rispettivamente dalla responsività statica Φs e dalla 

responsività dinamica Φd. Ogni modello differisce dagli altri nella descrizione 

della modalità di azione del GLP-1. Per ciascun modello è stato derivato un indice 

di potenziamento, П, che rappresenta l’aumento percentuale della secrezione di 
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insulina dovuta ad 1 pmol/l di GLP-1. I modelli predicono bene i dati (infatti il run 

test conferma la casualità dei residui nel 70% dei soggetti) e forniscono stime 

precise dei parametri . La selezione del modello ottimo è stata affrontata 

confrontando le prestazioni dei modelli sulla base di criteri standard (capacità di 

descrivere i dati, la precisione della stima dei parametri, la parsimonia, la casualità 

dei residui). 

Il modello più parsimonioso ipotizza che la secrezione sopra basale di insulina 

dipenda linearmente sia dalla concentrazione di GLP-1 sia dalla sua variazione. 

Tuttavia le condizioni sperimentali di tale protocollo non sono fisiologiche e 

applicabili su larga scala. Pertanto, i dati di 22 soggetti IFG (Impaired Fasting 

Glucose), studiati due volte con un pasto misto, sono stati utilizzati per testare il 

modello in una condizione sperimentale più vicina alla fisiologia. I risultati 

dimostrano che per descrivere i dati di un test orale, è sufficiente un modello più 

semplice. 

La validazione del modello è stata effettuata sia in simulazione sia utilizzando i 

dati reali di 10 soggetti, studiati due volte: una prima volta utilizzando un test 

orale di tolleranza al glucosio (OGTT) e successivamente un test intravenoso di 

tolleranza al glucosio durante il quale il glucosio è stato infuso in modo tale da 

riprodurre la glicemia osservata durante l’OGTT. Questo protocollo permette di 

calcolare un indice di potenziamento (PI) modello-indipendente dal confronto tra 

la secrezione di insulina stimata nelle due occasioni. Il confronto tra il 

potenziamento stimato con il modello, П, e l’indice di potenziamento PI mostra 

che i due indici sono molto simili (П = 6.55, CV = 65%; PI = 6.15 % per pmol/l). 

Inoltre nel 93 ± 1% delle simulazioni effettuate il modello è in grado di 

quantificare correttamente l’effetto del GLP-1 sulla secrezione di insulina. 

 

 





 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

 

Glucose metabolism relies on complex internal feedback systems that keep 

blood glucose level within a narrow range around its basal value. The target blood 

glucose range is usually considered to be 70 to 180 mg/dl. Hypoglycemia is 

identified when plasma glucose concentration goes below 70 mg/dl, conversely 

hyperglycemia when glucose concentration raises over 180 mg/dl [92]. It is 

crucial that plasma glucose level does not decrease under 70 mg/dl since glucose 

is the predominant metabolic fuel for the brain which cannot store more than a 

few minutes supply as glycogen, or quickly increase its extraction of glucose from 

the circulation, the prevention of hypoglycemia is critical to survival. On the other 

hand the chronic hyperglycemia leads to micro-vascular and macro-vascular 

complications which include limb loss, blindness, ischemic heart disease, and end-

stage renal disease [92], [93], [94]. 

Comprehension of the mechanisms that regulate plasma glucose have greatly 

evolved since the discovery in the 1920s of the peptide hormone insulin, which 
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was considered the principal, if not the only, actor of glucose homeostasis. Insulin 

is secreted by β-cells in response to high levels of plasma glucose and promotes 

glucose utilization by tissues and inhibit endogenous glucose production by the 

liver and kidney. In the 1950s pancreatic α-cells hormone glucagon was 

discovered leading to a bi-hormonal view of glucose regulation, where insulin was 

the key regulatory hormone of glucose disappearance, and glucagon the major 

regulator of glucose appearance; since it is secreted in response to a fall in plasma 

glucose concentration below the hypoglycemic threshold, and acts by stimulating 

hepatic glycogenolysis and gluconeogenesis, thus raising EGP which, results in an 

increase of plasma glucose concentration. Subsequently, the discovery of amylin, 

a secondary β-cell hormone, which has a complementary role to insulin delaying 

gastric emptying and thus slowing down postprandial glucose rate of appearance, 

leads to a view of glucose homeostasis involving multiple pancreatic hormones 

[57]. 

The intricacies of glucose homeostasis become clear when considering the role of 

gut hormones, identified in the 1960s, which are responsible for the, so called, 

incretin effect, i.e. ingested glucose potentiates insulin secretion compared to 

glucose infused intravenously. Several incretin hormones have been recognized, 

and a key role in glucose regulation is played by Glucagon-Like Peptide-1(GLP-

1). GLP-1 is a 30–amino acid gut hormone produced by the enteroendocrine L-

cells distributed in the region of terminal ileum and colon and is released into the 

portal circulation in response to meal ingestion [2]. It arises from the post-

translational processing of proglucagon by prohormone-convertase- 1 (PC-1) in 

the enteroendocrine L-cells of the intestinal mucosa [40]. GLP-1 enhances insulin 

secretion and inhibits glucagon release in a glucose-dependent manner [40]. 

Active isoforms of GLP-1 include GLP-1(7-36) amide and GLP-1(7-37); after 

secretion GLP-1(7-36) amide is rapidly degraded by the enzyme dipeptidyl 

peptidase-4 (DPP-4) to its N-terminally truncated metabolite GLP-1(9-36), which 

does not interact with the known GLP-1 receptor (GLP1R) [2], [21], [24]. 

Impairment of the glucose regulatory system is the cause of several metabolic 

derangements, including diabetes, which is characterized by chronic 
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hyperglycemia. Diabetes is broadly classified into two categories, type 1 diabetes 

and type 2 diabetes. Both arise from complex interactions between genes and the 

environment, however their pathogenesis is distinct. 

Type 1 diabetes is the result of immune-mediated destruction of the pancreatic β-

cells in the islets of Langerhans, i.e. the site of insulin secretion and production. In 

general, the disease occurs in childhood and adolescence (although it can occur at 

all ages) and is characterized by absolute insulin deficiency. Consequently, 

affected individuals require, usually, insulin therapy to control hyperglycemia and 

sustain life. As a rule, obesity does not play a part in the pathogenesis of type 1 

diabetes, although obesity in type 1 diabetes is associated with the development of 

cardiovascular complications. 

Type 2 diabetes occurs because insulin secretion is inadequate and cannot 

overcome the prevailing defects in insulin action, resulting in hyperglycemia. 

Excess caloric intake, inactivity, and obesity all play parts in the pathogenesis of 

type 2 diabetes. In general, it is a disease that occurs with increasing frequency 

with increasing age and is uncommon before age 40 (although there are important 

exceptions). In addition, people with type 2 diabetes are more likely to have 

associated adverse cardiovascular risk factors such as dyslipidemia and 

hypertension. Prediabetes, i.e., impaired fasting glucose (IFG) and impaired 

glucose tolerance (IGT), is an intermediate condition in the transition between 

normality and diabetes. People with IGT or IFG are at high risk of progressing to 

type 2 diabetes, although this is not inevitable. Both type 2 diabetes and 

prediabetes are recognized risk factors for overt cardiovascular disease and related 

metabolic complications and are major components of health care spending [81]. 

Rapid urbanization and societal affluence of global migrating populations has 

been suggested as major risk factors for the observed exploding prevalence of 

prediabetes and type 2 diabetes with consequent rising trends in cardiovascular 

risks [95]. IFG is a rapidly emerging form of prediabetes with a 20%–30% risk of 

progression to diabetes over 5–10 years. 
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Figure 1. 1 – Glucose homeostasis in healthy individuals: roles of the major hormones. Black 

lines represent fluxes, red dotted lines represent inhibition control signals and green dotted 

lines represent promotion control signals 

 

 

This risk is even greater if individuals have both IFG and IGT. Furthermore, both 

IFG and IGT are linked to increased risk for cardiovascular events [81] in the 

Caucasian population. Ninety percent of the world population with diabetes is 

type 2 with type 1 diabetes comprising between 5%–10%. It is plausible that the 

relative frequency of type 1 and type 2 diabetes will change with rising trends in 

the prevalence of type 2 diabetes, obesity, and prediabetes in the developing 

world. Over time, diabetes leads to complications, in particular: diabetic 

retinopathy, which leads to blindness; diabetic neuropathy, which increases of the 

risk of foot ulceration and limb loss; and diabetic nephropathy leading to kidney 

failure. In addition, there is an increased risk of heart disease and stroke with 50% 

of people with diabetes dying of cardiovascular disease and stroke. Finally, the 

overall risk of dying among people with diabetes is at least double the risk of their 

peers without diabetes. 
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Figure 1. 2 – World diabetes forecast [94] 

 

The World Health Organization (WHO) estimates than more than 180 million 

people worldwide had diabetes in 2000. This number is likely to more than double 

by 2030. In 2005, an estimated 1.1 million people died from diabetes. In Italy 

people with diabetes were estimated to be, 3 million (4.9% of the population) in 

2011. When ranked by cause-specific mortality, diabetes is the fifth cause of 

death, after communicable diseases, cardiovascular diseases, cancer and injury 

[95]. Almost 80% of diabetes death occurs in low- and middle-income countries. 

WHO projects that diabetes deaths will increase by more than 50% in the next ten 

years without urgent action. Most notably, diabetes is projected to increase by 

over 80% in upper-middle income countries between 2006 and 2015. Diabetes and 

its complications impose significant economic consequences on individuals, 

families, health systems, and countries. WHO estimates that over the next ten 

years (2005–2015) China will lose $558 billion in national income due to heart 

disease, stroke, and diabetes alone. 

Traditional medications for type 2 diabetes, including insulin, sulfonylureas, 

glitinides, acarbose, metformin, and thiazolidinediones, lower blood glucose 

through diverse mechanisms of action. Study such as the United Kingdom 

Prospective Diabetes Study (UKPDS) clearly illustrate that better glycemic 
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control achieved with some of these drugs can significantly reduce the 

development of diabetes associated secondary complications [85]. However, many 

of the oral hypoglycemic agents lose their efficacy over time, resulting in 

progressive deterioration in β-cell function and loss of glycemic control. The 

reason why current anti-diabetic agents become less effective over time are not 

well understood, but they appear to include progressive loss of β-cell mass. 

Autopsy studies demonstrate that β-cell mass is decreased in type 2 diabetes 

despite a normal capacity for β-cell replication and neo-genesis. β-cell mass is 

governed by a combination of factors: replication of existing β-cell, differentiation 

of new β-cell from ductal and extra-islet precursor cells (neo-genesis), and β-cell 

apoptosis. Reduced β-cell mass has been observed in both obese and lean type 2 

diabetic humans [46]. Commonly observed in both human and rodent studies of 

type 2 diabetes is an increase in β-cell apoptosis; the mechanisms responsible 

include chronic hyperglycemia, dyslipidemia, endoplasmic reticulum and 

oxidative stress, islet amyloid deposition, and actions of inflammatory cytokines. 

Medications currently used to treat type 2 diabetes cannot prevent β-cell death or 

re-establish β-cell mass. Moreover, short term studies demonstrate that 

sulfonylureas can induce apoptosis in rodent β-cell or cultured human islet. Thus, 

sulfonylureas therapy could theoretically exacerbate β-cell loss in subjects with 

type 2 diabetes [23]. Consequently, there has been intense interest in the 

development of therapeutic agents that preserve or restore functional β-cell mass 

such as GLP-1. 

GLP-1 based therapy for type 2 diabetes has required the development of GLP1R 

agonists that resist the action of DPP-4 [62] or compounds that inhibit DPP-4, 

thereby raising endogenous concentrations of GLP-1[19]. GLP1R is the principal 

site of action of GLP-1 and GLP1R agonists, however the gene coding for this 

receptor is highly polymorphic and contains numerous non-synonymous SNPs 

which could potentially alter response to endogenous GLP-1 and GLP1R agonists, 

thereby contribute to defects in incretin-induced insulin secretion may be 

associated with type 2 diabetes. Furthermore, since GLP-1 analogues that act as 

receptor agonists are being used to treat type 2 diabetes, such genetic variation 
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may alter response to such therapy. It has previously been suggested that genetic 

differences may explain some of the variation to GLP-1 response in prior studies 

[74]. Moreover administration of GLP-1 in pharmacological doses improve both 

insulin secretion and suppression of glucagon secretion [21], [70]. Because of 

these, numerous investigators have hypothesized that decreased GLP-1 secretion 

is part of the pathogenesis of type 2 diabetes. However, more recent evidence 

suggests that postprandial GLP-1 concentrations are not decreased across the 

spectrum of prediabetes and early type 2 diabetes i.e. glucose intolerance cannot 

be explained by decreased GLP-1 secretion [76]. Taken together these data 

suggest that decreased -cell responsiveness to GLP-1 is part of the pathogenesis 

of type 2 diabetes [31]. Whether this is part of a global decrease in response to 

various secretagogues or an early specific defect remains uncertain. More recently 

it has been suggested that states associated with insulin resistance result in 

decreased incretin receptor expression on -cells [54]. 

Several studies are available on GLP-1 action on insulin secretion [1], [2], [19], 

[26], [39], [56], however none of them has ever aimed to mechanistically model 

GLP-1 action on beta-cell. For instance, other investigators have previously 

utilized a hyperglycemic clamp to measure insulin secretion from deconvoluted C-

peptide data. However such methodology does not take into account potential 

changes in glucose concentration during the hyperglycemic clamp or the changing 

GLP-1 concentrations prevailing during the experiment. The only model which 

indirectly accounts for a potentiation due to incretin is the one proposed by Mari 

and colleagues [55]. It introduced a potentiating factor, which modulates the dose-

response relation between insulin secretion and plasma glucose, in order to better 

fit C-peptide data, but it did not explicitly describe incretin effect. Other studies, 

e.g. [1], also found a correlation between GLP-1 and the potentiating factor, or use 

the model to assess different hormone responses in morning vs afternoon [47]. 

However, in none of the above studies there was an attempt to mechanistically 

describe GLP-1 action on insulin secretion. 
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1.2 AIM 

 

A methodology to accurately ascertain the contribution of GLP-1 to insulin 

secretion is a valuable tool to understand the pathogenesis of type 2 diabetes and 

to assess the efficacy of GLP-1 based therapy. 

The aim of this contribution is to propose a whole-body mathematical model 

which describes the mechanism of GLP-1 action on insulin secretion, and thus 

allows a simultaneous estimate of both β-cells responsivity indexes to glucose 

together with the magnitude of GLP-1 mediated increase in insulin secretion. 

 

 

 

1.3 OUTLINE OF THE THESIS 

 

The thesis is articulated as follows. Chapter 2 presents history of the 

incretin effect, the discovery of the GLP-1, its metabolism and physiological 

actions. Chapter 3 describes the experimental protocol used to develop, test and 

validate the models. The models are presented in Chapter 4 and in Chapter 5; in 

Chapter 6 the numerical identification of the models is presented and their ability 

to describe the data and to measure the enhancement of insulin secretion due to 

plasma GLP-1 levels are compared. Model validation is tackled in Chapter 7 using 

both real and simulated data. Chapter 8 reports an example of application of the 

proposed models to assess the effect of DPP-4 inhibition on incretin secretion. 

The results obtained in this study as well as emerged open questions and future 

direction of research are discussed in Chapter 9. 

 

 



 

 

 

 

CHAPTER 2 

 

GLUCAGON-LIKE PEPTIDE-1 

 

 

 

2.1 INTRODUCTION: THE INCRETIN CONCEPT 

 

The firsts investigators of the incretin concept were Bayliss and Starling in 

1902 who speculated that signals arising from the gut after ingestion of nutrients 

might elicit pancreatic endocrine response and affect the disposal of carbohydrates 

[5]. Subsequently in 1906 Moore et al. postulated that the duodenum produced a 

chemical excitant for pancreatic secretion and tried to treat diabetes by injecting 

gut extracts. Zunz and Labarre pursued this factor and prepared an intestinal 

extract free of secretin activity that was able to produce hypoglycemia in dogs. 

Thus Labarre first introduced the term incretin to describe the humoral activity of 

the gut that might enhance the endocrine secretion of the pancreas. interest in the 

incretin hormones was rekindled in the 1960s when a reliable RIA for insulin was 

developed by Yalow and Berson, which allowed the measurements of the 

circulating levels of this hormone renewing interest in the search for incretins due 

to demonstration of the incretin effect  by means of this assay [14]. Immunoassay 

and bioassay demonstrated that the action of glucose on the pancreas could not 
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account completely for the insulin response observed in the blood. These reports 

demonstrated that intravenous glucose administration caused a lower plasma 

insulin response than when given by intrajejunal infusion, even though lower 

blood glucose levels were achieved by the later. Perley and Kipnis estimated the 

alimentary component to be close to 50% by subtracting from the insulin secretory 

response seen after oral glucose that insulin response obtained with the infusion of 

intravenous glucose, which duplicated the oral blood glucose profile [14]. 

In 1969, Unger and Eisentraut named the connection between the gut and the 

pancreatic islets the enteroinsular axis. Creutzfeldt suggested that this axis 

encompasses nutrient, neural, and hormonal signals from the gut to the islet cells 

secreting insulin, glucagon, somatostatin, or pancreatic polypeptide. Moreover, 

Creutzfeldt defined the criteria for fulfilment of the hormonal or incretin part of 

the enteroinsular axis as: it must be released by nutrients, particularly 

carbohydrates and at physiological levels, it must stimulate insulin secretion in the 

presence of elevated blood glucose levels [14]. 

 

 

 

2.2 GLP-1 DISCOVERY 

 

Eating provokes the secretion of multiple gastrointestinal hormones 

involved in the regulation of gut motility, secretion of gastric acid and pancreatic 

enzymes, gall bladder contraction, and nutrient absorption. Furthermore gut 

hormones allows the disposal of absorbed glucose through the stimulation of 

insulin secretion from the endocrine pancreas. The observation that enteral 

nutrition provided a more potent insulinotropic stimulus compared with 

isoglycemic intravenous challenge led to the development of the incretin 

concept.1 The first incretin to be identified, glucose-dependent insulinotropic 

polypeptide (GIP), was purified from porcine intestinal extracts and had weak 
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effects on gastric acid secretion but more potent insulinotropic actions in human 

beings. 

Still GIP does not explain the whole incretin effect on the insulin secretion. In the 

1970s, with the advent of recombinant DNA technology, the tools to identify the 

missing incretin hormone were finally available. 

In the early 1980s, the cloning of cDNAs encoding the preproglucagons from 

pancreata of the anglerfish was accomplished. The anglerfish was found to have 

two separate nonallelic preproglucagon genes, both encoding a glucagon and a 

glucagon-related peptide (GRP) (11) which bore a strong homology to the 

sequence of GIP [50], [51]. 

Thereby Lund et al. [51] proposed that the anglerfish GRP-1 may be an intestinal 

incretin hormone. In support of this supposition Lund et al. [49] showed that 

similar preproglucagon mRNAs were expressed in the anglerfish pancreas and 

intestine, a finding that strongly supported the prediction that GRP could be an 

incretin hormone.  

Shortly after the discovery of anglerfish GRP, the preproglucagon cDNAs of 

mammals were cloned [48] as well as the human gene [7]. It became clear that the 

anglerfish GRP-I is a homolog of the GLP-1s encoded in the mammalian 

preproglucagons, which were subsequently proven to be potent insulinotropic 

incretins. There was, however, some uncertainty regarding the identification of the 

bioactive isoform of GLP-1 that had true insulinotropic actions. Based on the 

amino acid sequence of the mammalian preproglucagons, the sites that would be 

predicted for posttranslational processing into peptide hormones were somewhat 

ambiguous. At the time it was generally believed that the yet-to be-identified 

prohormone convertases (PCs) that enzymatically split prohormones into 

bioactive peptides required two adjacent basic amino acids, combinations of 

arginine, and lysine. The GLP-1 sequence begins with a histidine as the amino-

terminal residue, as do most of the peptide hormones in the glucagon-related 

superfamily of hormones. In the preproglucagon sequence, the first histidine is 

preceded by two basic amino acids, Lys-Arg, followed by four residues, another 

single basic residue, arginine, and a second histidine. The thinking at that time 
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was that the putative bioactive peptide that would theoretically be cleaved from 

the preproglucagon during posttranslational processing would be at the Lys-Arg 

yielding a peptide of 37 or 36 amino acids, depending on whether the C-terminal 

glycine was present or absent and whether the penultimate C-terminal arginine 

was amidated in the absence of the C-terminal glycine. Thus, the 1-37 and 1-36 

GLP-1 peptide isoforms were the first to be synthesized and tested for biological 

activity. 

The results of the experimental testing were disappointing. In 1986 it was 

discovered that GLP-1 was further N-terminally truncated by posttranslational 

processing in the intestinal L cells [18]. In contrast to GLP-1(1-37), GLP-1(7-37) 

and (7-36)amide were found to be potent insulinotropic hormones in the isolated 

perfused pancreas [40]. 

At present it is well established that the GLP-1 isoforms GLP-1(7-37) and GLP-

1(7-36)amide are the bioactive insulinotropic peptides derived from 

preproglucagon in the intestine and the hind brain [40]. 

 

 

 

2.3 GLP-1 SECRETION 

 

The possibility of studying the GLP-1 release at the cellular level in vitro 

has enabled the analysis of intracellular signal pathways that regulate GLP-1 

secretion and expression. Studies with intestinal cell cultures and the L cell line, 

which are distributed in the region of terminal ileum and colon, GLUTag, indicate 

that the activation of protein kinase A stimulates both GLP-1 release and synthesis 

[40]. In contrast, activation of protein kinase C results in an increased secretion of 

GLP-1 in intestinal cell cultures, but does not appear to increase transcription of 

the proglucagon gene [24]. Treatment with the phospholipase C activator α-

ketoisocaproic acid does not enhance GLP-1 secretion by either fetal rat intestinal 

cultures or GLUTag cells. Inhibition of GLP-1 secretion by a calcium channel 
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blocker (CoCl2) and stimulation of GLP-1 release by increasing intracellular 

calcium concentrations indicate a primary role of calcium in basal secretion by the 

L cell [10]. 

Thus there may be multiple signals involved in the L cell response that are 

perhaps important in allowing for an integrated response to a variety of different L 

cell effectors. 

GLP-1 is released into the circulation after a meal [40]. Significantly more GLP-1 

is released after a liquid meal than a solid meal of identical composition. The 

majority of GLP-1 released appears to be in the form of GLP-1 (7-36 amide) with 

levels reaching approximately 50 pmol/l, whereas GLP-1 (7-37) rises to 10 

pmol/l. The oral intake of glucose alone stimulates GLP-1 release whilst elevation 

of plasma glucose by the administration of glucose systemically does not 

stimulate GLP-1 secretion, indicating the glucose sensing machinery is distributed 

on the luminal side of the intestine [24]. Infusion of glucose into the intestinal 

lumen stimulates GLP-1 release [43]. These observations are consistent with the 

role of GLP-1 as an important incretin hormone acting on the pancreatic β-cells to 

stimulate appropriate insulin release after glucose absorption. 

The release of GLP-1 from the isolated perfused ileum requires sodium, 

implicating the brush-border sodium/glucose cotransporter in the glucose effect. 

Consistent with these findings, other sugars that utilize this cotransporter for 

absorption across the intestinal epithelium, e.g., galactose, also stimulate GLP-1 

release. Nontransportable sugars, e g., 2-deoxyglucose, or sugars using a different 

mechanism of transport, e.g., fructose and lactose, do not stimulate the release of 

GLP-1 [24]. In addition to glucose, fats appear to stimulate the release of 

proglucagon-derived peptides, perhaps related to the roles of both oxyntomodulin 

and GLP-1 as enterogastrones, or inhibitors of gastric function [24]. The secretion 

of GLP-1 is increased by ingestion of mixed fats or triglycerides in humans and 

dogs and by placement of mixed fats directly into the intestinal lumen of rats and 

pigs [24]. Interestingly, Roberge and Brubaker [67] discovered that placement of 

fat in the duodenum of rats stimulates GLP-1 secretion independently of the 

contact of nutrients with the distal L cells. Furthermore, duodenal fat increased the 
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secretion of GLP-1 into the circulation to the same extent as was observed after 

the direct administration of fat into the ileum [67], [68]. These observations 

suggest the existence of a proximal-distal loop regulating the L cell response to 

ingested nutrients [67]. Such a mechanism could contribute to the significant 

increase in circulating GLP-1 levels observed within 5-10 min of ingesting a meal, 

before contact of nutrients with the L cells [59]. 

The observation of fatty acid-induced GLP-1 release from isolated intestinal cell 

cultures suggests that fatty acids can act directly on the L cell [24]. Interestingly, 

bile acids appear to increase the secretion of proglucagon-derived peptides 

suggesting that the arrival of bile into the ileum may play an important feedback 

message for the release of GLP-1. Results obtained with fatty acids indicate that 

both the chain length and degree of saturation of the fatty acids affect the ability 

of fats to stimulate GLP-1 secretion. Monounsaturated longchain fatty acids 

(5C16) are preferred over short-chain or medium-chain, polyunsaturated or 

saturated fatty acids [24]. However, long-term exposure of rats to short-chain fatty 

acids derived from a diet containing readily fermentable fibers increases 

proglucagon mRNA levels and secretion of GLP-1 in response to a glucose 

challenge [66]. 

Moreover GLP-1 secretion is increased in humans by a protein-containing mixed 

meal. However, either amino acids or protein alone did not consistently increase 

GLP-1 release in in vivo studies [24]. 

Conversely to nutrients, GLP-1 seems to be counterregulated by insulin. Indeed 

insulin has been reported to inhibit GLP-1 release both in vitro and in vivo, acting 

as part of a feedback loop [40]. 
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2.4 GLP-1 METABOLISM 

 

Plasma levels of GLP-1 are low in the fasted state in a range of 5 – 10 

pmol/l, and increase rapidly after eating reaching 15 – 50 pmol/l. The circulating 

levels of intact GLP-1 decrease quickly because of, at least, three different 

processes that eliminate the bioactive form of the GLP-1 from the circulation: 

renal clearance, hepatic clearance and degradation in circulation by enzymatic 

inactivation. In support of an important role for the kidneys in the clearance of 

GLP-1 the levels of immunoreactive GLP-1 are significantly elevated in uremic 

patients [24], [40]. Although no net extraction of endogenous GLP-1 across the 

liver has been detected, significant hepatic extraction of GLP-1 during a systemic 

infusion was identified in anesthetized pigs [24], [40]. The MCR, or least amount 

of plasma totally cleared of GLP-1 per unit of time, in humans is approximately 

10 ml/Kg/min [24]. In accordance with this MCR, GLP-1 is eliminated relatively 

rapidly from plasma, with a half-life of approximately 5 minutes in humans [24], 

[40]. It is noteworthy that, because postsecretory degradation of the GLP 

hormones in the circulation may generate products that are immunoreactive in 

assays but are no longer biologically active, these assay values of circulating 

levels of GLP-1 may overestimate the true biological half-life of the hormone. 

Indeed, as described below, the biological half-life of GLPs appears to be in the 

range of 1-2 min. Degradation of GLP-1 in the circulation appears to occur 

initially by dipeptidyl peptidase IV (DPP IV) cleavage at the amino terminus 

(histidine-alanine), resulting in GLP-1 (9-36)amide and GLP-1 (9-37). These 

truncated forms of GLP-1 have been demonstrated to be the major metabolites of 

GLP-1 formed in human [24], [40]. 

In in vivo studies with rats, it was estimated that DPP IV cleaved 50% of a bolus 

GLP-1 infusion within 2 min. In contrast, GLP-1 remained intact for at least 10 

min in rats that were DPP IV-deficient. Thirty minutes after subcutaneous GLP-1 

administration to healthy humans, GLP-1(9-36)amide accounted for 

approximately 78% of immunoreactive GLP-1 [24], [40]. It is likely that there is 
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subsequent enzymatic degradation of GLP-1 after cleavage by DPP IV by other 

enzymes. In pigs, inhibition of DPP IV activity potentiates the insulin response to 

GLP-1, indicating that the intact N terminus of GLP-1 is important for its 

insulinotropic activity. Furthermore, the oral administration of a DPP IV inhibitor 

to Zucker fatty rats improves glucose tolerance by increasing the circulating half-

lives of the endogenously released incretins GIP and, particularly, GLP-1 [63]. It 

remains possible, however, that the metabolic products of GLP-1 have important 

biological actions different from those of the parent peptides. Receptor-binding 

studies suggest that the DPP IV metabolite GLP-1(9-36)amide can bind to the 

pancreatic GLP-1 receptor, albeit with only 1% the affinity of native GLP-1 [41]. 

Further, GLP-1 (9-36)amide can antagonize the ability of native GLP-1 to 

generate adenyl cyclase activity by the pancreatic GLP-1 receptor [41]. 

Recently, it was shown that GLP-1(9-36)amide could antagonize the inhibitory 

effect of GLP-1(7-36)amide on antral motility in anesthetized pigs [24]. Whether 

sufficient quantities of this metabolite GLP-1(9-36)amide exist in vivo to act as an 

antagonist of GLP-1, or possibly to mediate other biological activities, remains to 

be determined. 

Thus for estimation of L-cell secretion it is best to measure the sum of the intact 

hormone and the primary metabolite. In humans, this can be accomplished with 

assays for the amidated COOH terminus of the molecule, which is common to the 

intact hormone and the metabolite, because in humans, all of the GLP-1 released 

from the gut is amidated. Such assays are frequently designated “total” GLP-1 

assays. Clearly, for estimation of the impact of circulating intact GLP-1 for insulin 

secretion via the endocrine route, it is necessary to measure the concentration of 

the intact hormone, which may be accomplished with sandwich assays as 

mentioned (often designated “active GLP-1 assays”). However, this is unlikely to 

reflect to total influence of L-cell secretion on insulin secretion. 
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2.5 GLP-1 PHYSIOLOGICAL ACTIONS 

 

GLP-1 generates several different physiological actions which are 

correlated to the organs in which specific GLP-1 receptors are expressed. These 

organs include the pancreatic islets, stomach, lung, brain, kidney, pituitary gland, 

cardiovascular system, and small intestine. 

 

 

2.5.1 Pancreatic islets 

The earliest discovered biological actions of GLP-1 were on the pancreatic 

β-cells, in which GLP-1(7-37) and GLP-1(7-36)amide were shown to be highly 

equipotent secretagogues for glucose-dependent insulin secretion . It is important 

to point out that the [14] insulinotropic action of GLP-1 is attenuated if ambient 

glucose levels fall; in that way the glucose dependent nature of the incretin 

hormones like GLP-1 is an efficient protective measure against hypoglycemia. 

The glucose competence concept has been used to describe the mutual 

interdependence between glucose metabolism and GLP-1 actions on β-cells, 

glucose is required for GLP-1 action, and GLP-1 is required to render β-cells 

competent to respond to glucose [24]. Thus the β-cells responsivity to glucose in 

subjects with impaired glucose tolerance is enhanced. Moreover not only GLP-1 

stimulates insulin secretion, but it also stimulates transcription 1 is not an absolute 

requirement for the maintenance of normal proinsulin gene transcription, 

nevertheless, these properties clearly distinguish GLP-1 from those of the 

sulfonylurea class of hypoglycemic drugs that effectively stimulate insulin 

secretion but do not stimulate biosynthesis of proinsulin . Recent evidence 

indicates that GLP-1 may stimulate the proliferation and neogenesis of β-cells 

from ductal epithelium of mice and rats [24]. 
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Figure 2. 1 – GLP-1 physiological actions 

 

In the β-cell line INS-1, GLP-1 synergizes with glucose to activate expression of 

immediate early response genes coding for transcription factors implicated in cell 

proliferation and differentiation (c-fos, c-jun, junB, zif-268, nur-77). Moreover, 

administration of GLP-1 to aged rats that characteristically develop glucose 

intolerance between 18 and 20 months of age reverses the glucose intolerance. 

Thus GLP-1 may have potent pleiotropic actions on both mature β-cells and duct 

cells that are progenitors of β-cells. Receptors for GLP-1 have been detected also 

on α-cells and δ-cells [24]. The secretion of somatostatin increases in response to 

GLP-1 in rat islets and in isolated perfused rat and canine pancreases. Although 

GLP-1 appears to inhibit glucagon secretion in vivo, it stimulates glucagon release 

in vitro. We speculated that the small amounts of biologically active GLP-1 

produced in islets during the fasting state might exert autocrine/paracrine effects 

on a subset of a-cells containing GLP-1 receptors to increase glucagon 

biosynthesis via the cAMP pathway. During feeding, such an effect would be 
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overcome by the combination of elevated insulin, somatostatin, and glucose, 

which collectively inhibit glucagon secretion. Thus the suppression of glucagon 

release observed in vivo may be indirectly attributable to the paracrine actions of 

the intraislet release of insulin and somatostatin. However, maintenance of 

glucagon secretion does not appear to be dependent upon functional GLP-1 

signaling [24]. 

 

 

2.5.2 Stomach: 

The distal portion of the small intestine regulates gastric function in 

humans, diversion of chyme from the ileum reduces the gastric secretory response 

compared with exposure of chyme to the entire small intestine. The presence of 

chyme or partially digested fat in the ileum of humans inhibits gastric emptying 

and jejunal motility – the so-called ‘ileal brake‘. As reviewed earlier, chyme and 

fats are potent stimulators of GLP-1, indicating GLP-1 may be a candidate 

hormone for regulating gastric function. Indeed, GLP-1 inhibits gastric acid 

secretion and gastric emptying when infused in quantities that result in plasma 

concentrations similar to those observed after meals. The inhibitory effect of GLP-

1 on upper gastric functions could involve receptors located either in the central 

nervous system or associated with afferent pathways to the brain stem. These 

possibilities are supported by the observations that the inhibitory effect of GLP-1 

on gastric emptying requires intact vagal enervation Therefore, despite the known 

insulinotropic actions of GLP-1, the net effect of administering GLP-1 with a 

meal in healthy humans is a reduction in meal-related integrated incremental 

glucose and insulin responses . This observation supports the concept that the 

primary physiological role of GLP-1 may be as a mediator of ileal brake 

mechanisms, rather than as a incretin hormone. The actions of GLP-1 to delay 

gastric emptying are under investigation as an aspect of therapy for diabetes to 

attenuate the postprandial glucose excursion [60], [61], [71], [72], [90]. 
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2.5.3 Lung: 

The unusually high abundance of receptors in the lung suggests important 

actions of GLP-1 in pulmonary physiology, but its physiological role remains 

uncertain. It is difficult to envision how GLP-1 actions on the lung would relate to 

the release of GLP-1 from the intestine in response to meals. One possibility is the 

local production of proglucagon and GLP-1 within the lung to establish a 

paracrine loop, but proglucagon expression has not yet been detected in the lung 

[24]. 

 

 

2.5.4 Brain: 

Recently it has been discovered that GLP-1 acts on the hypothalamus to 

inhibit food and water intake, thus making the GLP-1 seems to be an anorexigenic 

hormone. The discovery of these actions on the promotion of satiety and the 

suppression of the energy intake are recent and are somewhat controversial. The 

expression of GLP-1 receptors in the brain was confirmed by RT-PCR cloning of 

the GLP-1 receptor from mRNA prepared from rat brain. It was also shown in 

earlier studies that proglucagon and proglucagon-derived peptides are produced 

locally in the brain. High densities of GLP-1-immunoreactive nerve fibers are 

present in paraventricular nucleus, dorsomedial hypothalamic nucleus, and the 

subfornical organ. There are at least two mechanisms by which GLP-1 may gain 

access to the appetite control centers located in the hypothalamus: local 

production of GLP-1 within the brain and uptake of intestinally derived GLP-1 in 

the circulation. Compelling experimental evidence has been presented in support 

of both mechanisms, and they are not mutually exclusive. The proglucagon gene 

is expressed in the nucleus of the solitary tract, which is the nucleus of the vagus 

nerve that regulates the autonomic functions of the gut. Furthermore, proglucagon 

produced in the nucleus tractus solitarius is processed to GLPs. Thus, an attractive 

mechanism for the exertion of GLP-1 actions to inhibit feeding behavior would be 

the activation of GLP-1 production in the nucleus tractus solitarius via afferent 
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enervation from the vagus nerve. Oral nutrients would then signal to the brain 

through the autonomic nervous system. It is tempting to speculate that this may 

constitute a prandial satiety signal generated during feeding, a signal to cease food 

consumption because enough has already been consumed. However, if an axonal 

transport of GLP-1 from the hindbrain to the hypothalamus is required, it may not 

be rapid enough to account for meal-induced satiety (20-30 min). Perhaps the 

more plausible mechanism is the uptake by brain of GLP-1 in the circulation 

released from the intestines in response to a meal. Remarkably, 125I-labeled GLP-

1 injected into rats localizes to the subfornical organ and the area postrema of the 

brain within 5 min after the injection [89]. These regions of the circumventricular 

organ are known sites where blood-borne macromolecules can pass across the 

blood-brain barrier. The satiety-inducing obesity hormone leptin in the circulation 

is believed to gain access to the satiety centers in the hypothalamus via the 

circumventricular organ that contains a high concentration of leptin receptors, so 

called short-form receptors that have high affinity for leptin, but are defective in 

their signal transduction [91]. The model proposed for leptin transport into the 

brain is that the receptors extract leptin from the plasma and transport the leptin 

into the hypothalamus. Thus, in analogy with the mechanism of transport of leptin 

from the circulation to the brain, it seems reasonable to propose that GLP-1 

released into the circulation in response to meals is similarly transported to the 

brain. The timing of GLP-1 release after a meal (15-30 min) and the demonstrated 

rapid uptake of GLP-1 by the circumventricular organ (2, 5 min) would be 

consistent with the development of satiety invoked by GLP-1 during the course of 

a meal [28]. 

 

 

2.5.5 Cardiovascular system: 

GLP-1 receptor agonists have been reported to have cardiac and vascular 

actions in rodents and humans that include effects on contractility, blood pressure, 

cardiac output, and cardioprotection. Although GLP-1R is expressed in cells and 

throughout the gut, lung, kidney, heart, and central nervous system, including 
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autonomic nuclei that control cardiovascular functions, the specific cellular 

localization, relative abundance, and functional importance of the GLP-1R in 

cardiovascular tissues have not been fully defined. 

Currently there are some studies that are trying to prove cardioprotective and 

vasodilatory actions of GLP-1(7-36) independently from the known GLP-1R and 

mediated, at least in part, by its metabolite GLP-1(9-36), suggesting the existence 

of an alternative signaling mechanism for GLP-1 and its metabolite in the 

cardiovascular system, and leading to the assumption that drugs targeting GLP-1R 

activation (GLP-1R agonists) versus GLP-1 degradation (DPP-4 inhibitors) for the 

treatment of diabetes may have different cardiovascular consequences [3]. 

 

 

 

2.6 GLP-1 RECEPTOR 

 

The receptor for GLP-1 (GLP1R) is a member of the Family B (II) 

Glucagon-Secretin G Protein-Coupled Receptor (GPCR) superfamily and is 

distributed among several different tissues like: brain, lung, pancreatic islets, 

stomach, hypothalamus, heart, intestine, kidney [40], and, although most reports 

indicate that do not express the known GLP-1 receptor, investigators have 

reported binding and in vitro and in vivo effects of GLP-1 in liver, muscle, and 

adipose tissues. The gene for the human GLP-1 receptor is localized to 

chromosome 6p21 [79] and it consists of 463 amino acids containing eight 

hydrophobic segments. The N-terminal hydrophobic segment is probably a signal 

sequence, while the others are membrane-spanning hydrophobic motifs. Ligand-

binding analysis of the recombinant receptors expressed in and assembled on the 

surface of β-cells show that the selectivity for the binding of GLP-1 is 

approximately 1 nm, whereas all of the other peptides of the glucagon superfamily 

bind poorly or not at all with the exception of glucagon, which is a weak, full 

agonist with a binding affinity of 100 – 1,000-fold less that of GLP-1 [79]. 
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The GLP-1R binding site is an high affinity binding with a Michaelis-Menten 

kinetic. After the identification of GLP-1, the GLP-1 actions are mediated trough 

adenylate cyclase. Within β-cells, cAMP potentiates glucose-induced closure of 

ATP-sensitive K+ channels [40], thereby generating cellular depolarization, 

activation of voltage-dependent Ca2+ channel, and influx of Ca2+. The GLP-1 

induced rise of Ca2+ serves as an important trigger for exocytosis of insulin. Thus 

the GLP-1R leads to insulin exocytosis in a glucose dependent manner. 

Moreover the receptor signalling is associated with activation of protein kinase A, 

induction gene transcription, enhanced levels of insulin biosynthesis and 

stimulation of β-cells proliferation [21]. 

 

 

 

2.7 GENETIC ROLE IN DIABETES ONSET: 

GLP1R POLYMORPHISMS 

 

Diabetes arises from a complex interaction between multiple genes and the 

environment. Until less than a century ago, the greatest selective pressures on 

human survival arose from infection and famine. It is conceivable that genetic 

variation conferring a survival advantage in responding to infection may 

predispose individuals to developing autoimmune disease. Similarly, variation that 

allowed more efficient conservation of energy in situations of lack of food may 

predispose individuals to obesity and type 2 diabetes when calories are abundant 

and physical exertion is optional. In the past 2 years, several studies have 

enhanced the understanding of the genetic predisposition to these common 

metabolic diseases.  

Diabetes prevalence differs between races; concordance rates are higher in 

monozygotic, as compared to dizygotic twins and the sibling risk ratio (s) of 5 

[85]. All of these observations support a genetic contribution to the disease. A 

few, commonly encountered polymorphisms have been associated with an 
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increased risk of type 2 diabetes. Variation in three genes: TCF7L2, KCNJ11 and 

PPARG [34], [35], independently and interactively increase risk of progression 

from impaired fasting glucose and impaired glucose tolerance to overt diabetes 

[52]. Florez et al. [30] reported that two single nucleotide polymorphisms (SNPs) 

in TCF7L2 (rs7903146 and rs12255372) predicted the progression to diabetes of 

persons with impaired glucose tolerance who were enrolled in the Diabetes 

Prevention Program. Over the 3-year period of observation, participants 

homozygous for the risk-conferring allele were more likely to develop diabetes. 

Numerous studies have since shown that greater diabetes risk is conferred by the 

T allele of rs7903146 than the T allele of rs12255372 [30]. 

The metabolic effects of disease-associated polymorphisms in type 2 diabetes 

have been partly characterized for KCNJ11, PPARG and TCF7L2. The 

demonstration of a reproducible association of these loci with disease led to 

studies of their effects on glucose metabolism [52]. PPARG and KCNJ11 are the 

sites of action for thiazolidinediones and sulfonylureas, respectively; this has 

aroused interest in the effect of these variants on response to oral therapy for type 

2 diabetes. A genetic defect producing a global impairment in insulin secretion, in 

addition to a predisposition to diabetes, will likely alter the response to insulin 

secretagogues. Since variation in KCNJ11 alters glucose-induced insulin 

secretion, it follows that the secretory response to sulfonylureas is also impaired, 

leading to failure of sulfonylurea therapy [73], however, this has not been true in 

all studies [33]. In the Diabetes Prevention Program, the same polymorphism also 

altered response to metformin monotherapy [29], and the mechanism of this 

alteration in response is unclear given the current understanding of the mechanism 

of action of metformin. 

The product of TCF7L2 is a member of the TCF (transcription factor) family and 

is therefore an important constituent of the Wnt signaling pathway. This pathway 

regulates gene expression, cell–cell adhesion and cell cycle control and is initiated 

when Wnt binds the transmembrane, cysteine-rich Frizzled family of receptors. 

The resulting receptor kinase action ultimately allows β-catenin, the main effector 

of the signaling pathway, to accumulate in the cytoplasm and nucleoplasm. Within 



Glucagon-Like Peptide-1 

25 

the nucleus, β-catenin heterodimerizes with one of four TCFs, including TCF7L2 

to mediate its regulatory role [58]. The incretin hormone GLP-1 results from post-

translational processing of the glucagon gene ( GCG ) product. In the pancreatic α 

cells, prohormone Convertase-1 (PC-1) catalyzes the synthesis of glucagon, 

whereas in intestinal L cells and in the brain, PC-2 leads to the synthesis of GLP-1 

and GLP-2. It has been shown that the β-catenin– TCF7L2 heterodimer regulates 

GCG expression in the intestinal L cells but not in pancreatic α cells. This led to 

the suggestion that the disease-associated alleles lead to defects in the incretin 

system and subsequently diabetes [35]. As expected, the disease-associated 

decrease in insulin secretion impairs the response to glucose, sulfonylureas and 

other secretagogues [53]. Polymorphisms in TCF7L2 do not alter response to 

interventions that improve insulin action in glucose-intolerant, obese patients [30]. 

A polymorphism in the GLP-1 receptor has been shown to alter response to GLP-

1 in vitro [6]. To date, variation in GLP1R has not been associated with 

predisposition to type 2 diabetes. With the availability of GLP-1-based treatment 

of diabetes, it is relevant to understand whether polymorphisms in GLP1R alter 

response to GLP-1 receptor agonists or DPP-4 inhibitors, and such studies are 

awaited. 

 

 





 

 

 

 

CHAPTER 3 

 

DATA AND PROTOCOLS 

 

 

 

3.1 INTRODUCTION 

 

In this chapter all the experimental protocols used to develop and validate 

the models are described in detail. First a hyperglycemic clamp with concomitant 

GLP-1 intravenous infusion is presented; it is used to develop the model of GLP-1 

action on insulin secretion. In fact, thanks to the fact that glucose is maintained 

almost constant, it was possible to single out the effect of GLP-1 on C-peptide 

secretion rate. However, this was a very unphysiological condition since, in 

normal life, glucose, C-peptide and GLP-1 concentrations vary in time. The 

second protocol of a mixed meal originally designed to assess the effect of DPP-4 

inhibition on incretin secretion and glucose turnover and used to test the model 

performance to quantify the effect of GLP-1 on insulin secretion in a more 

physiological condition. The third, and last, protocol is used for model validation 

by comparing model ability to simultaneously quantify the enhancement of insulin 

secretion due to GLP-1 and β-cells responsivity indexes against those provided by 
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a model-independent technique, which employs OGTT and matched intravenous 

glucose challenge (I-IVG) data of 10 healthy subjects. 

 

 

 

3.2 DATABASE 1: HYPERGLYCEMIC CLAMP 

WITH CONCOMITANT GLP-1 INTRAVENOUS 

INFUSION 

 

 

3.2.1 Subjects 

The study cohort is composed by 88 healthy individuals, 36 males and 52 

females, aged between 18 and 40 (average 26 ± 6 yr) who do not have a diagnosis 

of diabetes and have a fasting glucose concentration of less than 95 mg/dl. 

Individuals with a BMI < 19 or > 40 kg/m
2
 are excluded from the study in order to 

avoid potential confounding effects that may result from extreme leanness or 

obesity. Healthy indicates that the participant has no known systemic illness, is 

not on any medication that can alter gastric emptying, insulin secretion and action, 

and has no history of abdominal surgery. 

 

 

3.2.2 Screening visit 

To ensure subjects are healthy, following written, informed consent, 

subjects underwent a history and physical examination; blood has been collected 

for complete blood count and chemistry group; urine has been collected to ensure 

there is no evidence of infection, proteinuria or pregnancy. Subjects participating 

in this protocol have been at a stable weight and have not been engaging in regular 

vigorous physical exercise. 
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3.2.3 Experimental design 

Subjects were admitted to the Mayo Clinic General Clinical Research 

Center at 18.00 hours the evening before the study. Following ingestion of a 

standard 10 Kcal/kg meal (55% carbohydrate, 30% fat, and 15% protein), subjects 

fasted until the end of the study. On the morning of the study at 06.00 hours (–60 

min), an 18-gauge cannula was  inserted into the non-dominant forearm to allow 

for hormone and dextrose infusion during the study. At 06.15 hours (–45 min), an 

18-gauge cannula has been inserted in a retrograde fashion into a dorsal hand vein. 

The hand has then been placed in a heated box in order to obtain arterialized 

venous blood samples. At 07.00 hours (0 min), glucose has been infused 

intravenously in amounts sufficient to maintain plasma glucose concentration at 

150 mg/dl. 

This continued till the end of the study and adjusted as necessary. At 09.00 hours 

(120 min) an intravenous infusion of GLP-1 (BaChem, San Diego, CA) 

commenced at a rate of 0.75 pmol/kg/min from 121–180 min and subsequently 

increased to 1.5 pmol/kg/min from 181–240 min. The glucose infusion rate has 

been adjusted as necessary to maintain target glucose concentrations of 150 mg/dl. 

Blood has been drawn at -30, -15, 0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 75, 90, 105, 

120, 122, 124, 126, 128, 130, 140, 150, 160, 180, 182, 184, 186, 188, 190, 210, 

220, 230, 240 minutes. After the last blood draw all infusions has been 

discontinued. Figure 3. 1 shows the scheme of the experimental design. 

Both hyperglycemia and GLP-1 are potent stimuli of insulin secretion. A glucose 

clamp at 150 mg/dl has been chosen in order to minimize the effect of glucose on 

insulin secretion, yet still providing the glycemic stimulus necessary for GLP-1 to 

enhance glucose-induced insulin secretion. However, it is possible that a subtle 

defect in the response to GLP-1 could be missed. In an effort to minimize this 

possibility, the GLP-1 infusion has been performed in two rates: one that results in 

a half-maximal (0.75 pmol/kg/min) and one that results in a near-maximal 

stimulation of insulin secretion (1.5 pmol/kg/min). 
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This was useful for the modeling point of view since it allowed us to test possible 

non-linearity in β-cells response to GLP-1, which would have been almost 

impossible if a single step infusion was used. 

 

 

3.2.4 Analytic techniques: 

All analytic techniques described in this and subsequent protocols are 

either established in the applicant’s laboratory or are routinely performed in the 

Mayo GCRC Mass Spectrometry or Immunochemical Core laboratories. All blood 

has been immediately placed on ice, centrifuged at 4
o
C, separated and stored at -

80
o
C until assay. Glucose concentrations have been measured using a Yellow 

Springs glucose analyzer. C-peptide and glucagon concentrations have been 

measured using reagents purchased from Linco Research Inc., St. Louis, MO. 

Insulin has been measured using a chemiluminescence assay with reagents 

obtained from Beckman (Access Assay, Beckman, Chaska, MN). GLP-1 hormone 

concentrations have been measured: blood has been collected in ice-cooled 

EDTA-plasma tubes. Immediately after collection a dipeptidyl peptidase-IV 

(DPP-IV) inhibitor, Aprotinin (Linco Research, St. Charles, MO) has been added 

to the sample tube to prevent DPP-IV mediated degradation of intact GLP-1. All 

blood has been immediately placed on ice, centrifuged at 4
o
C, separated and 

stored at -80
o
C until assay. body composition has been measured prior to 

participation using dual-energy X-ray absorptiometry (DPX-IQ scanner; Hologic, 

Waltham, MA). 

Plasma glucose, C-peptide and GLP-1 concentrations are shown in Figure 3. 2 

Figure 3. 3 Figure 3. 4, respectively. Basal plasma C-peptide concentration was 

578.3±23.1 pmol/l; at 120 minutes, before the intravenous infusion of GLP-1 was 

started, C-peptide concentration was 1852.0±62.8 pmol/l, due to the rise in 

glucose concentration, and plasma GLP-1 was 4.4 ±0.8 pmol/l. After the GLP-1 

infusion, plasma GLP-1 concentration increased to 23.9 ±1.6 pmol/l at 180 

minutes and to 42.2 ± 2.1 pmol/l at 240 minutes (all differences were statistically 

significant, p<0.0001), and consequently C-peptide concentration rose to 
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4272.2±176.4 and 6995.8±323.5 pmol/l at 180 and 240 minutes, respectively (all 

differences were statistically significant, p<0.0001). The ratio between above-

basal C-peptide and above-basal GLP-1 concentrations was 266.4±19.8 and 

196.6±11.1 pmol/l at 180 and 240 minutes, respectively, and the difference was 

statistically significant (p<0.0001). Therefore this result supports the hypothesis 

that GLP-1 may act nonlinearly on C-peptide secretion. 

 

 

GLP-1 INFUSION
pmol/kg/min

0.75

1.5

PLASMA GLUCOSE
mg/dl

150

TIME
min 120 180 240

0

 

Figure 3. 1 – Experimental design scheme 
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Figure 3. 2 – Average plasma glucose concentration. Vertical error bars represent SE 
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Figure 3. 3 – Average plasma C-peptide concentration. Vertical error bars represent SE 
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Figure 3. 4 – Average plasma GLP-1 concentration. Vertical error bars represent SE 
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3.3 DATABASE 2: MIXED MEAL 

 

 

3.3.1 Subjects 

After obtaining approval from the Mayo Institutional Review Board, 22 

subjects (age 54.7±1.8 years, BMI 32.9±1.2 kg/m
2
) with a fasting glucose >99 

mg/dl but < 125 mg/dl on two or more occasions gave written informed consent to 

participate in the study. 

 

 

3.3.2 Screening visit 

At screening visit, subjects were in good health, at stable weight and did 

not engage in regular vigorous exercise. Subjects had no history of diabetes or of 

prior therapy with antidiabetic medication. All subjects were instructed to follow a 

weight maintenance diet containing approximately 55% carbohydrate, 30% fat 

and 15% protein for the period of study. Body composition was measured using 

dual-energy X-ray absorptiometry (DPX scanner; Lunar, Madison, WI, USA). 

 

 

3.3.3 Experimental design 

A randomized, double-blinded, placebo-controlled, parallel-group design 

were adopted. After a baseline meal study, subjects were divided into two groups 

of 11 individuals, which received either sitagliptin 100 mg or an identical placebo 

taken before breakfast over an 8-week treatment period. Participants underwent a 

second meal study at the end of the treatment period (when they received study 

medication prior to meal ingestion). Participants were assessed in the Clinical 

Research Unit (CRU) 4 weeks after the first study when compliance was assessed 

by counting remaining medication. 
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Subjects were admitted to the CRU at 1700 on the evening prior to the meal study. 

Subsequently, they consumed a standard 10 cal/kg meal (55% carbohydrate, 30% 

fat and 15% protein) after which they fasted overnight. At 0630 (-210 min), a 

forearm vein was cannulated with an 18-g needle to allow infusions to be 

performed. An 18-g cannula was inserted retrogradely into a vein of the dorsum of 

the contralateral hand. This was placed in a heated Plexiglas box maintained at 55 

°C to allow sampling of arterialized venous blood. At -180 min, a primed (12 

mg/kg) continuous (0.12 mg/kg per min) infusion of [6,6-
2
H2] glucose was 

initiated. Study medication was administered at -30 min on the second study day. 

At time 0, subjects consumed a meal consisting of three scrambled eggs, 55 g of 

Canadian bacon, 240 ml of water and Jell-O containing 75 g of glucose labelled 

with [1-
13

C] glucose (4% enrichment). The meal provided 510 kcal (61% 

carbohydrate, 19% protein and 21% fat). An infusion of [6-
3
H] glucose was 

started at this time, and the infusion rate varied to mimic the anticipated 

appearance of meal [1-
13

C] glucose. The rate of infusion of the [6,6-
2
H2] glucose 

was altered to approximate the anticipated fall in endogenous glucose production 

(EGP). 

Blood samples were collected at time 0, 5, 10, 15, 20, 30, 40, 50, 60, 75, 90, 120, 

150, 180, 210, 240, 270, 300, 330, and 360 min. 

 

 

3.3.4 Analytical techniques 

Plasma samples were placed on ice, centrifuged at 4 °C, separated and 

stored at -20 °C until assayed. Glucose concentrations were measured using a 

glucose oxidase method (Yellow Springs Instruments, Yellow Springs, OH, 

USA). Plasma insulin was measured using a chemiluminescence assay (Access 

Assay; Beckman, Chaska, MN, USA). Plasma glucagon and C-peptide were 

measured by Radio-Immunoassay (Linco Research, St. Louis, MO, USA). 

Collection tubes for Glucose-dependent Insulinotropic Polypeptide (GIP) and 

GLP-1 had 100 lm of DPP-4 inhibitor (Linco Research) added. Total and intact 

GLP-1 and GIP concentrations were measured using C-terminal and N-terminal 
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assays. Plasma [6,6-
2
H2] glucose and [1-

13
C] glucose enrichments were measured 

using gas chromatographic mass spectrometry (Thermoquest, San Jose, CA, USA) 

to simultaneously monitor the C-1 and C-2 and C-3 to C-6 fragments. In addition, 

[6-
3
H] glucose-specific activity was measured by liquid scintillation counting 

following deproteinization and passage over anion and cation exchange columns. 

Figure 3. 5 shows plasma glucose (A), C-peptide (B) and total GLP-1 (C) for 

baseline and sitagliptin mixed meal study. 

 

 

 

3.4 DATABASE 3: OGTT AND MATCHED 

INTRAVENOUS GLUCOSE 

 

 

3.4.1 Subjects 

Study cohort is composed by 10 individuals aged 18 - 45 years (average ± 

SE age = 29 ± 9 years) who are otherwise healthy and have had stable weight ( 

average ± SE BMI = 27 ± 5 kg/m
2
) or > 6 months. Healthy status indicates that the 

participant has no known active systemic illness and no history of microvascular 

or macrovascular disease. 

 

 

3.4.2 Screening visit 

Subjects provided written informed consent at the time of the screening 

visit. After an overnight fast they were asked to report to the CRU the next 

morning. To ensure they are healthy, subjects underwent a history and physical 

examination, vital signs, height, weight; blood collection for complete blood 

count, chemistry group and glucose; ECG and urine collection to exclude 

infection, proteinuria or pregnancy.  
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Figure 3. 5 – Average (N=22) measured concentrations of plasma glucose (A), C-peptide (B) 

and total GLP-1 (C) for baseline (white dots) and sitagliptin (black dots) mixed meal study. 

Vertical bars represents SE. 
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Subjects participating in this and subsequent protocols were not engaging in 

regular vigorous physical exercise. All participants underwent tests of body 

composition using dual-energy X-ray absorptiometry (iDXA scanner; GE, 

Wauwatosa, WI). Subjects were instructed by the CRU dietician to maintain their 

usual diet throughout the duration of the study. 

 

 

3.4.3 Experimental design 

Subjects participated in a total of 2 protocols (A, B) performed at least a 

week apart. 

 

Protocol A – Oral Glucose Tolerance Test (OGTT): 

Volunteers were admitted to the CRU the morning of the study after an 

overnight fast. An 18 g cannula was inserted retrogradely into a vein of the 

dorsum of the non-dominant hand which was placed in a heated Plexiglas box 

maintained at 55°C to allow sampling of arterialized venous blood. At time point 

(0), subjects ingested a glucose drink:1g per kg body weight. 

 

Protocol B – Isoglycemic Intravenous Glucose Test (I-IVG):  

Volunteers were admitted to the CRU the morning of the study after an 

overnight fast. An 18 g cannula was inserted retrogradely into a vein of the 

dorsum of the non-dominant hand which was placed in a heated Plexiglas box 

maintained at 55°C to allow sampling of arterialized venous blood. In addition, an 

18g cannula was placed in the contralateral arm to allow intravenous infusion. At 

time point (0), glucose (Dextrose 20%) was infused via this latter cannula in 

amounts sufficient to match the glucose concentrations observed during the Oral 

Glucose Tolerance Test obtained during Protocol A as previously described. 

 

Blood samples were collected for hormones concentrations on all 

protocols, at -30, -15, 0, 5, 10, 15, 20, 25, 30, 60, 90, 120, 150, 180, 210 and 240 
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minutes and glucose concentrations were measured from plasma every 10 minutes 

after time 0 to allow matching of glucose concentrations between study protocols. 

 

 

3.4.4 Analytical techniques 

Arterialized venous plasma samples will be placed in ice, centrifuged at 

4°C, separated and stored at -20°C until assay. C-peptide and glucagon 

concentrations will be measured in the Mayo immunochemical core using 

reagents purchased from Linco Research Inc., St. Louis, MO.  Insulin will be 

measured using a chemiluminescence assay with reagents obtained from Beckman 

(Access Assay, Beckman, Chaska, MN). Glucose concentrations will be measured 

using a Yellow Springs glucose analyzer. 

Figure 3. 6 shows plasma C-peptide, glucose and total GLP-1 concentration for 

Protocol A and Protocol B. 
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Figure 3. 6 – Plasma C-peptide, glucose and total GLP-1 in OGTT and I-IVG study. Vertical 

bars represent SE 

 





 

 

 

 

CHAPTER 4 

 

MODELS TO ASSESS INSULIN 

SECRETION AND INCRETIN EFFECT 

 

 

 

4.1 INTRODUCTION 

 

Insulin is the primary regulator of glucose homeostasis, hence the ability to 

evaluate the pancreatic insulin secretion rate, SR, is essential for a quantitative 

understanding of the glucose regulation system, and, in this specific study, of the 

GLP-1 action on insulin secretion. SR cannot be directly measured, since insulin 

is secreted by pancreatic β-cells into the portal vein which is not accessible in 

vivo. Before reaching the systemic circulation, insulin passes through the liver, 

where approximately 50% is degraded. Insulin level in plasma is a function of 

three processes: insulin secretion by the pancreas, hepatic insulin extraction, and 

insulin kinetics; however it is only measurable the effect of insulin secretion in 

circulation, since the best measure of insulin, or at least the simplest, are 

peripheral insulin concentrations, unless very invasive and complex experimental 

protocol are performed [36], [22], [82], [83], [84], [86]. 
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The presence of the liver that extracts insulin to a large and variable extent is the 

crucial problem in using plasma insulin concentrations in order to assess insulin 

secretion rate. This problem can be bypassed if plasma C-peptide concentration 

instead of insulin is used. In fact, C-peptide is equimolarly secreted with insulin 

but it is not extracted significantly by the human liver, and its kinetics have been 

shown to be linear and time-invariant for a large range of C-peptide 

concentrations [9], [82], [83], [84], [86]. In addition, evidence exists that the 

inhibition effect of C-peptide on its own secretion appears to be, if any, very small 

[65], [27], and that C-peptide kinetics are linear and time invariant also in the 

presence of glucose and insulin concentrations that vary in time, like during a 

meal, IVGTT or OGTT, [45], [75]. Hence, it is possible to reconstruct post-

hepatic C-peptide rate of appearance (Ra); and since the liver dynamics are very 

rapid, C-peptide Ra is a good measure of pre-hepatic C-peptide secretion, and thus 

of SR. 

 

 

 

4.2 C-PEPTIDE MODEL 

 

The problem of estimating the insulin secretion profile in vivo during 

perturbation from plasma concentration measurements is a classic input estimation 

problem for which deconvolution offers the classic solution [77], [64]. Since there 

is solid evidence that C-peptide kinetics are linear in a wide range of 

concentration, the relationship between above basal pancreatic secretion (SR, the 

input), and the above basal C-peptide concentration measurements (C, the output) 

is the convolution integral: 
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



0

d)t(SR)t(h)t(Cp  4.1 

where h(t) is the impulse response of the system. SR(t) profile during a 

perturbation can be reconstructed by deconvolution given Cp(t) and h(t). The 

knowledge of the impulse response is thus needed. It is usually approximated as a 

sum of two exponentials, or with a two compartmental model as proposed by 

Eaton et al. [22]. Parameters can be fixed at standard values using the method 

proposed in [86]. 

The model assumes that C-peptide is secreted in a accessible compartment, Cp1(t), 

representing plasma and rapidly equilibrating tissues, from which it distributes 

into a peripheral extravascular compartment, Cp2(t), representative of tissues in 

slow exchange with plasma. Model equations are: 
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b222121212
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4.2 

 

where Cp1(t) and Cp2(t) are C-peptide concentrations in the accessible and 

peripheral compartments (pmol/l). The overdot indicates time derivative; Cp1(t) is 

plasma C-peptide concentration in compartment 1; Cp2(t) is the equivalent 

concentration in compartment 2, equal to the C-peptide mass in compartment 2 

divided by the volume of the accessible compartment; k12 and k21 (min
-1

) are 

transfer rate parameters between compartments; k01 (min
-1

) is the irreversible loss; 

SR(t) (pmol/l per min
-1

) is the pancreatic secretion entering the accessible 

compartment. Deconvolution allows us to measure in a virtually model-

independent way insulin secretion after a glucose stimulus. However, using a 

mechanistic description of pancreatic insulin secretion as a function of plasma 
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glucose concentration has the advantage to provide quantitative indexes of beta-

cell function. 

The functional relationship between insulin secretion and plasma glucose 

concentration was firstly described by Grodsky et al. [36], it is based on the packet 

storage hypothesis of insulin secretion. Based on that Toffolo et al. proposed a 

minimal model which assumes that the pancreatic insulin secretion as function of 

glucose and glucose rate of change for intravenous glucose graded infusion [82], 

and then also during an oral test [9] (Figure 4. 1). 
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Figure 4. 1 – Graphic representation of the C-peptide model [82] 

 

 

 

Hence SR(t) is described as the sum of three components: 

 

bds SR)t(SR)t(SR)t(SR   4.3 

 

where SRb is the insulin secretion rate at steady state, SRs(t) is the static secretion 

modulated by plasma glucose concentration (static glucose control); and SRd(t) is 

the dynamic secretion controlled by the rate of change of plasma glucose 

concentration (dynamic glucose control). 

Over basal insulin secretion is given by the sum of the static and dynamic 

secretion components: 
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)t(SR)t(SR)t(SR ds   4.4 

 

SRs(t) is assumed to be equal to the provision of new insulin in the β-cells, 

controlled by glucose concentration above a threshold level h: 

 

  h)t(G)t(SRRS
s

s   4.5 

 

In response to an elevated glucose level, SRs(t) tends with a time constant 1/α 

(min) toward a steady-state value linearly related via parameter β (min
-1

) to 

glucose concentration G(t) (mg/dl) above the threshold h. Parameter β quantifies 

the static control of glucose on β-cells. 

SRd(t) is assumed to represent the secretion of insulin stored in the β-cells in a 

promptly releasable form (labile insulin). The concept was introduced by Grodsky 

[36]. The idea is that labile insulin is not homogeneous with respect to the glucose 

stimulus: for a given glucose step, only a fraction of labile insulin is mobilized, so 

that more insulin can be rapidly released in response to a subsequent more 

elevated glucose step. In [36], it is assumed that the amount of released insulin, 

dQ(t), in response to a glucose increase from G(t) to G(t) + dG(t) is proportional 

to the glucose increase dG(t): 

 

)t(dGK)t(dQ   4.6 

 

Toffolo thus assumed that one component of SR, SRd(t), is proportional to the 

derivative of glucose: 
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Parameter K quantifies the dynamic control of glucose on insulin secretion, i.e., 

the effect of the rate of change of glucose on insulin secretion when glucose 

concentration is increasing (positive 
dt

)t(dG
). 

From model parameters, β-cell static and dynamic responsivity indexes can be 

defined: 

 

 the static sensitivity index to glucose, Φs (10
-9

·min
-1

), measures the 

stimulatory effect of a glucose stimulus on β-cell secretion at steady state and it is 

defined as the ratio between SR and glucose concentration above the threshold h: 

 

 
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 4.8 

 

 the dynamic sensitivity index to glucose, Φd (10
-9

), measures the 

stimulatory effect of the rate of change of glucose on secretion of stored insulin, it 

is defined as the amount of insulin released in response to the maximum excursion 

of plasma glucose above basal concentration: 
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4.3 GOLD STANDARD METHOD TO QUANTIFY 

INCRETIN EFFECT 

 

Incretin effect potentiates β-cell responsivity to glucose thus enhancing 

insulin secretion. Campioni et al. [11] proposed a method to quantify both insulin 

potentiation and β-cells responsivity to glucose by using C-peptide model [9]. 

Each subject is studied twice, first with an OGTT, and second with an isoglycemic 

intravenous glucose infusion (I-IVG). On the first occasion glucose is 

administered orally at time 0 min whereas on the second occasion a glucose 

infusion is initiated at 0 and given in amounts sufficient to match the glucose 

concentrations observed on the first occasion. Plasma glucose, C-peptide, and 

incretin hormone concentrations are then frequently measured. A mandatory 

condition to successfully quantify incretin effect with such methodology is that 

plasma glucose concentration during OGTT and I-IVG are virtually 

superimposable. 

C-peptide model is identified on both data of OGTT and I-IVG allowing to 

reconstruct insulin secretion profiles during the oral (SR
OGTT

) and the i.v. matched 

(SR
I-IVG

) test. It is then possible to define the time course of the incretin 

potentiation as [11]: 

 

(t)SR

(t)SR-(t)SR
P(t)

IVG-I

IVG-IOGTT

  4.10 

 

Similarly, percent increases of the static and dynamic responsivity indexes can be 

derived as: 
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Finally, in order to compare results of the gold standard method with the 

potentiation index Π, which will be defined in Chapter 5, paragraph 5.5.1 as the 

percent increase of insulin secretion due to 1 pmol/l of circulating GLP-1, the 

average of over basal potentiation P(t) is normalized by plasma GLP-1 

concentration: 
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CHAPTER 5 

 

MODELS OF GLP-1 ACTION ON 

INSULIN SECRETION 

 

 

 

5.1 MODELING GLP-1 ACTION ON STATIC β-

CELL RESPONSIVITY TO GLUCOSE 

 

The identification results of C-peptide minimal model shown in Chapter 6, 

demonstrate that the C-peptide model is unable to fit plasma C-peptide 

concentration data in presence of GLP-1, since incretin effect is not taken in 

account in the model. Hence, a model that incorporates a mathematical description 

of the GLP-1 action on insulin secretion is required to properly reconstruct the 

insulin secretion rate profile from plasma C-peptide data in presence of GLP-1 

stimuli. 

Previous studies have suggested that incretins enhance both static and dynamic 

insulin secretion through a potentiation factor [11]. However the first set of 

models of GLP-1 action on insulin secretion proposed here, only consider a GLP-

1 effect which acts on the static phase. This choice has been made due to protocol 
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design, described in detail in Chapter 3 paragraph 3.2, in which plasma glucose 

concentration is maintained almost constant around 150 mg/dl when GLP-1 is 

infused intravenously, resulting in a negligible dynamic insulin secretion. Four 

models of increasing complexity have been tested. Each assume a different 

description of potentiation effect of the plasma GLP-1 concentration on static β-

cells sensitivity to glucose Φs: 

 

 Model 1: proportional 

 Model 2: proportional plus derivative 

 Model 3: non-linear (Michaelis-Menten) 

 Model 4: non-linear (Michaelis-Menten) plus derivative. 

 

 

 

Model 1: 

Model 1 assumes a proportional action of GLP-1 on static β-cell responsivity 

(Figure 5. 1): 

 

   1)t(1GLPas

1GLP

s   5.1 

 

with Φs being the static β-cell responsivity to glucose before GLP-1 infusion, 

GLP1 the over-basal GLP-1 concentration, and a model parameter. 

 

 

 

Model 2: 

Model 2 assumes a proportional plus a derivative action of GLP-1 on static β-cell 

responsivity (Figure 5. 2): 
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with a and b model parameters representing the percentage increase of Φs due to 

the GLP-1 and GLP-1 rate of change respectively. 

 

 

 

Model 3: 

Model 3 assumes a nonlinear (Michaelis-Menten) action of GLP-1 on static β-cell 

responsivity (Figure 5. 3): 
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with c and d model parameters representing respectively the maximum percentage 

increase of Φs due to GLP-1 and the value of the above basal GLP-1 concentration 

at which the half-maximum percentage increase is obtained, respectively: 
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Model 4: 

Model 4 assumes a nonlinear (Michaelis-Menten) and derivative action of GLP-1 

on static β-cell responsivity (Figure 5. 4): 
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Figure 5. 1 – Model 1 graphic representation 
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Figure 5. 2 – Model 2 graphic representation 
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Figure 5. 3 – Model 3 graphic representation 
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Figure 5. 4 – Model 4 graphic representation 
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5.1.1 GLP-1 potentiation index 

It is useful to quantify the ability of GLP-1 to control insulin secretion 

through a potentiation index: . The index can be defined as the ratio between the 

average percentage increase of Φs and average plasma GLP-1 concentration. It 

represents the percent increase of the static responsivity index to glucose, due to 1 

pmol/l of circulating GLP-1. 

With this definition,  (% per pmol/l) can be derived for all the above models. 

 

 

 

Model 1 potentiation index: 

In Model 1, Φs depends from the over basal GLP-1 concentration following the 

equation 5.1; with the definition reported above,  is: 
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Model 2 potentiation index: 

In Model 2, Φs depends from the over basal GLP-1 concentration following the 

equation 5.2, thus the potentiation index  is: 
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with AUC, area under the curve and GLP1max the peak value of over-basal GLP-1 

concentration. 

 

 

 

Model 3 potentiation index: 

In Model 3, Φs depends from the over basal GLP-1 concentration following the 

equation 4.17. Given the nonlinearity of Model 3, two potentiation indexes, at 

physiological Πp and supra-physiological Πsp GLP-1 levels, can be defined: 
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The argument of the integral at the numerator of equation 5.9 can be approximated 

with its Taylor series development stopped at the first term, in the closeness of the 

operating point GLP1
*
: 
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Considering that f(GLP1) is zero before t=120 min, and approximating the 

integral in [0 ] with the integral in the observation period, the potentiation 

depends from GLP1
*
 and the integration interval. 

In the present experimental condition, two potentiation indexes can be defined. 
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For t < 180 min, where GLP-1 is infused to achieve physiological over basal GLP-

1 concentrations (GLP1p), one has: 
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For 180 < t <240 min, where GLP-1 is infused to achieve supra-physiological 

plasma GLP-1 concentrations (GLP1sp), one has: 
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with GLP1p the average over-basal GLP-1 concentration between 120 and 180 

minutes and GLP1sp the average over-basal GLP-1 concentration between 180 and 

240 minutes. 

 

 

 

Model 4 potentiation index: 

Similarly to Model 3, potentiation indexes can be derived from equation 5.6 for 

Model 4: 
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and 
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5.2 MODELING GLP-1 ACTION ON STATIC AND 

DYNAMIC β-CELL RESPONSIVITY TO GLUCOSE 

 

Several study which investigated the incretin effect on insulin secretion, 

comparing OGTT against I-IVG data, reported that the presence of GLP-1 could 

induce a modification of the dynamic, which is related to exocytosis of readily 

releasable pool of docked granules, and static, which requires a replacement of the 

released docked granules from a large reserve pool to the plasma membrane 

followed by docking and preparation for release, insulin secretion due to a 

variation of β-cells responsivity to the glucose levels [1], [2], [19], [26], [32], [37], 

[39], [42], [47]. 
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From literature it is known that GLP-1 only acts on the above-basal insulin 

secretion rate, while it has no effect on basal secretion, i.e. if glucose is at basal 

level an increase in plasma GLP-1 does not produce an increase in insulin 

secretion. For this reason models presented in the previous paragraph were 

modified to account for the insulin secretagogue effect of GLP-1 on both static 

and dynamic responsivity indexes, Φs and Φd respectively. In other words, GLP-1 

potentiates the above basal insulin secretion rate, causing an increment in beta-cell 

responsivity indexes. 

The assumption that both Φd and Φs are modulated by GLP-1 relies in particular 

on the evidence provided by Campioni et al. in [11], which demonstrates that both 

static and dynamic phase of insulin secretion are increased by incretins. As 

already stated here, the particular protocol design did not allow to verify this 

assumption. In fact, when GLP-1 is infused, glucose is approximately constant 

and dynamic insulin secretion is virtually absent. This makes it impossible to 

separately assess GLP-1 potentiation on Φd. However, we believe that, in light of 

the applicability of the model to different protocol designs, the GLP-1 action on 

dynamic insulin secretion, i.e. Φd, has to be included in the model. 

Hence four models of GLP-1 action on static and dynamic β-cell insulin secretion 

are proposed and tested. 

 

 

 

Model 5: 

Model 5 assumes a proportional action of GLP-1 on static, Φs, and dynamic, Φd, β-

cell responsivity. In principle one should assume a different effect of GLP-1 on 

static and dynamic components (Figure 5. 5): 
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with Φs and Φd respectively the static and dynamic beta-cell responsivity to 

glucose before GLP-1 infusion, GLP1 the over-basal GLP-1 concentration, as and 

ad model parameters. 

However, due to the protocol design, parameter ad cannot be indentified with 

precision. Thus the following model, as all the models presented in this paragraph, 

will assume that the parameter which modulates the effect of GLP-1 on dynamic 

β-cells responsivity to glucose is equal to the static one; thus for Model 5 one has: 

as = ad = a. 

 

 

 

Model 6: 

Model 6 assumes a proportional plus derivative action of GLP-1 on Φs and Φd 

(Figure 5. 6): 
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with a and b model parameters representing the percentage increase of Φs and Φd 

due to the GLP-1 and GLP-1 rate of change respectively. 

 

 

 

Model 7: 

Model 7 assumes a nonlinear (Michaelis-Menten) action of GLP-1 on static, Φs 

and dynamic Φd β-cell responsivity (Figure 5. 7): 
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with c and d model parameters representing respectively the maximum percentage 

increase of Φs and Φd due to GLP-1 and the value of the above basal GLP-1 

concentration at which the half-maximum percentage increase is obtained. 

 

 

 

Model 8: 

Model 8 assumes a nonlinear (Michaelis-Menten) and derivative action of GLP-1 

on static, Φs β-cell responsivity (Figure 5. 8): 
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5.19 

 

 

with b, c and d model parameters respectively the percentage increase of Φs and 

Φd due to GLP-1 rate of change respectively, the maximum percentage increase of 

Φs and Φd due to GLP-1 and the value of the above basal GLP-1 concentration at 

which the half-maximum percentage increase is obtained. 
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Figure 5. 5 – Model 5 graphic representation 
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Figure 5. 6 – Model 6 graphic representation 
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Figure 5. 7 – Model 7 graphic representation 
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Figure 5. 8 – Model 8 graphic representation 
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5.2.1 Model reformulation 

Given the formulation of the C-peptide secretion model, described in detail 

in Chapter 4, it is possible to demonstrate that describing GLP-1 action on Φs and 

Φd, it is equivalent to describe GLP-1 action on the above-basal insulin secretion 

rate. 

In fact: 

 

)t(SR)t(SRSR(t) ds   5.20 

 

where 

 

   hG(t)(t)SR(t)RS ss   5.21 

 

or equivalently 

 

   hG(t)Y(t)(t)Y

Y(t)SR(t)






 5.22 

 

and 

 



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
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

otherwise0

b
G)t(Gand0

dt

dG(t)
if

dt

)t(dG
K

)t(SR d  5.23 

 

 

thus given the definition of Φs and Φd, (equations 4.8 and 4.9) one can write: 
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Moreover, under GLP1 stimulus, considering as example equations of Model 6, 

one obtains: 
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since: 

 

)t(SR)t(SR)t(SR 1GLP

d

1GLP

s

1GLP   5.26 

 

where for static secretion one has: 

 

)t(Y)t(SR 1GLP

s

1GLP

s   5.27 

 

with 
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thus 
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5.29 

 

Similarly for the dynamic secretion one has: 
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with 
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thus 
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5.32 

 

and in conclusion one obtains: 
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5.33 

 

Given the equivalence of the two representations of Model 6, it is possible to 

present the formulation of the model with GLP-1 modulating above basal insulin 

secretion, which provides a much more straight connection of the effect of GLP-1 

on insulin secretion. For sake of brevity the equivalence of the two representations 

of GLP-1 action is reported in details only for Model 6, since one can easily apply 

the same procedure to the other models. 

Then the action of GLP-1 on over basal insulin secretion of Model 5, 6, 7 and 8 

can be rewritten as follows: 

 

 

Model 5: 

 

  1GLP1(t)aΔSR(t)(t)ΔSRGLP1   
5.34 
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with SR(t) the glucose-dependent secretion rate before GLP-1 infusion,   

SR
GLP-1

(t) the glucose-dependent secretion rate after GLP-1 infusion, GLP1(t) 

the over-basal hormone concentration, and a model parameter. 

 

 

Model 6: 
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with a and b model parameters representing the percentage increase of SR due to 

the GLP-1 and GLP-1 rate of change, respectively. 

 

 

Model 7: 
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with c and d model parameters representing, respectively, the maximum 

percentage increase of SR due to GLP-1 and the value of the above basal GLP-1 

concentration at which the half-maximum percentage increase is obtained. 

 

 

Model 8: 
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with b, c and d as defined above. 

 

 

5.2.2 GLP-1 potentiation index 

GLP-1 potentiation index Π, can be redefined as the ratio between the 

average percentage increase in over-basal insulin secretion and average plasma 

GLP-1 concentration. With this definition,  (% per pmol/l) can be derived for all 

the above models by adopting the same method employed in paragraph 5.5.1. 

 

For Model 5, one has: 

 

100aΠ   5.38 

 

 

For Model 6: 

 

 
100

GLP1(t)AUC

GLP1
baΠ max 








  5.39 

 

with AUC denoting the area under the curve and GLP1max the peak value of over-

basal GLP-1 concentration. 

 

 

With Model 7 two potentiation indexes can be defined, as with Model 3: 

for t < 180 min, where GLP-1 is infused to achieve physiological over basal   

GLP-1 concentrations (GLP1p): 
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Similarly potentiation indexes with Model 8 are: 
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and 
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5.43 

 

 





 

 

 

 

CHAPTER 6 

 

IDENTIFICATION 

 

 

 

6.1 INTRODUCTION 

 

In this chapter identification of the C-peptide minimal model (described in 

Chapter 4) and Models 1-8 (described in Chapter 5) against data of database 1 

(described in Chapter 3, paragraph 3.2) is presented. Results on database 2 

(described in Chapter 3, paragraph 3.3) prove the capability of the model to fit the 

data of oral test. Results on database 3 (described in Chapter 3, paragraph 3.4) will 

be discussed in the next chapter where model validation is tackled. 

 

 

 

6.2 NUMERICAL IDENTIFICATION 

 

Models parameters were estimated for each subject in each database, 

together with a measure of their precision, by applying weighted nonlinear least 

square methods [13] to plasma C-peptide concentration, as implemented in 
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SAAM II (Simulation Analysis and Modeling software) [4]. If some parameters 

are estimated with poor precision, Maximum A Posteriori (MAP) Bayesian 

estimator approach was adopted. Weights were chosen optimally, i.e. equal to the 

inverse of the variance of the C-peptide measurement errors, which was assumed 

to be independent, Gaussian, and with zero mean and known variance, equal to: 

 

2)t(Cp001.02000)Cp(2   6.1 

 

as proposed by Toffolo et al. in [84]. 

Plasma glucose and glucose rate of change, for the C-peptide model, together with 

plasma GLP-1, for Models 1, 3, 5, and 7, and GLP-1 rate of change for Models 2, 

4, 6, and 8 were the models forcing functions assumed to be known without error. 

Of note, for database 2 and 3, total instead of active GLP-1 concentration was 

used. The choice of use total GLP-1 instead of active plasma GLP-1 concentration 

as forcing function is due to the extensive degradation of plasma active GLP-1 

exerted by DPP-IV inhibitors; thus active GLP-1 may not show a response to 

small meals, hence, the sum of the intact hormone and its metabolite (i.e. total 

GLP-1) represents a better measure for estimation of GLP-1 effect on insulin 

secretion [40]. 

 Glucose, and GLP-1 concentrations were linearly interpolated between data. 

Since cost and blood volume considerations limited the number of glucose and 

GLP-1 data points available, time derivative were calculated on virtually 

continuous signals reconstructed by stochastic deconvolution [17]. Briefly, the 

method can be described as follows. 

Let c(t) and u(t) being two continuous-time signals where  

 

)t(c)t(u   6.2 

 

for a generic t0, one has the following integral: 
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 

t

t

0

0

d)(u)t(c)t(c  6.3 

 

Assuming, for simplicity, t0 = 0 and c(0) = 0, one can rewrite equation 6.3 as: 

 

)t(u)t(gd)(u)t(g)t(c
t

0

   6.4 

 

where g(t) is the step function, i.e. g(t) = 0 for t < 0 and g(t) = 1 for t  0, and the 

symbol ‘*’ denotes convolution, thus equation 6.4 could be interpreted as a 

convolution integral (Figure 6. 1). 

 

)t(c)t(u 
1S

)t(c
+

)t(e

k
y

 

Figure 6. 1 – Deconvolution problem scheme 

 

The problem of recovering u(t) from the time-series {yk}, k=1, …n, of the noisy 

samples of c(t) is known as a deconvolution problem. It is well known that the 

deconvolution problem is ill-conditioned [17], [77]. However, regularization 

mwthod can be adopted to overcome this issue by taking into account the 

expectation on the smoothness of the unknown input signal. 

The model numerical identification requires the knowledge of C-peptide kinetics 

parameters, k01 (min
-1

), k21 (min
-1

), k12 (min
-1

). Estimation of kinetics parameters 

requires an additional experiment on the same subject, consisting of a bolus of C-

peptide and a concomitant infusion of somatostatin to inhibit endogenous C-

peptide secretion; however it is possible to eliminate the need for a separate 

experiment to assess kinetics parameters by adopting the method proposed by Van 

Cauter et al. in [86] to derive C-peptide kinetic parameters in an individual based 
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on anthropometric data: age, weight, height and gender. Thus kinetics parameters 

were fixed to standard population values: 
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12

11
01

1112

kkbak
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ba
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 6.5 

 

where 

 

16.29Age14.0

2ln
b

76.0FRA

14.0a

1

1








 6.6 

 

 

 

6.3 STATISTICAL ANALYSIS 

 

Data are presented as mean ± SE, if not differently indicated. Two sample 

comparisons were done by Wilcoxon Signed Rank test (significance level set to 

5%). Pearson’s correlation was used to evaluate univariate correlation. 

 

 

 

6.4 DATABASE 1: C-PEPTIDE MINIMAL MODEL 

 

The experiment design of database 1 is described in detail in Chapter 3 

paragraph 3.2. It can be divided into two parts based on the intravenous infusion 

of GLP-1. In fact from 0 to 120 min there is no GLP-1 infusion thus the protocol 
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is the same of a hyperglycemic clamp with plasma glucose clamped at 150 mg/dl; 

on the other hand from 121 to 240 min an intravenous GLP-1 infusion is started 

inducing a rise in the plasma C-peptide concentrations despite plasma glucose was 

kept steady at 150 mg/dl by varying the rate of intravenous glucose infusion: 

 

Phase I (0 – 120 min):  no GLP-1 infusion. The experiment design is 

the same of an hyperglycaemic clamp whit 

plasma glucose concentration level constant 

at value 150 mg/dl. 

 

Phase II (121 – 240 min): The intravenous infusion of GLP-1 starts at 

rate of 0.75 pmol/Kg/min from minutes 121 

to minutes 180; subsequently increasing to 

value 1.5 pmol/Kg/min from minutes 181 to 

minutes 240 min. 

 

The C-peptide model was identified, as described in paragraph 6.2, using data of 

Phase I. Then, C-peptide model parameters were fixed and used to simulate Phase 

II plasma C-peptide concentrations. As expected, the C-peptide model is able to fit 

well the data of Phase I, as shown in Figure 6. 2, and provided a good precision of 

the parameters estimates: 

 

K = 15.7 10
-9

, CV = 4% 

α = 0.039 min
-1

, CV = 18% 

β = 1.37 min
-1

, CV = 6% 

h = 92 mg/dl, CV = 5% 

 

However, the C-peptide model is not able to predict plasma C-peptide data of 

Phase II, as shown in Figure 6. 2, since from 121 to 240 min the GLP-1 

intravenous infusion induced a rise in the plasma C-peptide concentration levels 

despite plasma glucose concentration is kept at a steady concentration of 150 
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mg/dl. It would have been possible to a priori assume that the model would have 

not been able to predict Phase II data since it does not take in account the effect of 

GLP-1 on insulin secretion; Figure 6. 2 clearly points out the goodness of the C-

peptide model prediction during Phase I and its inadequacy to simulate plasma C-

peptide data of Phase II. 

To further prove the inadequacy of the C-peptide minimal model to fit Phase II, 

the model was identified on plasma C-peptide data of both Phase I and Phase II 

(from 0 to 240 min). As expected, model fit of the data were clearly not 

satisfactory. 

In conclusion it is possible to state that the C-peptide model proposed in [83] it is 

not able to adequately describe plasma C-peptide in presence of over-basal GLP-1 

concentrations, since the model lacks of a mathematical description of the ability 

of the GLP-1 to enhance the secretion of insulin. Therefore a novel model is 

required to properly describe insulin secretion in presence of incretin hormone 

such as the GLP-1, which takes into account the so called incretin effect. 

 

 

 

6.5 DATABASE 1: MODELS OF GLP-1 ACTION 

ON STATIC β-CELLS RESPONSIVITY 

 

The models were numerically identified on C-peptide data by nonlinear 

least squares as described in detail in paragraph 6.2. Model 1, 2, 3 and 4 fitted the 

data well as confirmed by inspection of visual predictive check (VPC) of models 

prediction vs plasma C-peptide data and the relative weighted residuals, which are 

shown in Figure 6. 3, Figure 6. 4, Figure 6. 5, Figure 6. 6. For all models weighted 

residuals presents zero mean and are sufficiently random. 

The tested models provided precise estimates of models parameters, which are 

reported in Table 6. 1 
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Figure 6. 2 – Average plasma C-peptide concentration data (black dots) vs average C-peptide 

model prediction (black line) of the average subject: model was identified on data of Phase I 

and then used to simulate data of Phase II 
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Model 1 Model 2 Model 3 Model 4 

α [min-1] 
0.035 ± 0.002 0.046 ± 0.001 0.039 ± 0.002 0.046 ± 0.001 

(10) (11) (10) (10) 

h [mg/dl] 
89.46 ± 1.20 90.69 ± 1.14 92.45 ± 1.19 92.96 ± 1.24 

(4) (4) (4) (4) 

K=Φd [10-9] 
260.347 ± 16.2393 259.8 ± 16.0 261.21 ± 17.15 247.63 ± 16.25 

(5) (5) (5) (5) 

β=Φs [10-9 min-1] 
29.2 ± 2.00 21.5 ± 1.0 27.8 ± 1.67 24.1 ± 1.49 

(8) (8) (8) (8) 

a [l/pmol] 
0.13 ± 0.01 0.16 ± 0.01 

- - 
(7) (7) 

b [l×min/pmol] - 
0.64 ± 0.07 

- 
0.46 ± 0.06 

(30) (31) 

c [dimensionless] - - 
7.21 ± 0.87 5.24 ± 0.97 

(17) (13) 

d [pmol/l] - - 
57.96 ± 10.19 60.94 ± 10.93 

(37) (39) 

Table 6. 1 - Estimates of model parameters (mean±SE). Numbers between parenthesis 

represent CV% 
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Figure 6. 3 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 1. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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Figure 6. 4 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 2. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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Figure 6. 5 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 3. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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Figure 6. 6 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 4. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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6.6 DATABASE 1: MODELS OF GLP-1 ACTION 

ON STATIC AND DYNAMIC β-CELLS 

RESPONSIVITY 

 

The models were numerically identified on C-peptide data by nonlinear 

least squares as described in detail in paragraph 6.2. Models 5, 6, 7, and 8 fitted 

the data well; model predictions of plasma C-peptide vs data and time courses of 

weighted residuals obtained with the four models are shown in Figure 6. 7, Figure 

6. 8, Figure 6. 9 and Figure 6. 10. Model 8 provided on average the best fit. Model 

parameters are reported in Table 6. 2 together with their precision. 

 

 

    Model 5 Model 6 Model 7 Model 8 

α [min
-1

] 
0.036 ± 0.002 0.042 ± 0.002 0.038 ± 0.002 0.043 ± 0.002 

(10) (10) (10) (10) 

h [mg/dl] 
90.15 ± 1.20 90.25 ± 1.11 93.25 ± 1.17 91.84 ± 1.07 

(4) (4) (4) (4) 

K=Φd [10
-9

] 
249.51 ± 16.18 245.7 ± 15.6 253.35 ± 16.28 246.72 ± 15.60 

(5) (5) (5) (5) 

β=Φs [10
-9

 min
-1

] 
29.9 ± 2.00 25.25 ± 1.4 29.75 ± 1.87 25.77 ± 1.50 

(8) (8) (8) (8) 

a [l/pmol] 
0.11 ± 0.01 0.12 ± 0.01 

- - (7) (6) 

b [l×min/pmol] 
- 

0.62 ± 0.06 

- 

0.56 ± 0.06 

(21) (25) 

c [dimensionless] 
- - 

6.4 ± 0.93 4.09 ± 0.86 

(16) (11) 

d [pmol/l] 
- - 

60.73 ± 9.89 54.75 ± 10.76 

(36) (33) 

Table 6. 2 – Estimates of model parameters (mean±SE). Numbers between parenthesis 

represent CV% 
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Figure 6. 7 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 5. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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Figure 6. 8 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 6. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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Figure 6. 9 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 7. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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Figure 6. 10 – Average (N = 88) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) of Model 8. Vertical bars represent SE for model 

prediction data and SD for weighted residuals 
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6.7 MODEL SELECTION 

 

Models were compared on the basis of standard criteria criteria [12]: 

 

- ability to describe the data (Weighted Residual Square Sum, WRSS), 

- precision of parameter estimates (expressed as CV), 

- model parsimony (Akaike Information Criterion, AIC) 

- residual independence (Anderson Run Test) 

 

Table 6. 3 shows the quantitative criteria used for model selection. All the tested 

models fit the data sufficiently well as confirmed by the Run Test, which 

supported randomness of residuals in 65% of the subjects for the first set of 

models (Model 1, 2, 3 and 4) and 70% for the second set of models(Model 5, 6, 7 

and 8). As expected, increasing the complexity of the model (and the number of 

parameters), worsens the precision of parameter estimates (increased CV). Among 

the models of GLP-1 action on static insulin secretionModel 3 provided in average 

the best fit (lower Weighted Residual Sum of Squares, WRSS), with lower 

parsimonious index. Moreover it is of interest to note that Model 4 reduces to 

simpler models in some cases: it collapsed to Model 3 in 11% of the subjects, 

since parameter b tends to zero, to Model 2 in 45% of the subject, since parameter 

d was very high, and even to Model 1 in 22% of the subjects, since both changes 

in parameters b and d occurred. Similarly Model 3 reduces to Model 2 in 39% of 

the subjects since parameter d was very high, and Model 2 reduces in Model 1 in 

10% of the subjects since parameter b goes to zero. From the analysis of the four 

models of GLP-1 action models on static β-cell insulin secretion, Model 3 results 

the best able to reliably predict the C-peptide pattern during hyperglycemic clamp 

with exogenous GLP-1 infusion. 

In overall the parsimony criterion indicates Model 8 as the most parsimonious 

(lowest AIC). However, for Model 4, Model 8 collapsed into simpler models in 

most cases: e.g. to Model 7 in 11 subjects, since parameter b was zero, to Model 6 
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in 43 subjects, since parameter d was very high, and even to Model 5 in 17 

subjects, since both changes in parameters b and d occurred. Even if in the 

remaining 21 subjects Model 8 was superior to the other models, it seems to be a 

better choice to select Model 6 as the best model since it is the most parsimonious 

to adequately fit the data in most cases. Before GLP-1 infusion, beta-cell 

responsivity indexes in Model 6, were: Φs=25.2±1.4 10
-9

 min
-1

 and 

Φd=245.7±15.6 10
-9

. Under GLP-1 stimulus, the potentiation index estimated with 

Model 6 was Π=12.6±0.7 % per pmol/l. In addition, it provides estimates of the 

potentiation index only modestly different from that of Model 8, which is the most 

complex among the proposed models. In fact, if potentiation index was estimated 

with more complex models, similar results would have been obtained, e.g. with 

Model 8 Π=15.5±1.1 % per pmol/l (correlation with Model 6 index: R=0.95 

p<0.001). This confirms that Model 6, despite being less accurate than Model 8 in 

some cases, it still provides good estimates of the efficiency of the GLP-1 control 

on over-basal insulin secretion. 

 

 

              

 

Residual 

Independence 
Data Fit Precision 

Parsimony 

Criterion 

N° 

Parameters 

nonzero 

parameters 

  (Run Test) (WRSS) (CV) (AIC)   % 

Model 1 60% 284 7% 286 1 100% 

Model 2 68% 250 30% 254 2 90% 

Model 3 64% 243 37% 247 2 61% 

Model 4 59% 246 39% 252 3 22% 

Model 5 68% 192 7% 194 1 100% 

Model 6 75% 145 13% 149 2 77% 

Model 7 70% 163 28% 167 2 44% 

Model 8 71% 109 28% 115 3 19% 

Table 6. 3 – Models of GLP-1 action on insulin secretion comparison 
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In conclusion Model 6 provides the better fit of C-peptide data and precise 

parameter estimates in the largest number of subjects. Moreover, it provides a 

precise estimate of the potentiation index measuring the ability of GLP-1 to 

promote the above-basal insulin secretion. To appreciate the meaning of this index 

consider that during hyperglycemic conditions (~150mg/dl): an increase of 5 

pmol/l in peripheral GLP-1 concentrations, similar to that occurring after a meal, 

is predicted to induce a 63% increase in glucose-stimulated insulin secretion. This 

finding is comparable with the results reported in [11] for an OGTT, although the 

levels of GLP-1 were not reported. 

Models 4-8 and their results have been published in [16]. 

 

 

 

6.8 DATABASE 2: ORAL GLP-1 MODEL 

 

The ability to quantify the incretin effect could provide an important tool 

to better understand the pathophysiology of type 2 diabetes and measure response 

to specific therapy [8], [15], [62]. Model 6 was proved useful to assess GLP-1 

potentiation in very challenging conditions, using data of hyperglycemic clamp 

with a concomitant exogenous GLP-1 intravenous infusion of database 1. 

However, such experimental design is not physiological and  widely applicable. 

For this reason, it was investigated whether it were possible to identify Model 6 

on C-peptide data measured during an oral test, such as a meal, in order to 

quantify GLP-1 action in a more physiological experimental condition. 

To this purpose, we used database 2 glucose, C-peptide and GLP-1 concentrations 

measured in 22 subjects who underwent a mixed meal study [8], which is 

described in detail in Chapter 3, paragraph 3.3. 

The model was numerically identified on C-peptide data by nonlinear least 

squares as described in detail in paragraph 6.2. However it was not possible to 

estimate with good precision all the parameters of Model 6, since parameter b 
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tends to zero, thus model derivative control of GLP-1 on insulin secretion was 

neglected, with the result that Model 6 collapsed into Model 5 in all the subjects. 

In fact, during the more physiological condition of a mixed meal C-peptide 

dynamics can be properly described with a simpler model, since signals dynamics 

of an oral glucose challenge result slower if compared to intravenous ones [9]. 

Model 5 was identified on data of baseline and treatment meal study in the 22 IFG 

subjects. Thus results are shown for each group of study subjects: placebo 

baseline (N = 11), sitagliptin baseline (N = 11), placebo treatment (N = 11) and 

sitagliptin treatment (N = 11). 

Figure 6. 11, Figure 6. 12, Figure 6. 13 and Figure 6. 14 show the average model 

prediction against average C-peptide concentration for placebo baseline, 

sitagliptin baseline, placebo treatment and sitagliptin treatment. Model 5 well 

described C-peptide data in all subjects. Indexes of β-cells responsivity and 

potentiation index П were estimated with good precision for all subjects together 

with α and h. Average values are reported in Table 6. 4 and Table 6. 5. 

The model allows to assess the profiles of the insulin secretion rate (SR) at basal 

GLP-1 concentration and the potentiated insulin secretion rate due to GLP-1 

(SR
GLP-1

), moreover it is possible to reconstruct the time course of incretin effect, 

Π(t). Profiles are shown in Figure 6. 15 and Figure 6. 16 only for placebo and 

sitagliptin baseline group, since as reported in detail in Chapter 8, there are no 

significant difference between baseline and treatment study. Maximum of 

potentiation is reached at 30 min with an increase of 74% and 49% of insulin 

secretion rate for placebo and sitagliptin subjects group respectively. 
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Placebo 

  
Baseline Treatment 

α [min-1] 
0.047 ± 0.005 0.061 ± 0.014 

(10) (11) 

h [mg/dl] 
94 ± 2 95 ± 2 

(2) (2) 

K=Φd [10-9] 
501 ± 72 637 ± 163 

(13) (14) 

β=Φs [10-9 min-1] 
32.8 ± 3.44 35.6 ± 3.08 

(6) (6) 

Π [%] 

8.22 ± 3.49 7.09 ± 2.40 

(35) (33) 

Table 6. 4 – Average values of estimated parameters for placebo subjects. CVs are reported 

between brackets. 

 

 

        
Sitagliptin 

  
Baseline Treatment 

α [min-1] 
0.055 ± 0.009 0.11 ± 0.026 

(11) (13) 

h [mg/dl] 
97 ± 3 95 ± 2 

(3) (2) 

K=Φd [10-9] 
532 ± 136 376 ± 87 

(16) (30) 

β=Φs [10-9 min-1] 
33.76 ± 5.88 36.5 ± 4.05 

(6) (5) 

Π [%] 
7.16 ± 1.92 7.98 ± 0.20 

(23) (25) 

Table 6. 5 – Average values of estimated parameters for sitagliptin subjects. CVs are 

reported between brackets. 
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Figure 6. 11 – Average (N = 11) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) for placebo baseline group. Vertical bars 

represent SE for model prediction data and SD for weighted residuals 
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Figure 6. 12 – Average (N = 11) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) for sitagliptin baseline group. Vertical bars 

represent SE for model prediction data and SD for weighted residuals 
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Figure 6. 13 – Average (N = 11) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) for placebo treatment group. Vertical bars 

represent SE for model prediction data and SD for weighted residuals 
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Figure 6. 14 – Average (N = 11) model prediction vs C-peptide concentration data (upper 

panel) and weighted residuals (lower panel) for sitagliptin treatment group. Vertical bars 

represent SE for model prediction data and SD for weighted residuals 
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Figure 6. 15 – Average (N = 11) Insulin secretion (SR) vs potentiated insulin secretion due to 

GLP-1 (SR GLP-1) (upper panel) and incretin potentiation profile estimated in the placebo 

baseline group (lower panel) 
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Figure 6. 16 – Average (N = 11) Insulin secretion (SR) vs potentiated insulin secretion due to 

GLP-1 (SR GLP-1) (upper panel) and incretin potentiation profile estimated in the 

sitagliptin baseline group (lower panel) 
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6.9 DATABASE 3: C-PEPTIDE MODEL 

 

C-peptide model was identified on OGTT and I-IVG data of database 3 as 

described in paragraph 6.2. The model of C-peptide well describes both OGTT 

and I-IVG data, as shown by average model predictions vs average C-peptide in 

Figure 6. 17 and Figure 6. 18. Model parameters were estimated with good 

precision for all subjects and are reported in Table 6. 6. Results showed an 

increase of both static and dynamic β-cell responsivity indexes during the OGTT 

with respect to I-IVG; the mean increase was 68% for the static, Φs, (P=0.001) 

and 146% for the dynamic, Φd, (P=0.001) responsivity indexes, (Figure 6. 19). 

Time course of incretin effect P(t) was calculated as described in detail in 

paragraph 4.3, and shown in Figure 6. 20. Using equation 4.12 it was possible to 

assess potentiation index PI. 

 

 

 

    
OGTT I-IVG 

    

α [min-1] 
0.15 ± 0.01 0.13 ± 0.03 

(22) (19) 

h [mg/dl] 
92 ± 2 93 ± 3 

(2) (2) 

K=Φd [10-9] 
915 ± 166 372 ± 61 

(10) (12) 

β=Φs [10-9 min-1] 
40.7 ± 4.78 24.2 ± 2.91 

(5) (5) 

PI [% ∙ pmol/l] 
 

1.93 ± 0.53 
  

    

Table 6. 6 – C-peptide model parameters estimates 
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Figure 6. 17 – Average (N=10) C-peptide model prediction vs data (top panel) and weighted 

residuals (bottom panel) in OGTT study. Vertical bars represents SE for model prediction 

data and SD for weighted residuals 
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Figure 6. 18-– Average (N=10) C-peptide model prediction vs data (top panel) and weighted 

residuals (bottom panel) in I-IVG study. Vertical bars represents SE for model prediction 

data and SD for weighted residuals 
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Figure 6. 19 – Average (N=10) Φd (top panel) and Φs (bottom panel) estimated from OGTT 

and I-IVG study. Vertical bars represent SE 
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Figure 6. 20 – Average (N=10) time course of incretin potentiation. Vertical bars represent 

SE 
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6.10 DATABASE 3: ORAL GLP-1 MODEL 

 

Oral GLP-1 model was identified on OGTT data as described in paragraph 

6.2. The model well describes plasma C-peptide concentrations during OGTT, as 

shown by average model prediction vs average C-peptide in Figure 6. 21. Model 

parameters were estimated with good precision for all subjects and are reported in 

Table 6. 7. It is possible to compare β-cells responsivity indexes, Φs and Φd, 

assessed with the C-peptide model during I-IVG study vs those calculated with the 

oral GLP-1 model in the OGTT study; Φs and Φd calculated with oral GLP-1 

model are on average 31% and 45% higher than their i.v. counterparts. However 

only the difference in the the dynamic is statistically significant (P = 0.015, Figure 

6. 22). The model allows to assess the profiles of the insulin secretion rate (SR) at 

basal GLP-1 concentration and the potentiated insulin secretion rate due to GLP-1 

(SR
GLP-1

). It is also possible to reconstruct the time course of incretin effect, Π(t), 

(Figure 6. 23, upper panel), using equation 4.1 and substituting insulin secretion 

profiles SR
OGTT

 and SR
I-IVG

 with SR
GLP-1

 and SR respectively (Figure 6. 23, lower 

panel). 

 

 

    

OGTT 
    

α [min-1] 
0.14 ± 0.01 

(22) 

h [mg/dl] 
97 ± 2 

(4) 

K=Φd [10-9] 
539 ± 98 

(35) 

β=Φs [10-9 min-1] 
31.6 ± 4.40 

(17) 

Π [% ∙ pmol/l] 
1.70 ± 0.39 

(67) 

Table 6. 7 – Estimates of the oral GLP-1 model parameters 
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Figure 6. 21 – Average (N=10) oral GLP-1 model prediction vs data (top panel) and weighted 

residuals (bottom panel) in OGTT study. Vertical bars represents SE for model prediction 

data and SD for weighted residuals 
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Figure 6. 22 – Average (N=10) Φs (bottom panel) and Φd (top panel) responsivity indexes in 

the OGTT assessed with oral GLP-1 model  vs those assessed with C-peptide model in the I-

IVG study. Vertical bars represent SE 
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Figure 6. 23 – Average (N=10) time course of incretin potentiation calculated with oral GLP-

1 model from OGTT data. Vertical bars represent SE 

 

 

 



 

 

 

 

CHAPTER 7 

 

GLP-1 MODEL VALIDATION 

 

 

 

7.1 INTRODUCTION 

 

In the previous chapters, a model of GLP-1 action on insulin secretion was 

developed by adopting standard modeling methodology. A number of models 

were tested against data, beginning with the simplest one and systematically 

increasing the complexity. Each of the model was then numerically identified 

from experimental data, both in a very challenging experimental condition, such 

as a hyperglycemic clamp with concomitant GLP-1 intravenous infusion, and in a 

more physiological condition such as a meal. Quantitative criteria were used to 

select the most parsimonious model, including randomness of the residuals, 

parameter precision, parsimony criteria, and parameter plausibility. However, no 

model can have an absolute validity, since it is by definition an approximation of 

reality. 

In this chapter model validation is tackled by comparing oral GLP-1 model ability 

to simultaneously quantify insulin secretion enhancement due to GLP-1, i.e. 

potentiation index Π, and β-cells responsivity indexes, i.e. Φs and Φd, from data of 
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an oral glucose test (OGTT) against those provided by the gold standard technique 

proposed by Campioni et al. in [11]. 

Data and protocol used in this chapter for validation purpose is described in detail 

in Chapter 3, paragraph 3.4. 

 

 

 

7.2 POTENTIATION INDEXES COMPARISON 

 

Model validation is tackled by comparing potentiation index Π calculated 

with the oral GLP-1 model from OGTT data with the incretin potentiation index 

PI calculated with gold standard method, using the C-peptide model on OGTT and 

I-IVG data. 

A Naïve average data approach [25] has been adopted first. Average data are 

shown in Figure 7. 2. Then average subject was identified using both oral GLP-1 

model on OGTT data to assess potentiation index Π, and with C-peptide model on 

OGTT and I-IVG data to assess incretin potentiation index PI. Both models well 

predicts average plasma C-peptide of the average subjects and provides precise 

estimates of the models parameters. Of interest, in the ideal case of a well matched 

plasma glucose, potentiation index Π and incretin potentiation index PI are virtual 

the same (П = 6.55, CV = 65%; PI = 6.15 % · pmol/l, Figure 7. 1) Unfortunately, 

this is not always the case at single individual level in the 10 subjects of the study. 

Figure 7. 3 and Figure 7. 4 show a comparison between PI and Π. Potentiation 

indexes are similar in subjects where I-IVG plasma glucose is well matched with 

OGTT plasma glucose (subject #1, #3, #6, and #8). For instance Figure 7. 5 shows 

glucose, C-peptide and GLP-1 concentration of subject #6, where plasma glucose 

of the OGTT is virtually the superimposable with the i.v. one. In this case П and 

PI were similar (П = 1.47 vs PI = 1.57 % · pmol/l). Conversely in Figure 7. 6 

plasma glucose, C-peptide and GLP-1 of subject #4, is shown. I-IVG does not 

match OGTT glucose concentration, thus affecting the assessment of the 
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potentiation indexes Π and PI (П = 4.07 vs PI = 1.49 % · pmol/l). Likewise 

subject #4, also subject #2, #5, #7, #9 are characterized by unmatched plasma 

glucose, resulting in different estimates of the potentiation indexes Π and PI. In 

any case, the presence of glucose mismatch is not the only confounder. In fact, it 

is important to consider that other gut hormones contribute to the incretin effect, 

in particular GIP, which is released simultaneously with GLP-1 and has shown to 

have additive effect on insulin secretion [11]; thus incretin potentiation PI reflects 

the action of all incretin hormones on insulin secretion, whilst Π only accounts for 

GLP-1 action.  

However, the fact that good match in plasma glucose profile was not obtained in 

all the subjects, precludes to assess model ability to segregate glucose vs GLP-1 

stimulus with a single experiment. 

To overcome this limitation we resorted to in silico simulation. 
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Figure 7. 1 – Comparison between П estimated with the oral GLP-1 model (black) vs PI 

estimated with the standard method (light grey) in subject in the average subject 
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Figure 7. 2 – Average (N = 10) plasma glucose (top), C-peptide (middle) and GLP-1 (bottom) 

in OGTT and I-IVG study of the average subject. 
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Figure 7. 3 – Comparison between П estimated with the oral GLP-1 model (black) vs PI 

estimated with the standard method (light grey) in subject #1, #2, #3, #4, #5, #6 
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Figure 7. 4 – Comparison between П estimated with the oral GLP-1 model (black) vs PI 

estimated with the standard method (light grey) in subject #7, #8, #9, #10 
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Figure 7. 5 – Plasma glucose (top), C-peptide (middle) and GLP-1 (bottom) in OGTT and I-

IVG study measured in subject #6 
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Figure 7. 6 – Plasma glucose (top), C-peptide (middle) and GLP-1 (bottom) in OGTT and I-

IVG study measured in subject #4 
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7.3 IN SILICO VALIDATION OF ORAL GLP-1 

MODEL 

 

 

7.3.1 Generating in silico data for model validation 

The use of in silico simulation for validation purpose eliminates the need 

of expensive experiments and allows to test the model in a controlled scenario 

[87]. 

Thus using methodology which is typical of the engineering field, the oral GLP-1 

model has been further and intensively tested trough in silico simulations and 

validated by comparing results with those obtained with Campioni method. 

Validation dataset, described in detail in Chapter 3, paragraph 3.4, is affected by 

unmatched plasma glucose in the OGTT and I-IVG study in subject #2, #4, #5, #7, 

#9, which leads to different estimates of the potentiation indexes Π and PI. 

Moreover in this particular study design, other gut hormones contribute to the 

incretin effect, thus incretin potentiation PI calculated with Campioni method may 

reflects the action of all incretin hormones on insulin secretion, whilst potentiation 

index Π, estimated with the oral GLP-1 model, quantifies the effect of GLP-1 on 

insulin secretion. 

Thus in order to test the performance of the model on an ideal dataset which is not 

affected by plasma glucose mismatch and for which GLP-1 is the only incretin 

hormone, in silico data were generated as described below. For each real subject, 

100 profile C-peptide concentrations of the OGTT are simulated by as follow 

(Figure 7. 7): 

 

 model parameters α, Φs, Φd, and h were fixed to those estimated with the 

C-peptide model from the I-IVG data; 

 100 different values of potentiation index П were generated for each 

subject in the range [0.01 0.45] with a constant step of 0.0044 % · pmol/l. 
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This range was chosen in order to span from the minimum to the 

maximum value of potentiation observed in real subjects; 

 GLP-1 model was solved, using I-IVG glucose and OGTT GLP-1 

concentrations as the model-forcing functions, with fixed α, Φs, Φd, h and 

varying П, thus generating for each subject 100 plasma C-peptide profiles. 

In this way, we could assess the model at the limits of its domain validity, 

since plasma C-peptide concentrations reached in some case 

supraphysiological levels; 

 Measurement error (assumed to be independent, Gaussian, with 

zero mean and known variance, equal to: 22 )t(Cp001.02000)Cp(   as 

proposed by Toffolo et al. in [84]) was then superimposed to the simulated 

C-peptide profiles.  
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Figure 7. 7 – Generation of simulated OGTT plasma C-peptide concentration 
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7.3.2 Identification results 

Oral GLP-1 model was identified on simulated OGTT data as described in 

Chapter 4, paragraph 4.4 and 4.5.2. The model well describes simulated plasma C-

peptide concentrations, as shown in Figure 7. 8 and Figure 7. 9. Weighted 

residuals are random pattern and lie in the range [-1 +1]. Model parameters are 

estimated with good precision for all simulated profiles. 
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Figure 7. 8 – Weighted residuals in subject #1, #2, #3 and #4 

 



Chapter 7 

120 

 

0 60 120 180 240
-1.5

-1

-0.5

0

0.5

1

1.5

Weighted residuals subj #5

min

d
im

e
n

s
io

n
le

s
s

0 60 120 180 240
-1.5

-1

-0.5

0

0.5

1

1.5

Weighted residuals subj #6

min
d

im
e

n
s
io

n
le

s
s

0 60 120 180 240
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Weighted residuals subj #7

min

d
im

e
n

s
io

n
le

s
s

0 60 120 180 240
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Weighted residuals subj #8

min

d
im

e
n

s
io

n
le

s
s

0 60 120 180 240
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Weighted residuals subj #9

min

d
im

e
n

s
io

n
le

s
s

0 60 120 180 240
-1.5

-1

-0.5

0

0.5

1

1.5

Weighted residuals subj #10

min

d
im

e
n

s
io

n
le

s
s

 

Figure 7. 9 – Weighted residuals of subject #5, #6, #7, #8, #9 and #10 
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One of the great advantages of in silico validation is that one works with 

controlled conditions and knows the true value of П. Thus it is possible to 

compare the estimated Π (Π*) value from simulated data with the true value of Π 

used to generate them. Since parameter estimation provides, together with the 

value of the parameter, also its coefficient of variation (CV), this information can 

also be used to assess model ability to estimate the true value of the potentiation 

index Π. In particular, if the true Π falls in the 66% confidence interval of 

estimated Π*, we can consider the estimate accurate. Accuracy is then defined as 

the percentage of accurate estimates. 

Results are reported in Table 7. 1. On average oral GLP-1 model has an accuracy 

of 93 ± 1 % in estimating the true potentiation due to GLP-1. No statistical 

difference in any subject is reported between true Π and Π*. Correlation of true Π 

vs Π* are shown in Figure 7. 10 and Figure 7. 11. On average estimated Π are 

well correlated with true Π (r = 0.96 ± 0.01). Slope of linear regression results on 

average 1.06 ± 0.03, thus estimated potentiation index Π is almost equivalent to 

true Π. 

To note that at higher values of potentiation index, distance between true Π and 

Π* increases. One of the possible explanation is that the higher the potentiation 

index is the higher plasma C-peptide concentration. This make the model working 

near to the limits of its domain of validity, consequently affecting estimation of 

Π*. However in real subjects it is uncommon that Π is greater than 20 % ∙ pmol/l. 
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  Accuracy (%) Correlation Slope 

subj1 96 0.96 0.99 

subj2 97 0.89 1.20 

subj3 93 1.00 0.99 

subj4 95 0.98 1.00 

subj5 98 0.98 1.00 

subj6 95 0.99 0.99 

subj7 89 0.97 1.10 

subj8 94 0.99 1.00 

subj9 90 0.93 1.10 

subj10 87 0.88 1.20 

mean 93 0.96 1.06 

SD 4 0.04 0.09 

SE 1 0.01 0.03 

Table 7. 1 – Accuracy, correlation and slope of the regression between true and estimated Π 
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Figure 7. 10 – Correlation between true vs estimated Π in subject #1, #2, #3, #4, #5, #6 
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Figure 7. 11 – Correlation between true vs estimated Π in subject #7, #8, #9, #10 
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7.3.3 Comparison of oral GLP-1 potentiation index Π vs 

standard method 

C-peptide model was identified on real I-IVG and simulated OGTT data as 

described in detail in Chapter 6, paragraph 6.9, and PI of the standard method was 

calculated using equation 4.12. Correlation between the two indexes is shown for 

each subject in Figure 7. 12 and Figure 7. 13. Potentiation index Π is well 

correlated with PI, on average r = 0.96 ± 0.01 as reported in Table 7. 2. On 

average, slope of the linear regression results 1.16 ± 0.05, pointing out that 

Campioni index PI tends to slightly underestimate true potentiation. 

Thus in silico validation leads to conclude that under the hypothesis of exact 

model and perfectly matched glucose data in OGTT and I-IVG, oral GLP-1 model 

allows to correctly estimate the action of GLP-1 on insulin secretion using data of 

a single oral glucose test. 

 

 

 

      

  Correlation Slope 

subj1 0.98 1.30 

subj2 0.89 1.10 

subj3 0.99 1.20 

subj4 0.98 1.20 

subj5 0.98 1.10 

subj6 0.99 1.10 

subj7 0.97 1.40 

subj8 0.99 1.30 

subj9 0.93 1.10 

subj10 0.88 0.83 

mean 0.96 1.16 

SD 0.04 0.16 

SE 0.01 0.05 

Table 7. 2 – Accuracy, correlation and slope of the regression between true and estimated Π 
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Figure 7. 12 – Correlation between PI vs Π in subject #1, #2, #3, #4, #5, #6 
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Figure 7. 13 – Correlation between PI vs Π in subject #7, #8, #9, #10 

 

 

 





 

 

 

 

CHAPTER 8 

 

USE OF GLP-1 MODELS 

 

 

 

8.1 ASSESSMENT OF THE EFFECT OF DPP-4 

INHIBITION WITH SITAGLIPTIN ON INCRETIN 

SECRETION USING ORAL GLP-1 MODEL 

 

 

8.1.1 Background 

Low GLP-1 concentrations have been observed in IFG. It is uncertain 

whether these abnormalities contribute directly to the pathogenesis of IFG and 

impaired glucose tolerance. DPP-4 inhibitors, such as sitagliptin, raise GLP-1 

concentration possibly improving secretion and lowering postprandial glucose 

excursion. 

The current experiments tested this hypothesis by measuring insulin secretion and 

action and fasting and postprandial glucose turnover before and after 8 weeks of 

therapy with a DPP-4 inhibitor. Data and protocol are described in detail in 

Chapter 3 paragraph 3.3 and are shown, for reader convenience, in Figure 8. 1. 
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8.1.2 Results 

After 8 weeks of sitagliptin treatment, sitagliptin decreased postprandial 

total GLP-1 concentrations (5652 ± 357 vs 5034 ± 257 pmol/l per 6 h, P = 0.02). 

Intriguingly, total GLP-1 concentrations were almost unchanged (5008 ± 428 vs 

5560 ± 446 pmol/l per 6 h, P = 0.11) by placebo as shown in Figure 8. 1 panel D 

and Figure 8. 2 panel C. 

After 8 weeks of sitagliptin treatment, total GLP-1 concentrations were also 

almost unchanged (5008 ± 428 vs 5560 ± 446 pmol/l per 6 h, P = 0.11) as shown 

in Figure 8. 1 panel D and Figure 8. 1 panel C. Administration of sitagliptin or 

placebo did not alter fasting glucose prior to meal ingestion (102.78 ± 2.52 vs 

104.04 ± 2.16 mg/dl, P = 0.60 and 105.66 ± 1.80 vs 104.94 ± 2.16 mg/dl, P = 

0.68, Figure 8. 1 panel A). Glucose area under curve was unchanged by sitagliptin 

and placebo (47393.39 ± 2443.70 vs 45254.90 ± 1538.16 mg/dl per 6 h, P = 0.09; 

and 46328.93 ± 1361.29 vs 45578.36 ± 1765.55 mg/dl per 6 h, P = 0.28, Figure 8. 

2 panel A). Baseline, peak or overall postprandial C-peptide concentrations did 

not differ after administration of sitagliptin or placebo (Figure 8. 1 panel C and 

Figure 8. 2 panel B). 

Indexes of β-cells responsivity and potentiation index П were estimated with oral 

GLP-1 model with good precision for all subjects both at baseline and treatment 

meal study. Table 8. 1 reports parameters estimates. Sitagliptin did not alter 

insulin secretion, indeed there are no significant changes in Φs or Φd. Π showed a 

slight increase after 8-week treatment with sitagliptin, but still there is no 

significant difference. 

 

 

8.1.3 Conclusion 

The present study indicates that use of DPP-4 inhibition to raise circulating 

concentrations of intact GLP-1 did not lower fasting or postprandial glucose 

concentrations in IFG. This would imply that circulating incretin concentrations 

play no role in the pathogenesis of IFG. Of note, the postprandial pattern of 
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change in insulin and C-peptide concentrations were virtually identical before and 

after treatment, indicating that increased circulating incretin concentrations had no 

effect on hepatic insulin clearance. Moreover the estimated effect of GLP-1 on 

insulin secretion, i.e. the incretin potentiation index П, is mild (8 % per pmol/l on 

average). Thus one can speculate that the particular study cohort is composed by 

individuals that are not very responsive to a therapy which involves DPP-4 

inhibitors. More encouraging results may be found with individuals who have an 

higher response of β-cells to GLP-1. 

In summary, this study demonstrates that short-term DPP-4 inhibition in IFG does 

not alter glucose concentrations and glucose metabolism. This would suggest that 

incretin hormones play little role in the pathogenesis of IFG. In addition to raising 

concentrations of GLP-1 and GIP by inhibiting DPP-4 mediated degradation, 

sitagliptin lowered total GLP-1 and GIP, suggesting negative feedback inhibition 

of enteroendocrine secretion [8]. 
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Figure 8. 1 – Average (N=22) measured concentrations of plasma glucose (A), C-peptide (B) 

and total GLP-1 (C) for baseline (white dots) and sitagliptin (black dots) mixed meal study. 

Vertical bars represents SE. 
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Placebo 

 

  
Baseline Treatment P 

α [min-1] 
0.047 ± 0.005 0.061 ± 0.014 0.31 

(10) (11) 
 

h [mg/dl] 
94 ± 2 95 ± 2 0.87 

(2) (2) 
 

K=Φd [10-9] 
501 ± 72 637 ± 163 0.45 

(13) (14) 
 

β=Φs [10-9 min-1] 
32.8 ± 3.44 35.6 ± 3.08 0.42 

(6) (6) 
 

Π [%] 

8.22 ± 3.49 7.09 ± 2.40 0.83 

(35) (33) 
 

         

         

         
Sitagliptin 

 

  
Baseline Treatment P 

α [min-1] 
0.055 ± 0.009 0.11 ± 0.026 0.19 

(11) (13) 
 

h [mg/dl] 
97 ± 3 95 ± 2 0.58 

(3) (2) 
 

K=Φd [10-9] 
532 ± 136 376 ± 87 0.20 

(16) (30) 
 

β=Φs [10-9 min-1] 
33.76 ± 5.88 36.5 ± 4.05 0.56 

(6) (5) 
 

Π [%] 

7.16 ± 1.92 7.98 ± 0.20 
 

(23) (25) 0.20 

         
Table 8. 1 – Oral GLP-1 model parameter estimates 
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Figure 8. 2 – AUC of glucose, C-peptide and total GLP-1 concentrations in the presence (dull 

grey) and absence (light gray) of sitagliptin (left panels) and placebo (right panels). 



 

 

 

 

CHAPTER 9 

 

DISCUSSION 

 

The prevalence of diabetes is increasing dramatically in populations of the 

world, due to a more sedentary lifestyle, an increased occurrence of obesity, 

population aging and genetic factor. Traditional medications for type 2 diabetes 

lower blood glucose through diverse mechanisms of action, however many of the 

oral hypoglycemic agents lose their efficacy over time, resulting in progressive 

deterioration in β-cells function and loss of glycemic control, since they cannot 

prevent β-cell death or re-establish β-cell mass. Consequently, there is an 

increasing interest in developing therapeutic agents that preserve or restore 

functional β-cells mass such as the incretin hormone GLP-1, which not only 

acutely lowers blood glucose but also engages signaling pathways in the islet β-

cells that leads to stimulation of β-cell proliferation and neo-genesis and inhibition 

of β-cell apoptosis [2], [19], [21], [24], [40]. 

GLP-1 is a potent insulin secretagogue hormone, secreted by L-cells of ileum and 

colon in a glucose dependent manner, which stimulates insulin secretion and 

inhibits glucagon release. When administered in pharmacological doses it also 

delays gastric emptying and promotes satiety leading to weight loss [2], [19], [21], 

[24], [40]. The actions of GLP-1 have thus generated a great deal of interest in 

using this peptide for the treatment of type 2 diabetes. However the active form of 

GLP-1 is rapidly degraded by the enzyme DPP-4 to its metabolite which does not 
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interact with the known GLP-1 receptor (GLP1R) [2], [21], [24]. Consequently 

GLP-1 based therapy for type 2 diabetes has required the development of GLP1R 

agonists that resist the action of DPP-4 [62] or compounds that inhibit DPP-4 

which raise endogenous concentrations of GLP-1 [19]. However the gene coding 

for GLP1R is highly polymorphic and contains numerous non-synonymous SNPs 

which could potentially alter response to endogenous GLP-1 and GLP1R agonists. 

Thus the possibility to quantify the action of GLP-1 on insulin secretion due to 

inter-individual heterogeneity in response to GLP-1, is crucial to determine those 

individuals who may benefit more from such therapy than others earlier in the 

disease [74], [88]. Moreover impairment of insulin secretion and glucagon 

suppression suggests that decreased -cell responsiveness to GLP-1 is part of the 

pathogenesis of type 2 diabetes [31]. Thus the ability to quantify the effect of 

GLP-1 on insulin secretion is a valuable tool to understand the pathogenesis of 

type 2 diabetes and to assess the efficacy of GLP-1 based therapy. 

Several studies are available on GLP-1 action on insulin secretion [1], [2], [19], 

[26], [39], [56], however none of them has ever aimed to mechanistically model 

GLP-1 action on beta-cell. For instance, other investigators have previously 

utilized a hyperglycemic clamp to measure insulin secretion from deconvoluted C-

peptide data. However such methodology does not take into account potential 

changes in glucose concentration during the hyperglycemic clamp or the changing 

GLP-1 concentrations prevailing during the experiment. The only model which 

indirectly accounts for a potentiation due to incretin is the one proposed by Mari 

and colleagues [55]. It introduced a potentiating factor, which modulates the dose-

response relation between insulin secretion and plasma glucose, in order to better 

fit C-peptide data, but it did not explicitly describe incretins effect. Other studies, 

e.g. [1], also found a correlation between GLP-1 and the potentiating factor, or use 

the model to assess different hormone responses in morning vs afternoon [47]. 

However, in none of the above studies there was an attempt to mechanistically 

describe GLP-1 action on insulin secretion. At the state of the art, gold standard 

method to assess incretin effect has been proposed by Campioni et al. in [11], 

which allows to quantify the effect of incretin hormones on insulin secretion 
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together with the β-cells responsivity indexes to glucose by identifying C-peptide 

model on data of a specific protocol in which, each subject is studied twice, first 

with an OGTT, and second with an iso-glycemic intravenous infusion (I-IVG), the 

difference between oral and intravenous indexes provide an indirect measure of 

the incretin effect; in study [11] there was an approximately 60% difference 

between indexes, implying that the incretin effect is responsible for such 

potentiation. 

The aim of this contribution is to develop a mathematical model which describes 

the mechanism of action of GLP-1 on insulin secretion, thus providing a direct 

measure of the magnitude of GLP-1 mediated increase in insulin secretion, 

together with β-cells responsivity indexes to glucose. 

Different data set (database 1, database 2 and database 3) were used for model 

development and validation purpose:. Database 1 contains data of 88 subjects, 

which underwent a hyperglycemic clamp with concomitant GLP-1 intravenous 

were used to develop the model of GLP-1 action on insulin secretion. In fact, 

thanks to the fact that glucose is maintained almost constant, it was possible to 

single out the effect of GLP-1 on C-peptide secretion rate. However, the 

experimental conditions of such a protocol are very unphysiological. Thus data of 

22 subjects studied with a mixed meal (database 2) were used to test the model 

performance in a more physiological condition. Database 3 consists of data of 10 

healthy subjects studied twice with an OGTT and matched intravenous glucose 

challenge (I-IVG) and was used for model validation purpose. 

Eight different models of increasing complexity were developed. All the models 

are based on the C-peptide model which is based on the common assumption that 

insulin secretion is made up of a basal component, a dynamic component, 

proportional to glucose rate of change through the dynamic responsivity index, Φd 

(10
-9

), and a static index, proportional to glucose through the static responsivity, 

Φs (10
-9

 min
-1

) [9]. The first set of models were developed taking into account the 

experimental condition of database 1, which is characterized by a plasma glucose 

maintained almost constant around a concentration of 150 mg/dl with an 

intravenous infusion when GLP-1 is infused intravenously, thus resulting in a 
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negligible dynamic insulin secretion. Therefore four different models (Model 1, 

Model 2, Model 3 and Model 4) were developed assuming different description of 

GLP-1 action on static β-cells sensitivity index to glucose Φs. However several 

study which investigated the incretin effect on insulin secretion reported that the 

presence of GLP-1 could enhance both dynamic and static insulin secretion [1], 

[2], [11], [19], [26], [32], [37], [39], [42], [47], while it has no effect on basal 

secretion. Thus, in light of applicability of the model to different protocols 

designs, four models (Model 5, Model 6, Model 7 and Model 8) were developed 

by incorporating these assumptions, hence the models assume that GLP-1 

concentration enhances both dynamic and static β-cells responsivity indexes. In 

addition one of the advantages of Models 5-8 is that models equations can be 

reformulated so that GLP-1 acts directly on the over-basal insulin secretion; in 

fact, describing GLP-1 secretagogue action on Φd and Φs is equivalent to assume 

that GLP-1 modulates the over-basal insulin secretion rate. 

All the models provided a direct measure of the ability of GLP-1 to promote over-

basal insulin secretion, the potentiation index Π (% per pmol/l), defined as the 

ratio between the average percent increase in over-basal insulin secretion and 

average plasma GLP-1 concentration. 

All the developed models fit the data well, as confirmed by the run test, which 

supported randomness of residuals in 70% of the subjects. As expected, increasing 

the complexity of the models, worsens the precision of parameter estimates. 

Model selection was tackled by comparing the developed models on the basis of 

the following criteria: ability to describe the data (Weighted Residual Square Sum, 

WRSS), precision of parameter estimates (expressed as CV), model parsimony 

(Akaike Information Criterion, AIC) and residual independence (Anderson run 

test); moreover, since more complex models collapsed into simpler models when 

one or more parameters were estimated to be  0, an additional criteria is the 

percentage of identifications for which all parameters are nonzero. 

Model 6 results the most parsimonious, in fact, it better fit C-peptide data of 

database 1 and provided precise parameter estimates in the largest number of 

subjects. It also provides a potentiation index, Π = 12.6 ± 0.7 % per pmol/l; thus, 
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during hyperglycemic conditions (~150mg/dl), an increase of 5 pmol/l in 

peripheral GLP-1 concentrations, similar to that occurring after a meal, is 

predicted to induce a 63% increase in glucose-stimulated insulin secretion. This 

finding is comparable with the results reported in [11] for an OGTT, although the 

levels of GLP-1were not reported. 

As observed in Chapter 6, model selection criteria would have indicated Model 8 

as the most parsimonious one. However, Model 8 reduces to Model 7 in 11 

subjects, since parameter b was zero, to Model 6 in 43 subjects, since parameter d 

was very high, and to Model 5 in 17 subjects, since both changes in parameters b 

and d occurred. One can thus speculate that Model 8 is the most general model 

which is able to predict the C-peptide concentration, in very challenging 

conditions, such as during a hyperglycemic clamp with GLP-1 at physiological 

and supra-physiological concentration, while in most subjects or different 

experimental conditions, e.g. during a meal, a simpler model (but derived from 

Model 8) may be sufficient, e.g. Model 6 is a better candidate when plasma GLP-1 

excursions are smaller, and thus the use of a nonlinear model may be not 

necessary. Of note the potentiation index provided by Model 6 is virtually 

identical to that obtained with Model 8 (Π = 12.6 ± 0.7 % vs Π = 15.5 ± 1.1 % per 

pmol/l, R = 0.95, p < 0.001). This supports that, even though simpler, Model 6 is 

robust enough to adequately quantify the action of GLP-1 on glucose-dependent 

insulin secretion. 

However it would be important to estimate β-cells responsivity and potentiation 

indexes from an oral test, since it offers several advantages with respect to 

intravenous tests: it is physiological, easy to perform, and applicable to large scale 

genetic and epidemiologic study. Therefore, Model 6 was tested on database 2 in 

which of 22 subjects underwent an oral glucose load. The simpler experimental 

condition resulted in slower dynamics of plasma C-peptide and glucose 

concentrations [9], if compared with the hyperglycemic clamp ones. Thus the 

derivative control of GLP-1 on insulin secretion could be neglected and 

consequently Model 6 collapses into Model 5. 
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The model well predicts plasma C-peptide concentration and provides precise 

estimates of the parameters. It also provides the potentiation index which results 

actually lower than that calculated in database 1 using Model 6 (7.8 vs 12.6 % per 

pmol/l); such difference can be explained with the fact that the subjects who have 

taken part in the study of database 2 are IFG while those of database 1 are healthy. 

The model also allows to determine the time course of the incretin effect by 

calculating the difference between the glucose-dependent secretion rate at basal 

GLP-1 level (SR) and the enhanced insulin secretion due to the action of the over-

basal GLP-1 (SR
GLP-1

); maximum of potentiation is reached at 30 min with an 

increase of 60% of insulin secretion rate. Of interest is that the magnitude and 

time course of the incretin effect predicted by Model 5 is similar to that previously 

reported by Campioni et al. in [11]. Moreover at variance with Campioni 

methodology, which requires data from both oral and matched-intravenous 

glucose tests to measure the incretin potentiation, Model 5 provides a precise 

measure of the incretin effect using data from a single oral glucose test. 

Results obtained from database 1 and database 2 are consistent with the definition 

of models as an approximation of reality. A model in fact, can only be good 

enough in relation to its intended purpose. Indeed to describe complex systems, it 

may be appropriate to have of a set of models, where each of them would be the 

best in relation to its intended use [13]. Model 6 results the best performing model 

in hyperglycemic clamp with exogenous GLP-1 infusion data, whilst in more 

physiological experimental condition such as a meal, Model 5 is the optimal 

model. 

Finally, model validation is tackled by comparing ability of Model 5 to measure 

GLP-1 induced potentiation on insulin secretion from oral glucose test (OGTT) 

data against that measured with the gold standard technique proposed by 

Campioni et al. in [11] using OGTT and matched intravenous glucose (I-IVG) 

data. However, due to some problems occurred with the protocol procedure, I-

IVG plasma glucose in some subjects is not well  matched with the OGTT one. 

This affected the calculation of incretin potentiation with Campioni method. As a 

matter of fact, comparison performed using average data, whose OGTT and I-IVG 
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plasma glucose are well matched, provided encouraging results In this ideal 

condition model potentiation index Π and Campioni incretin potentiation index PI 

were virtually the same (П = 6.55, CV = 65%; PI = 6.15 % per pmol/l). It is worth 

noting that also in those subjects with a well matched plasma glucose 

concentration the model was in general able to assess a potentiation index Π 

similar to those calculated with Campioni technique. However glucose mismatch 

is not the only confounding effect. In fact other gut hormones, other than GLP-1, 

contribute to the incretin effect, in particular GIP, which is released 

simultaneously with GLP-1 and shown to have additive effect on insulin secretion 

[11]. PI estimated with the method proposed by Campioni reflects the action of all 

incretin hormones on insulin secretion, whilst potentiation index Π accounts only 

for GLP-1 action. 

To overcome all these limitations, we used computer simulation to validate the 

model in a controlled scenario where, results are not affected by plasma glucose 

mismatching nor by incretin hormones other than GLP-1. In addition, simulation 

allowed to test model performance also for extremely high П and consequently C-

peptide concentration. The model was able to single out the effect of GLP-1 on 

insulin secretion and thus to correctly estimate П in the 93 ± 1 % of the 

simulations. These results are encouraging but further studies, other than the in 

silico one, are needed to ultimately validate the model. 

In conclusion in this study a model describing the mechanisms of GLP-1 action on 

insulin secretion was developed . It allows to measure the potentiation of insulin 

due to the hormone using data of a single oral glucose test. The model was applied 

successfully to different experimental protocols (hyperglycemic intravenous 

glucose with concomitant GLP-1 intravenous infusion, meal and OGTT) 

performed in healthy and impaired fasting glucose subjects, and in each case the 

model well describes the plasma C-peptide concentration and provides a precise 

estimate of model parameters. Validation of the model was performed both with 

real data and in silico simulations by comparing potentiation measured with the 

model against that calculated with the gold standard technique proposed by 

Campioni [11]. 
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Moreover it is important to note that the model allows to measure the incretin 

potentiation specific of GLP-1, which despite playing a primary role in incretin 

effect, it is not the only hormone accountable for the enhancement of insulin 

secretion, since several other gut hormones contribute, such as GIP. 

In conclusion the model is a valuable tool to measure insulin potentiation due to 

GLP-1 using data from an oral test, which thanks to its simplicity could be used in 

epidemiological and population studies, thus providing insights into the 

pathogenesis of diabetes and the efficacy of GLP-1 based therapies. 
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