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HAMILTONIAN PATHS IN ODD GRAPHS1

Let́ıcia R. Bueno2, Luerbio Faria, Celina M. H. de Figueiredo,

Guilherme D. da Fonseca3

Lovász conjectured that every connected vertex-transitive graph has a
Hamiltonian path. The odd graphs Ok form a well-studied family of con-
nected, k-regular, vertex-transitive graphs. It was previously known that Ok

has Hamiltonian paths for k ≤ 14. A direct computation of Hamiltonian

paths in Ok is not feasible for large values of k, because Ok has
(2k − 1

k − 1

)

vertices and
k

2

(2k − 1
k − 1

)
edges. We show that Ok has Hamiltonian paths

for 15 ≤ k ≤ 18. Instead of directly running any heuristics, we use exist-
ing results on the middle levels problem, therefore further relating these two
fundamental problems, namely finding a Hamiltonian path in the odd graph
and finding a Hamiltonian cycle in the corresponding middle levels graph.
We show that further improved results for the middle levels problem can be
used to find Hamiltonian paths in Ok for larger values of k.

1. INTRODUCTION

A spanning cycle in a graph is a Hamiltonian cycle and a graph which con-
tains such cycle is said to be Hamiltonian. A Hamiltonian path is a path that
contains every vertex of the graph precisely once. Lovász [11] conjectured that
every connected vertex-transitive graph has a Hamiltonian path. The odd graphs
Ok, k ≥ 2, form a well-studied family of connected, k-regular, vertex-transitive
graphs (see [2] for an introduction). Therefore, the study of Hamiltonian paths
in odd graphs may provide more evidence to support Lovász conjecture, or offer a
counterexample for it.
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A combinatorial conjecture formulated by Kneser [10] states that whenever
the k-subsets of an n-set, where n = 2k + r with positive r, are divided into
r + 1 classes, then two disjoint subsets end up in the same class. Lovász [12]
gave a proof based on graph theory showing that the Kneser graph K(n, k), whose
vertices represent the k-subsets and each edge connects two disjoint subsets, is not
(r + 1)-colorable. Note that K(n, k) is by definition connected vertex-transitive,

it has
(n
k

)
vertices and is regular of degree

(n− k
k

)
. Chen showed that Kneser

graphs are Hamiltonian (have a Hamiltonian cycle) for n ≥ 3k [3], and later for
n ≥ 2.72 k + 1 [4]. Shields and Savage [17] showed that Kneser graphs are
Hamiltonian for n ≤ 27, with the exception of the Petersen graph.

The odd graph Ok is defined as K(2k − 1, k − 1), for k ≥ 2. Being k-regular,
the odd graphs are the Kneser graphs K(n, ·) of smallest degree for any fixed odd

n. The graph Ok has
(2k − 1

k − 1

)
vertices and

1

2

(2k − 1
k − 1

)
edges. Therefore, a direct

computation of Hamiltonian paths in Ok is not feasible for large values of k.

The odd graphs are connected vertex-transitive graphs. Therefore, if Lovász
conjecture [11] is true, then the odd graphs have a Hamiltonian path. The graph
O2 is a triangle and O3 is the Petersen graph, both of which have Hamiltonian
paths (Figure 1). Balaban [1] showed that O4 and O5 have Hamiltonian paths.
Meredith and Lloyd [14] showed that O6 and O7 have Hamiltonian paths. [13]
showed that O8 has a Hamiltonian path. Shields and Savage [17] used a carefully
designed heuristic to find Hamiltonian paths in Ok for k ≤ 14. In fact, the previous
references show that, for 4 ≤ k ≤ 14, Ok has not only a Hamiltonian path, but also
a Hamiltonian cycle. It is well-known that the Petersen graph O3 has a Hamiltonian
path, but no Hamiltonian cycle.
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Figure 1. The odd graphs O2 and O3, with

highlighted Hamiltonian paths and vertex

labels corresponding to (k − 1)-subsets of

{1, . . . , 2k − 1}.

In this paper, we show that Ok has a Hamiltonian path for 15 ≤ k ≤ 18.
Instead of directly running any heuristics, we use existing results on the middle
levels problem [16, 18], therefore further relating these two fundamental problems,
namely finding a Hamiltonian path in the odd graph and finding a Hamiltonian
cycle in the corresponding middle levels graph.

Given a pair of positive integers n, k with 1 ≤ k ≤ n, the bipartite Kneser

graph H(n, k) has as vertices the k-subsets and the (n − k)-subsets of {1, . . . , n},
and two vertices are adjacent when one subset is contained in the other. The middle

levels graph Bk is defined as H(2k − 1, k − 1), for k ≥ 2. The middle levels graph
is the subgraph of the (2k − 1)-hypercube induced by the middle two levels. The
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middle levels graphs Bk are also connected vertex-transitive graphs. The famous
middle levels problem asks whether Bk has a Hamiltonian cycle.

While the middle levels problem remains unsolved, it is known that Bk has
Hamiltonian cycles for some values of k. Dejter, Cordova and Quintana [5]
presented explicit Hamiltonian cycles in Bk, for k = 10; additionally Dejter,

Cedeño and Jáuregui [6] presented explicit Hamiltonian cycles in Bk, for 2 ≤
k ≤ 9. Shields and Savage [16] showed that Bk has Hamiltonian cycles for
2 ≤ k ≤ 16. Shields, Shields and Savage [18] recently showed that Bk also
has Hamiltonian cycles for k = 17 and 18. These results [5, 6, 16, 18] were
based on properties of smaller graphs obtained by identifying vertices that are
equivalent according to some equivalence relation. The results from [16, 18] were
based on computationally determining a special Hamiltonian path P in the reduced
graph (defined in Section 2) and converting P into a Hamiltonian cycle in Bk. In
the present paper, we show how to convert P into a Hamiltonian path in Ok,
consequently showing that Ok has a Hamiltonian path for 2 ≤ k ≤ 18.

An alternative approach consists of showing that Bk and Ok, for any k ≤ 2,
contain substructures that are related to Hamiltonian cycles. Horák, Kaiser,

Rosenfeld and Ryjáček [7] showed that the prism over the middle levels graph
is Hamiltonian, and consequently Bk has a closed spanning 2-trail. Savage and
Winkler [15] showed that if Bk has a Hamiltonian cycle for k ≤ h, then Bk has a
cycle containing a fraction 1−ε of the graph vertices for all k, where ε is a function
of h. For example, since Bk has a Hamiltonian cycle for 2 ≤ k ≤ 18, then Bk has
a cycle containing at least 86.7% of the graph vertices, for any k ≥ 2. Johnson [8]
showed that both Bk and Ok have cycles containing (1 − o(1))|V | vertices, where
|V | is the number of vertices in the graph. Johnson and Kierstead [9] used
matchings of Bk to show that Ok has not only a 2-factor (spanning collection of
cycles), but also a 2-factorisation.

In Section 2, we give two equivalent definitions for the reduced graph, one
based on the middle levels graph Bk, and one based on the odd graph Ok. In
Section 3, we show how to obtain a Hamiltonian path in Ok through a special
Hamiltonian path in the reduced graph. Concluding remarks and open problems
are presented in Section 4.

2. THE REDUCED GRAPH

In this section, we give two equivalent definitions for reduced graph. First,
we define the reduced graph as the result of a quotient operation ∼ applied to the
middle levels graph Bk. Then, we prove that the same operation applied to the
odd graph Ok results in the same reduced graph. We start with some definitions.

Let Zn denote the set {1, . . . , n} with arithmetic modulo n. Throughout this
paper, we consider the vertices of Ok and Bk to be subsets of Zn and n = 2k − 1.
We define two special (k − 1)-subsets of Zn, which are r1 = {1, . . . , k − 1} and
r2 = {2, 4, 6, . . . , n− 1}.

Given a set v ⊆ Zn, let v + δ denote the set {a + δ : a ∈ v} and v denote the



Hamiltonian paths in odd graphs 389

complement of v with respect to Zn. We say that u, v ⊂ Zn satisfy u ∼ v if either
(i) u = v + δ or (ii) u = v + δ for some δ ∈ Zn. It is easy to verify that ∼ is an
equivalence relation. We refer to the equivalence class of v defined by ∼ as σ(v).

Given a graph G, with V (G) ⊆ 2Zn , we define the quotient graph G̃ as the
graph obtained from G by identifying vertices that are equivalent according to ∼.
More precisely, the vertices of G̃ are the equivalence classes σ(v) for v ∈ V (G), and

if uv ∈ E(G) then σ(u)σ(v) ∈ E(G̃). Note that if uv ∈ E(G) satisfies u ∼ v, then

the vertex σ(u) ∈ V (G̃) has a loop. For the special case when graph G is the odd

graph Ok, the graphs O4 and Õ4 are illustrated in Figure 2.
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Figure 2. The odd graph O4 and the reduced graph Õ4.

For the special case when graph G is the middle levels graph Bk, the quotient
graph B̃k is called the reduced graph. The following lemma is proved as Lemma 1
of [16].

Lemma 2.1. Each equivalence class σ(v) of B̃k consists of exactly n = 2k − 1
(k − 1)-subsets and n k-subsets.

As a consequence, the reduced graph B̃k has 2n times fewer vertices than Bk.
For example, B18 has 9,075,135,300 vertices, while B̃18 has 129,644,790 vertices,
which is 70 times smaller, but still quite large.

Shields and Savage [16] showed that the existence of a Hamiltonian path in

the reduced graph B̃k, starting at the vertex σ(r1) and ending at the vertex σ(r2)
implies that Bk is Hamiltonian. We refer to a Hamiltonian path starting at σ(r1)
and ending at σ(r2) as a useful path. Using heuristics, Shields and Savage [16]

determined useful paths in B̃k for 1 ≤ k ≤ 16. Recently, Shields, Shields and
Savage [18] extended this result for 1 ≤ k ≤ 18.



390 L. R. Bueno, L. Faria, C. M. H. de Figueiredo, G. D. da Fonseca

We prove the following lemma, which relates Õk and B̃k.

Lemma 2.2. The quotient graphs Õk and B̃k are equal.

Proof. The vertices of Ok are (k−1)-subsets Zn, with n = 2k−1, and the vertices
of Bk are the (k − 1)-subsets and k-subsets of Zn. Since the complement of a

(k − 1)-subset is a k-subset, we have V (Õk) = V (B̃k).

There is an edge uv ∈ Ok when u ∩ v = ∅ and there is an edge uv ∈ Bk

when u ⊂ v. Since |u| 6= |v|, both statements are equivalent, and we have E(Õk) =

E(B̃k). �

3. HAMILTONIAN PATHS IN THE ODD GRAPH

In this section, we show how to obtain a Hamiltonian path in Ok through a
useful path in Õk. First, we examine the structure of the subgraphs of Ok induced
by σ(r1) and σ(r2).

Lemma 3.1 The subgraph of Ok induced by σ(r1) is the cycle r1, r1 + k, r1 +
2k, . . . , r1 + (n− 1)k.

Proof. The cycle has n vertices because k and n = 2k − 1 are relatively prime.
The fact that the only vertices in σ(r1) that are disjoint from r1 are r1 + k and
r1 + (n− 1)k = r1 − k follows from the definition that r1 = {1, . . . , k − 1}. �

Lemma 3.2. The subgraph of Ok induced by σ(r2) is the cycle r2, r2 + 1, r2 +
2, . . . , r2 + (n− 1).

Proof. Note that r2+j is adjacent to r2+i+j if and only if r2 is adjacent to r2+j.
Therefore, it suffices to prove that r2 is only adjacent to r2+1 and r2+n. Remember
the definition that r2 = {2, 4, 6, . . . , n− 1} and that Ok has edges between disjoint
sets. The graph Ok has an edge between r2 and r2 + 1, because r2 contains only
even numbers and r2 + 1 contains only odd numbers. There is no edge between r2

and r2 + i for an even number i ≤ n − 1 because n − 1 ∈ r2 ∩ (r2 + i). There is
no edge between r2 and r2 + i for an odd number i with 3 ≤ i ≤ n − 3 because
2 ∈ r2 ∩ (r2 + i). �

Next, we study the relation between adjacencies in Õk and adjacencies in Ok.

Lemma 3.3. If there is an edge σ(u)σ(v) in Õk, then there is a perfect matching

between the vertices of σ(u) and the vertices of σ(v) in Ok.

Proof. If σ(u)σ(v) ∈ E(Õk), then there are two vertices u′ ∈ σ(u) and v′ ∈ σ(v)
that are adjacent in Ok. We can form a perfect matching by pairing u′ + i with
v′ + i for 1 ≤ i ≤ n. �

The following lemma is an immediate consequence of Lemma 3.3, and shows
how to build disjoint paths in Ok using a path in Õk.

Lemma 3.4. If there is a path P = (p1, . . . , pm) in Õk, then Ok has n disjoint

paths (q1 +(i−1), . . . , qm +(i−1)), for 1 ≤ i ≤ n, such that qj ∈ pj , for 1 ≤ j ≤ m.
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In order to build a Hamiltonian path in Ok, we traverse all the n disjoint paths
given by Lemma 3.4. When traversing the paths, we alternate between forward and
backward order. We carefully pick edges from the cycles defined in Lemmas 3.1
and 3.2 in order to connect n paths into a single Hamiltonian path.

Theorem 3.5. If there is a useful path P = (p1, . . . , pm) in Õk, then there is a

Hamiltonian path in Ok.

Proof. Given a path Q, we denote by
←−
Q the path Q traversed from the last to

the first vertex. Given two paths Q1, Q2 with no vertices in common and the last
vertex of Q1 being adjacent to the first vertex of Q2, we denote by Q1 ◦ Q2 the
path obtained by traversing the vertices of Q1 followed by the vertices of Q2.

By definition of useful path, P = (p1, . . . , pm) is Hamiltonian in Õk, m =
|V (Ok)|/n, p1 = σ(r1), and pm = σ(r2). By Lemma 3.4 there are n disjoint paths
Pi of the following form, for 1 ≤ i ≤ n:

Pi = (q1 +(i−1), . . . , qm +(i−1)) with q1+(i−1) ∈ σ(r1) and qm +(i−1) ∈ σ(r2).

By Lemma 3.1 and since n = 2k − 1, q1 + i is adjacent to q1 + i + k − 1.

Therefore,
←−−
Pi+1◦Pi+k is a valid path. By Lemma 3.2, qm+i is adjacent to qm+i+1.

Therefore, Pi ◦
←−−
Pi+1 is a valid path. Consequently, the following is a valid path:

Qi = Pi ◦
←−−
Pi+1 ◦ Pi+k ◦

←−−−−
Pi+k+1,

where Pi = (q1 + (i − 1), . . . , qm + (i − 1)),
←−−
Pi+1 = (qm + i, . . . , q1 + i), Pi+k =

(q1 + i + (k − 1), . . . , qm + i + (k − 1)), and
←−−−−
Pi+k+1 = (qm + i + k, . . . , q1 + i + k).

The idea to conclude the proof is to build a Hamiltonian path Q1◦Q3◦Q5◦· · · .
This construction is illustrated in Figure 3. Next, we discuss two separate cases,
even and odd k, which have different conditions to define the end of the path.
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Figure 3. Construction of the Hamiltonian path in Ok, with Q1 highlighted.

If k is odd, then we show that

Rodd = Q1 ◦Q3 ◦ · · · ◦Qk−2

is a valid path. By Lemma 3.1, the last vertex of Qi, q1 + i + k, is adjacent to
q1 + i + 1, the first vertex of Qi+2, since Pi+2 = (q1 + i + 1, . . . , qm + i + 1),

and q1 + i + 1 is adjacent to q1 + i + k. Also, Rodd contains either Pi or
←−
Pi, for
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i ∈ {1, . . . , 2k−1}\{k}. To include the missing path Pk, we define the Hamiltonian
path in Ok as

Hodd = Rodd ◦ Pk.

If k is even, then the same argument shows that

Reven = Q1 ◦Q3 ◦ · · · ◦Qk−3

is a valid path. In the even case, Reven contains either Pi or
←−
Pi, for i ∈ {1, . . . , 2k−

1} \ {k − 1, k, 2k − 1}. To include the missing paths, we define the Hamiltonian
path in Ok as

Heven = Reven ◦ Pk−1 ◦
←−
Pk ◦ P2k−1.

Note Figure 3 actually illustrates the construction of Heven. The full construction
of a Hamiltonian path in O4 is illustrated in Figure 4. �
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Figure 4. On the top-right corner: Useful Hamiltonian path in Õ4. Unused edges are gray.

On the bottom-right corner: Vertices in σ(r1) and σ(r2), and dashed paths P1, P2, . . . , P7

used in the construction of the Hamiltonian path in O4. On the left: Hamiltonian path

in O4 between r1 and r2.

4. CONCLUSION AND OPEN PROBLEMS

In this paper, we show a relationship between the reduced graphs B̃k [16]
and the odd graphs Ok. We determine a Hamiltonian path in the odd graph Ok by
using a useful path in the reduced graph Õk. This way, we determine Hamiltonian
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paths in Ok for k up to 18. It is natural to ask whether a Hamiltonian cycle in Ok

can be constructed in a similar manner.

All Hamiltonian paths known for the reduced graph were determined by com-
puter using heuristics. Finding an useful path in the reduced graph B̃18 [18] took
more than 20 days of processing on a AMD Athlon 3500+. Further studies in the
structure of the reduced graph may help finding useful paths faster, and possibly
tell whether all reduced graphs have a useful path. It is important to note that if
the reduced graph does not have a useful path, then the corresponding odd graph
may still have a Hamiltonian path.

Two different kinds of approximations for Hamiltonian cycles in the middle
levels graphs are known. Savage and Winkler [15] showed that Bk has a cycle
containing at least 86.7% of the graph vertices, for k ≥ 19. Horák, Kaiser,

Rosenfeld and Ryjáček [7] showed the middle levels graph has a closed spanning
2-trail. It remains open to prove similar results for the odd graphs.

Since vertex-transitive graphs defined by a single parameter, such as the odd
graphs and the middle levels graphs, are not known to have Hamiltonian paths,
Lovász conjecture [11] remains challengingly open.
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6. I. J. Dejter, W. Cedeño, V. Jáuregui: Frucht diagrams, boolean graphs and hamil-

ton cycles. Sci. Ser. A Math. Sci. (N.S.), 5 (1) (1992/93), 21–37.

7. P. Horák, T. Kaiser, M. Rosenfeld, Z. Ryjáček: The prism over the middle-levels
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