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Abstract 

Uncertainty analysis (UA) has received substantial attention in water resources during the last 
decade. Bayesian approaches are often preferred for UA. This study describes a formal Bayesian 
approach for the assessment of parameter uncertainty and predictive uncertainty using a spatially 
distributed hydrologic model and will demonstrate its application using data from a well 
monitored experimental watershed. A Markov-Chain Monte Carlo (MCMC) scheme has been 
used to sample posterior parameter distributions. A formal, flexible likelihood function that 
explicitly accounts for heteroscedasticity, temporal correlation and non-normality of simulation 
residuals has been used to describe closeness of the simulated and observed streamflow. 
Performance of the formal likelihood function will be compared to that of simple least squares 
with regard to generating accurate predictive uncertainty estimates at multiple streamflow gaging 
stations available in the experimental watershed. Limitation of the SLS assumptions with regard 
to the structure of model residuals will be illustrated and capability of the formal likelihood 
function to address these assumptions will be scrutinized.  Finally, the maximum likelihood 
solutions identified by the uncertainty analysis method will be compared to the optimal solutions 
determined using a single objective optimization exercise to test effectiveness of the uncertainty 
analysis method to also identify the optimal solutions sought during model calibration. 

Introduction 

Recognizing the need to quantify the uncertainty associated with model simulations and reduce 
potential adverse impacts of making decisions based on unreliable model predictions, uncertainty 
analysis (UA) has received significant attention in hydrology (Beven and Freer, 2001; Muleta 
and Nicklow, 2005; Kavestki et al., 2006; Montanari et al., 2009;  Schoups and Vrugt, 2010). 
The inability to accurately measure and/or account for spatial and temporal variability of model 
forcings, measurement errors associated with the observations used to test and calibrate models, 
inadequacy of the simulation model to accurately represent hydrologic processes of a watershed, 
and the uncertainty emerging from the challenge to identify reasonable values of model 
parameters are believed to be the major sources of uncertainty in hydrologic modeling 
(Moradkhani and Sorooshian, 2008;  Gotzinger and Bardossy, 2008 ). While some studies have 
attempted to decompose the total uncertainty to quantify contribution of the individual 
uncertainty sources (Gotzinger and Bardossy, 2008), the common practice is to quantify the total 
predictive uncertainty by aggregating contributions from all sources (Renard et al, 2010; 
Schoups and Vrugt, 2010). 

The Generalized Likelihood Uncertainty Estimation (GLUE) approach of Beven and 
Binley (1992) has been the most commonly used UA technique in water resources during the last 
decade. Recently, several authors have questioned statistical validity of the GLUE approach 
(Mantovan and Todini, 2006; Stedinger et al., 2008; Vrugt et al., 2008). To address concerns 
against informal techniques such as GLUE approach, formal UA methods that employ 
statistically valid likelihood measures within the Bayesian framework are emerging (Schoups 
and Vrugt, 2010). The Bayesian UA framework determines posterior probability density function 
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(pdf) of model parameters as well as total predictive uncertainty, e.g. through Monte Carlo 
simulations. Because of their relative computational efficiency, Markov-Chain Monte Carlo 
(MCMC) schemes have been preferred to the standard Monte Carlo simulations that rely on 
random sampling for UA applications. The Metropolis Hasting algorithm (MH) (Hastings, 1970) 
is the foundation of the MCMC sampling schemes. MH schemes, however, could be very 
inefficient depending on the initialization of the proposal distribution (i.e., the variance of the 
distribution) being either too wide or too narrow to efficiently converge to a stable posterior pdf 
(Vrugt et al., 2008). Several approaches have been introduced to improve efficiency of the MH 
algorithm.  A recently developed efficient MCMC scheme known as DREAM(ZS)(Schoups and 
Vrugt, 2010) has been used in this study. 

Efficient and robust sampling method is a prerequisite to successfully adopting Bayesian 
analysis. Yet, the reliability of the sampled posterior distribution, and corresponding estimates of 
parameter and model predictive uncertainty essentially relies on the formulation of the likelihood 
function used to summarize the mismatch between model predictions and data. There is a general 
consensus that with proper assumptions, formal likelihood measures (as opposed to the informal 
likelihood functions), would produce statistically valid and more realistic confidence intervals 
(Mantovan and Todini, 2006; Vrugt et al., 2008; Stedinger et al., 2008; Schoups and Vrugt, 
2010). However, the formal UA applications commonly reported in water resources modeling 
make unrealistic assumptions regarding structure of the residuals between model simulations and 
the observed watershed behavior. These assumptions include 1) the residuals are independence 
(i.e., no correlation between errors of successive time steps), 2) the residuals follow Gaussian 
distribution, 3) the results are homoscedastic (i.e., error variances do not depend on magnitude of 
the streamflow).  Addressing all these unjustifiable assumptions, a generalized formal likelihood 
(GL) function has been recently described by Schoups and Vrugt (2010), and has been used for 
this study. 

Most UA applications in hydrology that use MCMC techniques within the Bayesian 
framework demonstrated their findings using lumped-conceptual models (Vrugt et al., 2008, 
Vrugt et al., 2009; Kuczera et al., 2010; Schoups and Vrugt, 2010).  Lumped models cannot 
explicitly account for spatial variability of watershed response; they have a relatively low 
number of model parameters; they are computationally less demanding; and they are commonly 
used for rainfall-runoff (R-R) modeling applications only as they lack the capability to simulate 
other important watershed fluxes such as water quality variables. Using lumped models, 
capability of a UA technique cannot be adequately examined with regard to generating accurate 
predictive uncertainty at sites other than the calibration location (e.g., at internal gages not used 
for calibration). Application to watershed models that have large number of parameters and are 
computationally more demanding would further illustrate practicality of the UA techniques.  

By applying DREAM(ZS) and the GL function to a spatially distributed and semi-
physically based watershed model, this study examines robustness of the UA technique for water 
resources models that are more often used in many decision making applications. The watershed 
model selected for this study is the Soil and Water Assessment Tool (SWAT) (Arnold et al., 
1999), and a relatively data rich experimental watershed located in Georgia, United States, has 
been used as illustrative case study. The application explores capability of the UA technique to 
generate accurate predictive confidence intervals at several internal sites in the demonstration 
watershed. Another major objective of this study is to investigate seasonal variation of SWAT 
parameters based on the parameter uncertainty determined using DREAM(ZS) and GL. A 
previous study (Muleta, 2011a) has demonstrated seasonal variation of the optimal model 



 

 

  

 

 
 

 

parameters identified using a single objective calibration exercise for the watershed used in this 
study. The seasonal sensitivity will be verified in this study. 

The DREAM(ZS) Algorithm  

Improving effectiveness and efficiency of the MCMC schemes has been one of the ingredients of 
the uncertainty analysis research. In this regard, various publications have shown that multi-
chain sampling approaches that use different trajectories in parallel to search the parameter space 
in pursuit of the posterior distribution have desirable properties. The use of multiple chains not 
only protects against premature convergence, but also opens up a wide arsenal of statistical 
measures to assess when a limiting posterior distribution has been found (Gelman and Rubin, 
1992). Moreover, the solutions visited with the different chains can be used to continuously 
update the scale and orientation of the proposal distribution. Examples of multi-chain methods 
include the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm and DiffeRential 
Evolution Adaptive Metropolis (DREAM) scheme (Vrugt et al., 2008).  

The number of parallel chains, N, required by standard DREAM such as the Differential 
Evolution Markov chain (DE-MC) method of ter Braak (2006) is at least N = d/2 to d where d is 
the dimensionality of the problem which refers to the number of parameters to be estimated. 
Running many parallel chains is a potential source of inefficiency as each individual chain 
requires burn-in to travel to the posterior distribution. Lowering the number of chains would 
improve applicability of DREAM for computationally demanding posterior exploration problems 
such the spatially distributed modeling application considered in this paper. One approach that 
enables using a smaller N is to improve information sharing among the chains by generating 
candidate points from past states of the different chains  

These findings inspired Vrugt et al. (2011) to create DREAM(ZS) that capitalizes on the 
advantages of DREAM for posterior exploration but generates candidate points in each 
individual Markov chain by sampling from an archive of past states. This has several practical 
and theoretical advantages. Most importantly, only a few parallel chains (N = 3 to 5) are required 
for posterior sampling. This reduces burn-in, particularly for problems involving many 
parameters (large d), thereby increasing sampling efficiency (Vrugt et al., 2011).  In DREAM(ZS), 
the states of the chains are periodically stored in an archive using a simple thinning rule. The size 
of this matrix steadily increases during sampling, but the relative growth decreases linearly with 
generation number. This diminishing adaptation of the transition kernel ensures convergence of 
the individual chains to the posterior distribution. To increase the diversity of the proposals, 
DREAM(ZS) additionally includes a snooker updater with adaptive step size. The snooker axis 
runs through the states of two different chains, and the orientation of this jump is different from 
the parallel direction update utilized in DREAM. The algorithmic implementation of the snooker 
update within the context of DE-MC is described in ter Braak and Vrugt (2008). This study 
explores robustness of DREAM(ZS) for spatially distributed modeling. 

The Watershed Simulation Model 

Soil and Water Assessment Tool (Arnold et.al., 1999), the simulation model used for this study, 
is one of the most widely-used watershed simulation models in use today (Gassman et al., 2007).  
SWAT is a physically-based and spatially-distributed model that uses information regarding 
climate, topography, soil properties, land cover, and human activities such as land management 
practices to simulate numerous physical processes including surface runoff, groundwater flow, 



 

 
 

 

 

streamflow, sediment concentration, pesticides, nutrients such as nitrogen and phosphorous, 
pathogens and bacteria. Spatially, the model subdivides a watershed in to subwatersheds and, 
potentially, further partitions subwatersheds into hydrologic response units (HRUs) based on 
land cover, soil, and overland slope diversity in the subwatersheds.  Major hydrologic processes 
modeled by SWAT include snowpack and snow melt, surface runoff, potential 
evapotranspiration, estimated by Penman-Monteith, Hargreaves or Priestley method; percolation, 
simulated by a combination of a layered routing technique with a crack flow model; lateral 
subsurface flow or interflow, simulated by a kinematic storage model; and ground water flow.  
SWAT operates within ESRI’s ArcGIS platform greatly simplifying the preparation of model 
inputs and visualization of outputs. In this study, SWAT version 2005 (Neitsch et al., 2005) has 
been used to solve the governing watershed processes, and to determine streamflow outputs at 
desired locations throughout the demonstration watershed. The reader is referred to Neitsch et al. 
(2005) for technical details of the processes modeled by SWAT. 

The Study Watershed and Data 

Headwaters of the Little River Experimental Watershed (LREW), one of the USDA-ARS’s 
experimental watersheds, located in Geogria, United States, will be used as a case study. The 
LREW has been selected because it is heavily gaged for rainfall as well as streamflow (Bosch et 
al, 2006), and because data are readily accessible online (ftp://www.tiftonars.org/) from the 
Southeast Watershed Research Laboratory (SEWRL). The watershed consists primarily of low-
gradient streams and is located mainly on sandy soils underlain by limestones that form locally 
confined aquifers. Land use within the watershed consists of about 31% row crop agriculture, 
10% pasture, 50% forest, and 7% urban area (Bosch et al. 2006).  

Only the upper 116 km2 of the LREW has been used for this study to minimize 
computational demand of the model, and because the headwater subwatersheds have denser 
streamflow and rainfall gages. Twelve precipitation gages and five streamflow gages with long-
term daily data (i.e., 1967-2006) are available for the headwaters of the SEWRL. Daily minimum 
and daily maximum temperature data for a station near the watershed has been obtained from the 
U.S. Historical Climatology Network (http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html) as the 
air temperature data available from SEWRL starts only from 2004. The geographic data used to 
setup the SWAT model including topography, land use, stream networks, and rainfall and 
streamflow gauging locations have been obtained from the SEWRL. SSURGO soil map has been 
obtained from the Natural Resources Conservation Service (NRCS) soil data mart 
(http://soildatamart.nrcs.usda.gov/). SWATioTools (Sheshukov et al., 2009), an ArcMap GIS 
extension tool that converts SSURGO soil maps into a format readable by ArcSWAT (Winchell 
et al., 2008) has been used to preprocess the SSURGO soil map. The land cover image used for 
the study area was for year 2003, and was also preprocessed to synchronize the land cover names 
used in the original map with SWAT’s land cover types. After the climate, streamflow, land use, 
and soil data were preprocessed, the 116 km2 study watershed was delineated and subdivided 
into 37 subbasins and 71 HRUs using ArcSWAT. 

Methodology 

Objectives of this study are to examine robustness of DREAM(ZS) using a spatially distributed 
watershed model and to examine relative advantages of the GL function over the commonly used 
SLS approach. Seasonal sensitivity of SWAT parameters will also be further investigated using 

http:http://soildatamart.nrcs.usda.gov
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http:ftp://www.tiftonars.org


 

 
 

 

 

 

the UA technique pursued here. The subsequent paragraphs describe the methodologies used in 
this work to (1) identify the SWAT parameters included in the analysis and define prior pdfs and 
bounds for the parameters; (2) determine posterior pdfs for the parameters; (3) compute 
streamflow predictive uncertainty at multiple gaging sites.  

Parameter Selection 
As a spatially distributed hydrologic model, the number of SWAT parameters may become very 
large depending on the number of subwatersheds and HRUs in the watershed. Streamflow and 
other watershed responses, however, may not be equally sensitive to all model parameters. In an 
attempt to identify SWAT parameters that are most influential in describing streamflow for the 
watershed used in this study (i.e., LREW), a detailed sensitivity analysis (SA) based on Sobol’ 
(Sobol’, 1993) has been previously performed (Muleta, 2011a).  Sobol’s method is a variance-
based SA approach that determines first-order sensitivity as well as total sensitivity indices for 
each parameter accounting for higher order interaction effects among the parameters. This 
previous study identified twelve SWAT parameters that play a crucial role in simulating 
streamflow for the watershed. Optimal values for these parameters were previously identified 
using single objective calibration (Muleta, 2011a; Muleta, 2011b). Although nine different 
objective functions were examined for the single objective optimization performed by Muleta 
(2011b), the results obtained using the root mean square errors (RMSE) has been used for this 
study to be consistent with the SLS approach. 

Seasonal model evaluation was used in these previous studies, i.e., model parameters 
were allowed to vary between dry and wet seasons during model calibration. In the traditional 
model evaluation approach, parameters are assumed to be constant and are assigned the same 
value during low flow seasons as well as high flow seasons. The study by Muleta (2011a) 
showed significant improvement in model performance when this dynamic model evaluation 
approach is pursued compared to the commonly used constant parameter approach. Dry and wet 
seasons were defined using monthly runoff coefficients determined from 39 years (i.e., 1968-
2006) of rainfall and runoff data for the watershed (Muleta, 2011a). Months with runoff 
coefficient greater than 0.1 (i.e., January to April) were considered wet season, and months with 
runoff coefficient less than 0.1 (i.e., June to November) were considered dry season. December 
and May were considered transition months where parameters values would linearly vary from 
the dry season values to the wet season values and vice versa.  

Nine of the twelve most influential streamflow parameters were allowed to vary from wet 
season to dry season making the total number of model parameters to be calibrated twenty-one.  
In the current study, in an attempt to reduce computational demand, only the six most sensitive 
SWAT’s streamflow parameters were considered for the uncertainty analysis. Five of the six 
parameters were allowed to assume different values for the dry and wet seasons thus increasing 
the total number of parameters to eleven. The other ten influential SWAT parameters were 
assigned the optimal values obtained by the previous calibration efforts (Muleta, 2011a; Muleta, 
2011b). 

Prior pdfs for all eleven parameters considered for the uncertainty analysis were assumed 
to be uniform distribution as done in Muleta and Nicklow (2005), and the lower and upper 
bounds recommended in Neitsch et al. (2005) were used for most parameters. Some of these 
model parameters (e.g., NRCS’s curve number, CN2) vary from HRU to HRU, from subbbasin 
to subbasin, or from reach to reach depending on soil, land cover, slope and/or other watershed 
characteristics. SWAT determines CN2 values for the HRUs in a subwatershed based on land 



 

 
 

 

 
 

 

cover and soil type of the HRU and calculates runoff and other responses at the scale of HRU 
based on the characteristics of the HRU (e.g., its CN2 value). During the UA, spatially varying 
parameters were altered by multiplying their baseline values with multipliers, or alternatively by 
adding the sampled DREAM(ZS) values to their respective baseline values. This approach 
preserves the a-priori specified spatial variability, and assumes that this variability of the 
baseline values determined by ArcSWAT (Winchell et al., 2008) is representative of the 
watershed characteristics but might have been over/under estimated consistently across the 
watershed. An alternative approach is to allow the adjustments (multiplicative or additive) to 
vary for each spatial unit (e.g., unique CN2 adjustments for each of the 71 HRUs in the 
watershed). This approach, however, significantly increases the dimensionality of the parameter 
estimation problem depending on the number of spatial units in the watershed.  

Determining Posterior PDF for the Parameters 
Posterior distribution of the eleven SWAT parameters is estimated with DREAM(ZS) using the 
SLS and GL function. In the case of GL, four additional error model parameters were considered 
to explicitly account for heteroscedasticity, non-normality, and autocorrelation of the model 
residuals. A total of 50,000 SWAT simulations were used to sample posterior distribution of the 
model parameters and/or additional likelihood function error variables. Four years of daily 
streamflow data measured at the outlet of the watershed was used as calibration data. A one-year 
spin-up period was used to reduce sensitivity to state-value initialization (antecedent conditions), 
and the remaining three years (years 2000 – 2002) were used for posterior estimation. 
Convergence of DREAM(ZS) to a stable posterior pdf was monitored using the R̂  statistic of 
Gelman and Rubin (1992). This diagnostic compares the between and within variance of the 
difference chains. Convergence is declared when R̂ 

j ≤1.2  for all j = 1,…,d, where d represents 
the number of parameters. The last 10,000 simulations that meet the convergence criteria were 
extracted and parameter uncertainty (e.g., 95% confidence interval)) was determined and 
reported for each individual parameter. To examine seasonal influences on the values of the 
parameters, we derive and compare posterior parameter distributions for the wet and dry season.  

Predictive Uncertainty Estimation and Testing 

Once the posterior distribution of the model parameters is known, streamflow predictive 
uncertainty can be estimated by propagating the different samples of the posterior distribution 
through the SWAT model, and reporting the respective 95% prediction uncertainty ranges. This 
prediction interval, however, represents parameter uncertainty only, without recourse to 
considering other sources of error, including model structural, forcing data, and calibration data 
uncertainty. Total predictive uncertainty has been determined using the approach described in 
Schoups and Vrugt (2010). Using parameter sets that were sampled from their respective 
posterior pdfs, five thousand SWAT simulations were performed to determine daily streamflow 
at five gages in the watershed from 2000-2006.  Total predictive uncertainty was determined by 
adding SWAT’s streamflow predictions to the independent error samples generated using the 
algorithm described in Schoups and Vrugt (2010).  

 Performance of the uncertainty analysis approach was verified using a traditional split 
sampling approach (i.e., the 2003- 2006 data at the calibration site, was used to verify the 
prediction intervals) as well as by analyzing the capability of the model to generate accurate 
predictive uncertainty intervals at other (internal) gages not used for calibration for the 



 

 
 

 

 

calibration as well as evaluation periods (i.e., 2000-2006).  Both time series plot and quantile-
quantile plots, also called QQ graphs, were used to graphically depict the correspondence 
between the modeled and observed streamflow. The relative performance of the SLS and the GL 
approaches was also analyzed by comparing their estimates of parameter and prediction 
uncertainty. Finally, the ML parameter values for both likelihood functions are benchmarked 
against previous calibration using the Dynamically Dimensioned Search (DDS) method (Tolson 
and Shoemaker, 2007), and are also compared in terms of their ability to fit different parts of the 
hydrograph. The solution methodology and results will be detailed during the presentation at the 
conference. 
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