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Damage to agricultural crops can be a problem in
areas with high densities of deer (Odocoileus spp.).
Deer are responsible for causing more damage to
agricultural products than any other species of
wildlife (Conover and Decker 1991, Wywialowski
and Beach 1992). In the United States, annual eco-
nomic loss to agricultural producers from wildlife
depredation was estimated to be as high as $4.5 bil-
lion (Conover 2002). In 1993 over $30 million
worth of corn was lost to deer just in the 10 largest
corn-producing states (Wywialowski 1996).

Use of corn by deer peaks in late June–early July
during the silking–tasseling stage of growth
(Hygnstrom et al.1992). At this stage silk-producing

ears emerge from the nodes and pollen-producing
tassels emerge from the meristem of the corn plant.
Cornfields are highly susceptible to deer damage at
the silking–tasseling stage because use by deer is
high and this is the most critical period for damage
that reduces yield (Eldredge 1935, Shapiro et al.
1986, Vorst 1986). Damaged ears of corn are not
replaced and often will become infected with fun-
gus. Producers may be able to reduce expenses and
the amount of damage to crops by implementing
control methods, such as frightening devices, when
corn plants are most susceptible to deer damage.

The duration of protection and efficacy often
limits the cost-effectiveness of frightening devices.
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Evaluation of a deer-activated bio-
acoustic frightening device for reducing

deer damage in cornfields

Jason M. Gilsdorf, Scott E. Hygnstrom, Kurt C. VerCauteren, 
Greg M. Clements, Erin E. Blankenship, and Richard M. Engeman

Abstract Deer (Odocoileus spp.) can cause substantial damage to agricultural crops, resulting in
economic losses for producers.  We developed a deer-activated bio-acoustic frightening
device to reduce white-tailed deer (O. virginianus) damage in agricultural fields.  The
device consisted of an infrared detection system that activated an audio component which
broadcast recorded distress and alarm calls of deer.  We tested the device against unpro-
tected controls in cornfields during the silking–tasseling stage of growth in July 2001.  The
device was not effective in reducing damage: track-count indices (F1,4=0.02, P=0.892),
corn yield (F1,9=1.27, P=0.289), and estimated damage levels (F1,10=0.87, P=0.374) did
not differ between experimental and control fields.  The size (F2,26=1.00, P=0.380), loca-
tion (F2,25=0.39, P=0.684), and percent overlap (F2,25=0.20, P=0.818) of use-areas of
radiomarked female deer did not differ between during- and after-treatment periods.  We
concluded that the deer-activated bio-acoustic device was not effective in protecting corn-
fields in this study; however, the device may be more effective in small areas such as gar-
dens or for high-value crops that do not grow tall enough to offer protective cover.

Key words animal damage control, bio-acoustics, corn, distress calls, frightening devices,
Odocoileus virginianus, white-tailed deer, wildlife damage management
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Propane exploders, Electronic Guards, and other
visual or acoustic devices have been used to con-
trol deer damage with variable success (Belant et al.
1996, Curtis et al. 1997, Belant et al. 1998, Gilsdorf
et al. 2004). A major limitation of nonlethal fright-
ening devices is that animals habituate to the stim-
uli (Bomford and O’Brien 1990, Koehler et al. 1990,
Craven and Hygnstrom 1994,Nolte 1999). Methods
to delay habituation include changing the location
of frightening devices and altering the periodicity
of stimuli (Koehler et al. 1990, Nolte 1999). Belant
et al. (1996) reported that periodically fired
propane exploders were effective in frightening
deer for <2 days, while deer-activated propane
exploders were effective for 1–2 weeks. A deer-
activated scarecrow device also was effective in
reducing deer damage in soybeans for up to 6
weeks (Beringer et al. 2003). Few studies have
been published about animal-activated devices.

Use of bio-acoustics as a frightening device is rel-
atively unstudied. Bio-acoustics are animal commu-
nication signals, often in the form of alarm or dis-
tress calls. An alarm call is a vocalization used to
warn other individuals of possible danger, such as
the snort from a deer that has sensed a predator
(Sauer 1984). A distress call is emitted when an ani-
mal is being physically traumatized or restrained
(Sprock et al. 1967, Marchinton and Hirth 1984).
Most studies using bio-acoustics have been con-
ducted on birds (Thompson et al. 1968, Mott and
Timbrook 1988, Aguilera et al. 1991, Gorenzel and
Salmon 1993), and knowledge of the potential use
of mammalian communication signals for depreda-
tion control is scarce (Frings 1964, Koehler et al.
1990). Two potential advantages of bio-acoustics
over other acoustic frightening devices (e.g.,
propane exploders) are that 1) animals may not
habituate to them as readily because calls are mean-
ingful to members of the same species and 2) calls
may be effective on animals at low intensities;
therefore, it is not necessary to produce loud alarm
or distress calls that could be disturbing to neigh-
bors or nontarget animals (Frings 1964, Sprock et
al. 1967).

Our objective was to design and test a deer-acti-
vated bio-acoustic frightening device to reduce
white-tailed deer (O. virginianus) damage in corn-
fields. An extensive literature review (Gilsdorf et al.
2002) prompted us to design a device that incor-
porated new technology with stimuli that have not
been tested. We combined an animal-activation sys-
tem with a frightening device that emitted deer dis-

tress and alarm calls. We conducted our study in an
actual field situation to more accurately test the
effectiveness of the device in reducing deer dam-
age.

Study area
We conducted the study during the summer of

2001 at the DeSoto National Wildlife Refuge
(DNWR), located 30 km north of Omaha, Nebraska
in the Missouri River valley. The DNWR was a
3,166-ha mosaic of forest, grassland, wetland, and
agricultural fields. The density of deer at DNWR
was approximately 19/km2, based on previous esti-
mates (VerCauteren 1998) and consistent subse-
quent harvest rates (DNWR, unpublished data).
Corn (156 ha), soybeans (292 ha), grain sorghum,
alfalfa, and a wheat/clover mix were cultivated on a
3-year rotation. Approximately 10–16% of the corn
was left standing as food plots for wildlife.

We used cornfields on DNWR as test fields for
this study. We located and paired test fields of sim-
ilar size, shape, and location on the refuge. We used
12 test fields (6 pairs) for the study and assigned
treatments randomly to each of the fields in a pair.
Fields containing the deer-activated bio-acoustic
device are referred to as “experimental”while fields
with no frightening device are referred to as “con-
trol.” The average size of the experimental and con-
trol fields was 10.9 ha (range = 5.5–19.7 ha) and
10.7 ha (range=5.9–15.9 ha), respectively. The aver-
age distance between experimental and control
fields was 0.9 km (range=0.5–2.9 km). The fields
were a minimum of 0.5 km apart to minimize the
potential for dependence among the fields. The
dimension and shape of the cornfields allowed the
frightening devices to protect an average of 30%
(range 21–48%) of the total perimeter of each
experimental cornfield.

Methods
The deer-activated bio-acoustic device consisted

of an infrared detection system and an audio sys-
tem. We used an outdoor quad-beam infrared secu-
rity system (model PB-IN200HF, PULNiX Security
Sensors Inc., Sunnyvale, Calif.) to detect the pres-
ence of deer entering a cornfield. Each system con-
sisted of an infrared transmitting and receiving unit
(Figure 1). Four infrared beams were emitted from
4 lenses on the transmitter. We positioned trans-
mitters and receivers horizontally on wooden posts

516 Wildlife Society Bulletin 2004, 32(2):515–523
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50–200 m apart, aiming the transmitter so that the
receiver collected all 4 beams of infrared light. All
4 beams had to be broken simultaneously to acti-
vate the audio system. We set the infrared beams 71
cm aboveground, the height of an average adult
deer midway between the top of the back and bot-
tom of the chest (Sauer 1984).

The audio system included a compact disk (CD)
player (model CDC-X217, Aiwa, Tokyo, Japan), 30-
second time delay, relay, counter, and weatherproof
13-cm horn speaker. We suspended each speaker
on the edge of a cornfield 2.4 m above ground with
a metal rod. The time-delay device provided power
to the CD player for 30 seconds,after which the sys-
tem reset itself. The counter confirmed that the
device was functioning and enumerated the activa-
tions. The CD player and other electrical compo-
nents were contained in a sealed plastic container.
Twelve-volt marine batteries powered the frighten-
ing devices.

We recorded distress and alarm calls from live-
captured deer with a Sony Digital Handycam
(model DCR-TRV320, Sony, Tokyo, Japan). Deer
were captured in the study area in netted cage traps
and restrained by hand for 1–4 minutes while being
equipped with radiocollars. We extracted distress
and alarm calls using Video Wave III SE software
(MGI Software Corp., Richmond Hill, Ont.), and
copied them onto CDs.

We placed 2 frightening devices on the perime-
ter of each experimental field adjacent to wooded
areas where the highest levels of damage were
expected. The infrared systems were situated to
protect as much field perimeter as possible
(50–200 m).

We positioned frightening devices at the first
sign of silking–tasseling in the cornfields (6 July
2001) and operated them for 18 days, which was
sufficient time for the ears of corn to mature past
the silking–tasseling phase and become less attrac-
tive and susceptible to deer (Hygnstrom et al.
1992). After the ninth night, devices in each test
field were repositioned about 100 m along the field
perimeter to reduce habituation (Koehler et al.
1990, Nolte 1999). We calculated costs of equip-
ment and labor (at $10/hr) required to operate the
deer-activated bio-acoustic devices.

We used indices of track counts,corn yields,dam-
age assessments, and use-areas of radiomarked deer
to evaluate the efficacy of the frightening devices.
A tractor-mounted 2-m-wide drag was used to
establish and maintain a smooth dragline around
the perimeter of each field. We counted tracks of
deer entering and leaving cornfields in the 1 m of
dragline nearest the corn about every 6 days. A sin-
gle observer counted tracks on all fields to elimi-
nate observer bias. We recorded 1 track count

Bio-acoustic device to reduce deer damage • Gilsdorf et al. 517

Figure 1.  Infrared transmitting unit (left) and receiving unit (right) of the deer-activated bio-acoustic frightening device along the
edge of a cornfield.
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before frightening-device application, 2 during the
18-day treatment period, and 3 after the treatment.

We obtained data on corn yield for the 12 test
fields from farmers when the corn was delivered to
grain elevators or directly from yield monitors
linked to Global Positioning Systems (GPS) on their
harvesting equipment that calculated yields once
every second during harvest. We compared corn
yield from experimental fields with those fields that
served as controls.

We used a variable-area-transect sampling
method (Engeman and Sugihara 1998,Engeman and
Sterner 2002) to assess the amount of damage
caused by deer in the experimental and control
fields immediately following the treatment period.
We randomly located 20 test plots in fields <12.1 ha
and 30 test plots in fields >12.1 ha with a numbered
grid. At each test plot we inspected a row of corn,
counting the total number of ears including dam-
aged and undamaged ears. When 5 deer-damaged
ears were tallied,we recorded distance traveled and
total number of ears in the row sampled. If 5 deer-
damaged ears were not tallied in 100 m, the
observer recorded total number of ears and any
deer-damaged ears observed in that 100 m of row.
We estimated and compared the average percent-
age of damage/plot [damaged ears/(damaged ears+
undamaged ears)] among fields.

We used chronologically sequenced use-areas of
radiomarked female deer associated with the fright-
ening devices to further ascertain effectiveness of
the devices. Use-areas were spaces that the
radiomarked deer occupied during 2 18-day study
periods. We chose to use the term “use-area” rather
than “home range”because of the limited time peri-
od in which we collected the data. A home range
should include all normal activities associated with
feeding, resting, mating, and rearing young (Shivik
and Gese 2000). We monitored 23 radiomarked
deer in the vicinity of the test fields from
June–September 2001. Telemetry locations were
distributed equally throughout the day and night.
We generated use-areas with the Spatial Ecology
Analysis System (SEAS), and harmonic mean
method (Dixon and Chapman 1980) using a
Geographic Information System (TNTmips,
MicroImages, Lincoln, Nebr.). Use-areas were
defined by the 95% isopleth, 20% isopleth core
area, and arithmetic center. If the core area was
<0.5 km from an experimental field or control field,
we assigned the deer to the respective treatment.

We produced use-areas with location data from

18-day periods during treatment (“During”) and
after treatment (“After”). We could not calculate a
use-area for the “before treatment” period because
of the insufficient number of locations (2–5) record-
ed per animal. We determined “During” and “After”
use-areas with an average of 27 (range=23–29) and
20 (range=19–22) locations, respectively, for each
deer in each period. We evaluated the impact of the
frightening device by comparing size, location of
center,and percentage overlap of use-areas between
during- and after-treatment periods.

We collected data for track-count indices and
use-areas over time and analyzed them as repeated
measures. We used a randomized complete block
design and analyzed the data using a mixed linear
model (e.g., McLean et al. 1991), implemented in
SAS Proc Mixed (Littell et al.1996,SAS Institute Inc.
2000) with means estimated as least-squares means.
We used Akaike’s Information Criterion (AIC) to
select the covariance structure that provided the
best-fit model for the repeated measures analyses
(Littell et al. 1996), and the Kenward-Roger adjust-
ment for denominator degrees of freedom.

All procedures involving animals were approved
by the University of Nebraska-Lincoln Institutional
Animal Care and Use Committee (IACUC # 99-03-
014) and United States Department of Agriculture/
Animal and Plant Health Inspection Service/
Wildlife Services/National Wildlife Research Center
Institutional Animal Care and Use Committee (QA-
726).

Results
Materials for each deer-activated bio-acoustic

device cost about $600. The devices we built were
prototypes that, to our knowledge, had never been
built or tested before. The deer-activated bio-
acoustic devices needed little maintenance and
were functional 24 hours a day during the treat-
ment period. Each device required about one hour
to construct and one hour to erect in the field. We
estimate it cost $40–$50/field to deploy the
devices.

Analysis of data on track counts showed no dif-
ferences among the treatment effects (F1,4=0.02, P
=0.892) and treatment-by-time interaction (F5,19=
1.52, P=0.232). Differences were detected, howev-
er, among time periods (F5,19 = 77.06, P < 0.001).
Use of cornfields by deer tended to decrease simi-
larly in experimental and control fields across the
time periods (Figure 2).

518 Wildlife Society Bulletin 2004, 32(2):515–523
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The mean yields of corn (kg/ha) for control (x-=
5,614, SE=481, n=6) and experimental fields (x-=
6,381, SE=481, n=6) did not differ (F1,9=1.27, P=
0.289). The size of test fields tended to slightly
influence the amount of corn produced/hectare
(F1,9=3.89, P=0.080) in that as field size increased,
yield (kg/ha) increased.

We found no differences in levels of damage by
deer between experimental fields and control
fields. The average percentage of damage/plot was
not different among experimental (x-=20%, SE=4.7,
n = 6) and control fields (x- = 14%, SE = 4.7, n = 6)
(F1,10=0.87, P=0.374).

Frightening devices had no effect on the use-
areas of radiomarked deer (Table 1). The mean size
of use-areas of radiomarked deer exposed to exper-
imental or control fields did not differ throughout
the study. Thirteen radiomarked deer used experi-
mental fields and 10 used control fields. Size of the
use-areas was not influenced by treatment (F2,26=
1.00, P = 0.380), time (F1,25 = 2.08, P = 0.161), and
treatment-by-time interactions (F2,25 = 1.49, P =
0.245). Deer continued to use cornfields even if
they contained frightening devices. Location of the
centers of the use-areas of radiomarked deer
exposed to the experimental or control fields did

not differ throughout the study
(F2,25=0.39, P=0.684). Regarding
use-areas of the 13 radiomarked
deer exposed to the deer-activat-
ed bio-acoustic device, 7 shifted
their use-areas closer to the exper-
imental field, 5 moved away from
the field, and 1 did not move
toward or away from the field.
Regarding use-areas of the 10 deer
exposed to control fields, 7
moved toward the control field, 2
moved away, and 1 moved neither
away nor toward the control.

Bio-acoustic device to reduce deer damage • Gilsdorf et al. 519

Figure 2.  Deer-track counts from perimeters of cornfields protected by deer-activated bio-acoustic frightening device and unpro-
tected (control) fields on DeSoto National Wildlife Refuge, Missouri Valley, Iowa, 2001.

Table 1.  Size and shift of 18-day use-areas of female radiomarked deer exposed to
a deer-activated bio-acoustic frightening device on DeSoto National Wildlife Refuge,
Missouri Valley, Iowa, 2001.

x- size (ha) x- center shift (m)a x- % overlapb

Trtc n Duringd SE Aftere SE D–A SE D–A SE

Experimental 13 37 19 62 44 332 126 65 8
Control 10 69 22 54 53 195 152 65 10

a D–A = “During to After” shift.
b D–A = “During to After” overlap.
c Deer exposed to frightening device (experimental) or control.
d During = 6 July 2001–23 July 2001.
e After = 24 July 2001–11 August 2001.
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Deer did not alter their use-areas to avoid cornfields
that contained frightening devices. Overlaps of
chronologically sequenced use-areas for
radiomarked deer exposed to the different treat-
ments were not significantly different (F2,25=0.20,
P = 0.818). Deer continued to use all cornfields
regardless of the treatment.

Discussion
The data we collected did not support the

hypothesis that fields protected with frightening
devices would experience less use and damage by
deer than control fields. The 4 response variables
we measured showed no detectable differences
among protected fields and control fields.

We expected that track counts associated with
control fields would increase from the
“Pretreatment” period to the “Treatment” period as
the corn plants grew and produced ears, then
decrease over time in the “Post-treatment” period
after the ears of corn became less attractive to deer.
We also expected that track counts would be lower
in experimental fields than control fields during the
treatment. This was not the case, however, as track
counts in general decreased throughout the study
period in experimental and control fields (Figure
2). Use of fields by deer may have been influenced
by the fact that mature cornfields also provided
cover that deer would continue to use even after
the silking-tasseling stage. The average track-count
indices for experimental fields decreased at a high-
er rate than for control fields from pretreatment to
treatment period, which may show an initial
response to the devices.

In similar research,Gilsdorf et al. (2004) reported
that track-count indices tended to increase
throughout the study period. Results here showed
a tendency for track count indices to decrease
throughout the study period. Such results may be
due to drought conditions that occurred during the
summer of 2001. Dry soil contributed to observer
difficulty in identifying deer tracks entering or leav-
ing cornfields. In addition, drought may have
caused the ears of corn to senesce earlier; there-
fore, fiber content increased, palatability decreased,
and ultimately use by deer decreased.

Although not significantly different, the experi-
mental fields sustained slightly more damage by
deer than control fields. The average percentage of
damage/plot was 6% higher in experimental fields
than control. One field that was assigned a fright-

ening device sustained intense deer damage before
the silking-tasseling stage and before the frighten-
ing devices were applied. The elevated use of some
experimental fields by deer during the
“Pretreatment” period may have contributed to
higher levels of damage (Figure 2). It may be diffi-
cult to break the feeding pattern of deer once it is
established or to evaluate a frightening device used
for a short time based on damage that occurred
between planting and the silking–tasseling stage.

Another possible confounding factor in our study
is that the frightening devices protected only por-
tions of 2 sides of the test fields rather than the
entire perimeter. Deer that did not walk between
the infrared transmitter and receiver could have
entered a cornfield without activating the frighten-
ing devices. Although we placed the devices in
areas we felt would receive the greatest amount of
pressure by deer, the devices may have provided
more protection if the entire perimeters were pro-
tected. The device also may be more effective in
small areas of concern such as gardens or high-
value plantings.

The frightening device did not appear to alter
use-areas of radiomarked deer enough to deter
them from using protected cornfields. Use-areas of
deer exposed to a frightening device increased
slightly in size (x-=44 ha, range of 8–84) and centers
shifted little (x-=158 m, range of 66–455 m). Each
deer used <1 cornfield in their use-area and did not
move to another cornfield after the devices were
installed (Table 1). The mean “After” size and shift
in location of use-areas of deer exposed to the
frightening devices was inflated due to one indi-
vidual that temporarily moved 2,414 m, resulting in
a use-area of 280 ha.

On 5 occasions we saw deer trigger the device,
which resulted in deer fleeing from the area. Deer
would turn toward the distress calls, listen for 3–5
seconds, then flee from the cornfield or run into
the field for protection, suggesting that the sounds
frightened them.

When selecting a home-range estimator,
researchers should consider the behavior of subject
animals, landscape of the study area, and statistical
capabilities of the estimator since there is no single
“best” estimator for all circumstances (Worton
1995, Shivik and Gese 2000). An optimal sample
size for number of locations to estimate a home
range is about 50 per animal but may vary from as
few as 20 to as many as 200 locations depending on
the home-range estimator used (Kernohan et al.
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2001, Leban et al. 2001). In our study we evaluated
use-areas over 18-day periods and were concerned
with spatial relationships rather than comparing
estimator accuracy for inliers and outliers. We used
the harmonic mean home-range estimator because
it is less sensitive to small sample sizes than are
other estimators. The harmonic mean is a special
case of the kernel methods (Larkin and Halkin
1994). We believe we selected the most applicable
estimator to achieve our objectives.

Animals often react physiologically to alarm and
distress calls. Thompson et al. (1968) reported that
some starlings (Sturnus vulgaris) exposed to star-
ling distress calls had heart rates over 700
beats/min,which was 130% above the normal heart
rate. Gorenzel and Salmon (1993) reported that
crows (Corvus brachyrhynchos) responded to
tape-recorded crow distress and alarm calls by tak-
ing flight and circling overhead while giving assem-
bly and scolding calls. The crows stopped vocaliz-
ing and flew away after the tape was played, leaving
the roost empty. Numbers of Canada geese (Branta
canadensis) in campgrounds were reduced an
average of 71% with alarm and distress calls (Mott
and Timbrook 1988). In another study Canada
geese became alert and moved up to 100 m away
from alarm and distress calls but never left the area
(Aguilera et al. 1991). Knowledge of potential use
of mammalian communication signals is limited.
Sprock et al. (1967) reported that a Norway rat
(Rattus norvegicus) exposed to rat distress calls
spent fewer hours in a sound chamber in which the
calls were emitted. Similar reactions may be evi-
dent in other mammals (Frings 1964, Sprock et al.
1967,Koehler et al.1990). We chose deer alarm and
distress calls to serve as the innovative stimuli for
our frightening device because research using
mammalian bio-acoustics is scarce and we felt they
had the most potential to deter deer with limited
habituation.

Advancements in technology have allowed for
improvements in activation systems for frightening
devices. Infrared and lasers beams can be used to
activate frightening devices, making them operable
only in the presence of offending animals. Animal-
activated frightening devices are thought to reduce
habituation to the stimuli, thus rendering the ani-
mal-activated devices more effective than systemat-
ic devices over time (Belant et al. 1996).

A similar study was conducted during the same
year in Missouri, using a similar frightening device,
except that acoustic stimuli included a visual effigy

and a variety of sounds rather than strictly alarm
and distress calls. The frightening device was effec-
tive in reducing deer damage to small (0.4 ha) plots
of soybeans for up to 6 weeks (Beringer et al.
2003).

Management implications
We suggest additional testing of the deer-activat-

ed bio-acoustic device under other conditions, such
as high-value crops including fruits and vegetables
and in smaller areas that allow for the protection of
the entire perimeter of the area. Placing speakers
inside the area to be protected rather than on the
perimeter may result in the deer leaving the field.
The device could also be modified to include a visu-
al stimulus and a variety of acoustic stimuli, which
may increase effectiveness. Agricultural producers
typically tolerate damage levels of <10% of the crop
value (Craven et al. 1992). Considering that the
prototype devices cost $600 to construct and
$40–50 to operate, they may provide limited but
cost-effective protection from deer damage, espe-
cially in high-value crops. An animal-activated
device that incorporates as many stimuli (i.e.
acoustic and visual) as possible and one that is inex-
pensive and relatively maintenance-free may prove
to be most applicable for controlling wildlife dam-
age (Koehler et al. 1990, Belant et al. 1996).

Methods for controlling deer damage are limited
by proximity to urban areas. Controlled hunting
and sharpshooting can be effective but may be dif-
ficult to justify in urban areas due to local ordi-
nances and concerns about human health and safe-
ty (Jones and Witham 1995,Kuser 1995,Mayer et al.
1995, Kilpatrick et al. 1997). The public supports
management, especially nonlethal techniques, to
control wildlife causing damage to personal prop-
erty (Green et al. 1997, Loker et al. 1999, Reiter et
al. 1999). Nonlethal devices such as the deer-acti-
vated bio-acoustic device may be useful in some
rural and urban environments.
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