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Abstract
In this paper, the problem of the existence of periodic solutions is studied for the
second-order differential equations with a singularity of repulsive type,

x′′(t) + f (x′(t)) + ϕ(t)x(t) –
1

xr(t)
= h(t),

where ϕ and h are T -periodic functions. By using topological degree theory, a new
result on the existence of positive periodic solutions is obtained. The interesting thing
is that the sign of the function ϕ(t) is allowed to be changed for t ∈ [0, T ].
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1 Introduction
The problem of a periodic solution for second ordinary differential equations with singu-
larities has attracted much attention of many researchers because there are a great many
applications of it from physics and mechanics (see [–] and the references therein). For
example, the following second ordinary differential equation with singularity:

x′′(t) + cx′(t) –


xλ(t)
= e(t) (.)

is used for describing the motion of particles subject to Newtonian type forces or to restor-
ing forces caused by compressed gases. Lazer and Solimini in a pioneering paper [] first
used the method of topological degree to study equation (.) for the case of c =  and
λ ≥ . A necessary and sufficient condition for the existence of a positive periodic solution
is that ē := 

T
∫ T

 e(s) ds < . After that, the interest in the study of the existence of periodic
solutions for second-order differential equations with singularities increased. In the past
years, there was much work on the study of problem of periodic solutions for some second
ordinary differential equations with singularities of repulsive type [–]. The problem of
the existence of positive periodic solutions was extensively studied in [–] for the equa-
tion of conservative type,

x′′(t) + a(t)x –
b(t)
xλ

= h(t),
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where a, b, h ∈ L[, T] and λ > . The crucial condition in [–] is that the function a(t)
is required to be

a(t) ≥  for all t ∈ [, T].

By using a continuation theorem of Mawhin, Zhang in [] considered the problem of
periodic solutions of the Liénard equation with a singularity of repulsive type suggested
by the fundamental example

x′′ + f (x)x′ + ϕ(t)x –


xλ
= h(t), (.)

where ϕ, h ∈ L[, T], f ∈ C([, +∞), R) and λ ≥ . Wang in [] extended equation (.) to
the case of a delay singular equation,

x′′ + f (x)x′ + ϕ(t)x(t – τ ) –


xλ(t – τ )
= h(t). (.)

In [, ], the function ϕ is required to be

ϕ(t) ≥  for all t ∈ [, T]. (.)

However, there were few papers considering the periodic solutions for singular Rayleigh
equations. To the best of our knowledge, the existence of positive periodic solutions
was considered in [] for a p-Laplacian Rayleigh equation with singularity of the
form

(∣
∣x′∣∣p–x′)′ + f

(
x′) – g(x) + g(x) = h(t) (.)

and

(∣
∣x′∣∣p–x′)′ + f

(
x′) + g(x) – g(x) = h(t), (.)

where p >  is a constant, f : R →R is an arbitrary continuous function, g, g : (,∞) →R

are all continuous and g(x) is unbounded as x → +, h : R →R is a T-periodic continuous
function. Obviously, equation (.) and equation (.) are all singular at x = . The first-
order derivative term f (x)x′ in equation (.) and equation (.) satisfies

∫ T
 f (x(t))x′(t) dt =

, which is crucial for obtaining a priori bounds of all the possible T-periodic solutions
for equation (.) and equation (.). But the first-order derivative term in equation (.)
and equation (.) is f (x′), generally,

∫ T
 f (x′(t)) dt =  does not hold. The method for es-

timating a priori bounds of all the possible T-periodic solutions in [] is different from
the corresponding ones in [, , ].

Motivated by this, in this paper, we study the existence of positive T-periodic solutions
for the equation with a singularity of the repulsive type,

x′′ + f
(
x′) + ϕ(t)x –


xr = h(t), (.)
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where f : R → R is an arbitrary continuous function, ϕ, h : R → R are T-periodic func-
tions with h ∈ L([, T],R) and ϕ ∈ C([, T],R). The interesting thing is that the sign of the
function ϕ is allowed to be changeable for t ∈ [, T], which is not only essentially different
from the corresponding ones in [–] but also essentially different from the case of (.)
in [, ].

2 Preliminary lemmas
Throughout this paper, let CT = {x ∈ C(R,R) : x(t + T) = x(t) for all t ∈ R} with the norm
defined by ‖x‖∞ = maxt∈[,T] |x(t)|. For any T-periodic solution y(t) with y ∈ L([, T],R),
y+(t) and y–(t) denote max{y(t), } and – min{y(t), }, respectively, and ȳ = 

T
∫ T

 y(s) ds.
Clearly, y(t) = y+(t) – y–(t) for all t ∈R, and ȳ = ȳ+ – ȳ–.

The following lemma is a consequence of Theorem . in [].

Lemma . Assume that there exist positive constants M, M and M with  < M < M,
such that the following conditions hold.

. For each λ ∈ (, ], each possible positive T-periodic solution x to the equation

u′′ + λf
(
u′) + λϕ(t)u – λ


ur = λh(t)

satisfies the inequalities M < x(t) < M and |x′(t)| < M for all t ∈ [, T].
. Each possible solution c to the equation


cr – f () – cϕ̄ + h̄ = 

satisfies the inequality M < c < M.
. We have

(


Mr


– f () – Mϕ̄ + h̄
)(


Mr


– f () – Mϕ̄ + h̄

)

< .

Then equation (.) has at least one T-periodic solution u such that M < u(t) < M for all
t ∈ [, T].

In order to study the existence of positive periodic solutions to equation (.), we list the
following assumptions.

(H) |f (x)| ≤ a|x|μ + a,  < μ < , a, a > .
(H) The function ϕ(t) satisfies the following conditions:

∫ T


ϕ+(s) ds > , σ :=

∫ T
 ϕ–(s) ds

∫ T
 ϕ+(s) ds

∈ [, )

and

σ :=
T 



 – σ

(∫ T


ϕ+(s) ds

) 
 ∈ (, ).
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Remark . If assumption (H) holds, then there are constants D and D with  < D < D

such that


xr – f

(
x′) – ϕ̄x + h̄ >  for all x ∈ (, D)

and


xr – f

(
x′) – ϕ̄x + h̄ <  for all x ∈ (D,∞).

Now, we suppose that assumptions (H) and (H) hold, and we embed equation (.)
into the following equation family with a parameter λ ∈ (, ]:

x′′ + λf
(
x′) + λϕ(t)x – λ


xr = λh(t). (.)

Let

� =
{

x ∈ CT : x′′ + λf
(
x′) + λϕ(t)x – λ


xr = λh(t),λ ∈ (, ]; x(t) > ,∀t ∈ [, T]

}

,

and M, A are all independent of (λ, x) ∈ (, ] ×�, and there is a positive integer k such
that

kM ≥ M, (.)

where M is a positive constant.

Lemma . Assume that assumptions (H)-(H) hold, then there is an integer k∗ > k such
that, for each function u ∈ �, there is a point t ∈ [, T] satisfying

u(t) ≤ k∗M.

Proof If the conclusion does not hold, then for each k > k there is a function uk ∈ �

satisfying

uk(t) > kM for all t ∈ [, T].

From the definition of �, we see

u′′
k + λf

(
u′

k
)

+ λϕ(t)uk – λ


ur
k

= λh(t). (.)

By integrating (.) over the interval [, T], we have

∫ T


f
(
u′

k(t)
)

dt +
∫ T


ϕ+(t)uk(t) dt –

∫ T


ϕ–(t)uk(t) dt –

∫ T




ur

k(t)
dt =

∫ T


h(t) dt,

i.e.,

∫ T


ϕ+(t)uk(t) dt = Th̄ +

∫ T


ϕ–(t)uk(t) dt +

∫ T




ur

k(t)
dt –

∫ T


f
(
u′

k(t)
)

dt.
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Since ϕ+(t) ≥  and ϕ–(t) ≥  for all t ∈ [, T], it follows from the integral mean value
theorem that there are two points ξ ,η ∈ [, T] such that

uk(ξ )ϕ̄+T = uk(η)ϕ̄–T +
∫ T




ur

k(t)
dt –

∫ T


f
(
u′

k(t)
)

dt + Th̄

≤ T ϕ̄–‖uk‖∞ +
∫ T




ur

k(t)
dt +

∫ T



∣
∣f

(
u′

k(t)
)∣∣dt + T |h̄|.

By assumption (H), we have

uk(ξ )ϕ̄+T ≤ T |h̄| + ϕ̄–‖uk‖∞T +
T

krMr +
∫ T


a

∣
∣u′

k(t)
∣
∣μ dt +

∫ T


a dt.

Then

uk(ξ )ϕ̄+ ≤ |h̄| + ϕ̄–‖uk‖∞ +


krMr +
a

T

∫ T



∣
∣u′

k(t)
∣
∣μ dt + a

≤ |h̄| + ϕ̄–‖uk‖∞ +


krMr +
a

T

(∫ T



∣
∣u′

k(t)
∣
∣dt

)μ

T –μ + a

≤ ϕ̄–‖uk‖∞ +
a

Tμ

(∫ T



∣
∣u′

k(t)
∣
∣dt

)μ

+
(

|h̄| +


krMr + a

)

,

i.e.,

uk(ξ ) ≤ ϕ̄–

ϕ̄+
‖uk‖∞ +

a

Tμϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣dt

)μ

+
|h̄| + 

krMr + a

ϕ̄+
. (.)

In view of the inequality

‖uk‖∞ ≤ uk(ξ ) + T



(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


,

it follows from (.) and the condition of σ ∈ [, ), which is in assumption (H), that

‖uk‖∞ ≤ ϕ̄–

ϕ̄+
‖uk‖∞ +

a

Tμϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣dt

)μ

+
|h̄| + 

krMr + a

ϕ̄+
+ T




(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


.

Then

‖uk‖∞ ≤ 
 – σ

a

Tμϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣dt

)μ

+
|h̄| + 

krMr + a

( – σ )ϕ̄+
+

T 


 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


≤ 
 – σ

a

Tμϕ̄+

(∫ T


 dt

)μ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
T 



 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


+
|h̄| + 

krMr + a

( – σ )ϕ̄+
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=
a

( – σ )T
μ
 ϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
|h̄| + 

krMr + a

( – σ )ϕ̄+

+
T 



 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


. (.)

On the other hand, by multiplying (.) with uk(t), and integrating it over the interval
[, T], we obtain

∫ T



∣
∣u′

k(t)
∣
∣ dt = λ

∫ T


f
(
u′

k(t)
)
uk(t) dt – λ

∫ T



uk(t)
ur

k(t)
dt

+ λ

∫ T


ϕ(t)u

k(t) dt – λ

∫ T


h(t)uk(t) dt,

which together with the fact of 
xr >  for all x >  gives

∫ T



∣
∣u′

k(t)
∣
∣ dt ≤ λ

∫ T


f
(
u′

k(t)
)
uk(t) dt + λ

∫ T


ϕ(t)u

k(t) dt – λ

∫ T


h(t)uk(t) dt

≤ ‖uk‖∞
(∫ T


a

∣
∣u′

k(t)
∣
∣μ dt + aT

)

+ ‖uk‖
∞ϕ̄+T + ‖uk‖∞h̄–T

≤ ‖uk‖∞
[

aT + aT –μ

(∫ T



∣
∣u′

k(t)
∣
∣dt

)μ]

+ ‖uk‖
∞ϕ̄+T + ‖uk‖∞h̄–T

≤ ‖uk‖∞
[

aT + aT –μT
μ


(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ

]

+ ‖uk‖
∞ϕ̄+T + ‖uk‖∞h̄–T

= ‖uk‖
∞T ϕ̄+ +

[

aT + aT – μ


(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+ Th̄–

]

‖uk‖∞,

i.e.,

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 
 ≤ √

T ϕ̄+‖uk‖∞

+
[

aT + aT – μ


(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+ Th̄–

] 
 ‖uk‖


∞. (.)

Substituting (.) into the above formula,

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


≤
[

a

( – σ )T
μ
 ϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
|h̄| + 

krMr + a

( – σ )ϕ̄+

+
T 



 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 

]

× √
T ϕ̄+
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+
[

aT + aT – μ


(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+ Th̄–

] 


×
[

a

( – σ )T
μ
 ϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
|h̄| + 

krMr + a

( – σ )ϕ̄+

+
T 



 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 

] 



≤ aT
–μ



( – σ )
√

ϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
√

T[|h̄| + 
krMr + a]

( – σ )
√

ϕ̄+
+

T
√

ϕ̄+

 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


+
[√

aT + Th̄– +
√

aT – μ


(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ

]

×
[√

a

( – σ )T
μ
 ϕ̄+

(∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
T 

√
 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


+

√
|h̄| + 

krMr + a

( – σ )ϕ̄+

]

=
T

√
ϕ̄+

 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


+

√

aT
–μ



 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) +μ


+
[

aT
–μ



( – σ )
√

ϕ̄+
+

√
aT – μ



√
a

( – σ )T
μ
 ϕ̄+

](∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
[√

aT + Th̄–

√
a

( – σ )T
μ
 ϕ̄+

+
√

aT – μ


√
|h̄| + 

krMr + a

( – σ )ϕ̄+

](∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
√

aT + Th̄–
T 

√
 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


+
√

aT + Th̄–

√
|h̄| + 

krMr + a

( – σ )ϕ̄+
+

√
T[|h̄| + 

krMr + a]
( – σ )

√
ϕ̄+

,

which results in

[

 –
T

√
ϕ̄+

 – σ

](∫ T



∣
∣u′

k(t)
∣
∣ dt

) 


≤
√

aT
–μ



 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) +μ


+
√

aT + Th̄–
T 

√
 – σ

(∫ T



∣
∣u′

k(t)
∣
∣ dt

) 
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+
[

aT
–μ



( – σ )
√

ϕ̄+
+

√
aT – μ



√
a

( – σ )T
μ
 ϕ̄+

](∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
[√

aT + Th̄–

√
a

( – σ )T
μ
 ϕ̄+

+
√

aT – μ


√
|h̄| + 

krMr + a

( – σ )ϕ̄+

](∫ T



∣
∣u′

k(t)
∣
∣ dt

)μ


+
√

aT + Th̄–

√
|h̄| + 

krMr + a

( – σ )ϕ̄+
+

√
T[|h̄| + 

krMr + a]
( – σ )

√
ϕ̄+

. (.)

It follows from assumption (H) that

 –
T

√
ϕ̄+

 – σ
=  – σ > ,

which together with (.) shows that there is a constant C, which is independent of λ,
such that

∫ T



∣
∣u′

k(t)
∣
∣ dt ≤ C. (.)

Substituting (.) into (.), we have

‖uk‖∞ < M.

Thus

uk(t) < M for all t ∈ [, T]. (.)

By the definition of k, we see from (.) that (.) contradicts uk(t) > kM for all t ∈ [, T].
This contradiction implies that the conclusion of Lemma . is true. �

3 Main results
Theorem . Assume that assumptions (H)-(H) hold, then equation (.) has at least
one positive T-periodic solution.

Proof Firstly, we will show that there exist M, M with M > k∗M and M >  such that
each positive T-periodic solution u(t) of equation (.) satisfies the inequalities

u(t) < M,
∣
∣u′(t)

∣
∣ < M, for all t ∈ [, T]. (.)

In fact, if u is an arbitrary positive T-periodic solution of equation (.), then

u′′ + λf
(
u′) + λϕ(t)u – λ


ur = λh(t). (.)

This implies u ∈ �, so by using Lemma . we see that there is a point t ∈ [, T] such that

u(t) ≤ k∗M,
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and then

‖u‖∞ ≤ k∗M + T



(∫ T



∣
∣u′(t)

∣
∣ dt

) 


. (.)

Similar to the proof of (.), we have
(∫ T



∣
∣u′(t)

∣
∣ dt

) 
 ≤ √

T ϕ̄+‖u‖∞

+
[

aT + aT – μ


(∫ T



∣
∣u′(t)

∣
∣ dt

)μ


+ Th̄–

] 
 ‖u‖ 

∞. (.)

Substituting (.) into (.), we have

(∫ T



∣
∣u′(t)

∣
∣ dt

) 
 ≤ √

T ϕ̄+

[

k∗M + T



(∫ T



∣
∣u′(t)

∣
∣ dt

) 

]

+
[

aT + aT – μ


(∫ T



∣
∣u′(t)

∣
∣ dt

)μ


+ Th̄–

] 


×
[

k∗M + T



(∫ T



∣
∣u′(t)

∣
∣ dt

) 

] 



≤ T
√

ϕ̄+

(∫ T



∣
∣u′(t)

∣
∣ dt

) 


+
√

T ϕ̄+k∗M

+
[√

aT – μ


(∫ T



∣
∣u′(t)

∣
∣ dt

)μ


+
√

aT + Th̄–

]

×
[√

k∗M + T



(∫ T



∣
∣u′(t)

∣
∣ dt

) 

]

= T
√

ϕ̄+

(∫ T



∣
∣u′(t)

∣
∣ dt

) 


+
√

aT
–μ



(∫ T



∣
∣u′(t)

∣
∣ dt

) +μ


+
√

k∗MaT – μ


(∫ T



∣
∣u′(t)

∣
∣ dt

)μ


+
√

(a + h̄–)T 


(∫ T



∣
∣u′(t)

∣
∣ dt

) 


+
√

k∗M(aT + Th̄–) +
√

T ϕ̄+k∗M,

which results in

[ – T
√

ϕ̄+]
(∫ T



∣
∣u′(t)

∣
∣ dt

) 


≤
√

aT
–μ



(∫ T



∣
∣u′(t)

∣
∣ dt

) +μ


+
√

aT + Th̄–T



(∫ T



∣
∣u′(t)

∣
∣ dt

) 


+
√

k∗MaT – μ


(∫ T



∣
∣u′(t)

∣
∣ dt

)μ


+
√

k∗M(aT + Th̄–) +
√

T ϕ̄+k∗M. (.)
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Since

T
√

ϕ̄+ = T



(∫ T


ϕ+(t) dt

) 


<
T 



 – σ

(∫ T


ϕ+(t) dt

) 


,

it follows from assumption (H) that

 – T
√

ϕ̄+ > ,

which together with (.) shows that there is a constant ρ > , which is independent of λ,
such that

(∫ T



∣
∣u′(t)

∣
∣ dt

) 


< ρ,

and then by (.), we have

u(t) ≤ k∗M + T

 ρ := M, for all t ∈ [, T]. (.)

Now, if u attains its maximum over [, T] at t ∈ [, T], then u′(t) =  and we deduce
from (.) that

u′(t) = λ

∫ t

t

[

–f
(
u′(t)

)
– ϕ(t)u(t) +


ur(t)

+ h(t)
]

dt,

for all t ∈ [t, t + T]. Then

∣
∣u′(t)

∣
∣ ≤ λ

∫ t+T

t

(
a

∣
∣u′(t)

∣
∣μ + a

)
dt + λ

∫ t+T

t

ϕ(t)u(t) dt

+ λ

∫ t+T

t


ur(t)

dt + λ

∫ t+T

t

∣
∣h(t)

∣
∣dt

≤ λaT + λa

∫ T



∣
∣u′(t)

∣
∣μ dt + λ|ϕ̄|T‖u‖∞ + λ

∫ T




ur(t)

dt + λT |h̄|

≤ λaT + λaT –μ

(∫ T



∣
∣u′(t)

∣
∣dt

)μ

+ λ|ϕ̄|T‖u‖∞ + λ

∫ T




ur(t)

dt + λT |h̄|

≤ λaT + λaT –μT
μ


(∫ T



∣
∣u′(t)

∣
∣ dt

)μ


+ λ|ϕ̄|T‖u‖∞ + λ

∫ T




ur(t)

dt + λT |h̄|

≤ λaT + λaT – μ
 ρμ + λ|ϕ̄|TM + λ

∫ T




ur(t)

dt + λT |h̄|. (.)

Integrating (.) over the interval [, T], we have

–
∫ T




ur(t)

dt +
∫ T


f
(
u′(t)

)
dt +

∫ T


ϕ(t)u(t) dt =

∫ T


h(t) dt, (.)



Chen and Lu Advances in Difference Equations  (2017) 2017:106 Page 11 of 14

then

∫ T




ur(t)

dt =
∫ T


f
(
u′(t)

)
dt +

∫ T


ϕ(t)u(t) dt –

∫ T


h(t) dt

≤ aT + aT –μ

(∫ T



∣
∣u′(t)

∣
∣dt

)μ

+ |ϕ̄|T‖u‖∞ + T |h̄|

≤ aT + aT – μ


(∫ T



∣
∣u′(t)

∣
∣ dt

)μ


+ |ϕ̄|T‖u‖∞ + T |h̄|

≤ aT + aT – μ
 ρμ + |ϕ̄|TM + T |h̄|.

It follows from (.) that

∣
∣u′(t)

∣
∣ ≤ λ

(
aT + aT – μ

 ρμ + |ϕ̄|TM + T |h̄|) = λM, for all t ∈ [, T], (.)

and then

∣
∣u′(t)

∣
∣ < M, for all t ∈ [, T]. (.)

From (.) and (.), we see that there is a point t ∈ [, T] such that

u(t) ≥ γ , (.)

where γ < k∗M is a positive constant, which is independent of λ ∈ (, ].
Below, we will show that there exists a constant γ ∈ (,γ ), such that each positive T-

periodic solution of equation (.) satisfies

u(t) > γ for all t ∈ [, T]. (.)

Suppose that u(t) is an arbitrary positive T-periodic solution of equation (.), and t be
determined in (.). Multiplying (.) by u′(t) and integrating it over the interval [t, t] (or
[t, t]), we get

|u′(t)|


–
|u′(t)|


+ λ

∫ t

t

f
(
u′)u′ dt – λ

∫ t

t

u′

ur dt + λ

∫ t

t

ϕ(t)uu′ dt = λ

∫ t

t

h(t)u′ dt,

which yields the estimate

λ

∣
∣
∣
∣

∫ u(t)

u(t)


ur du

∣
∣
∣
∣ ≤ |u′(t)|


+

|u′(t)|


+ λ

∫ t

t

∣
∣f

(
u′)∣∣∣∣u′∣∣dt

+ λ

∫ t

t

∣
∣ϕ(t)uu′∣∣dt + λ

∫ t

t

∣
∣h(t)u′∣∣dt.

From (.) we get

λ

∣
∣
∣
∣

∫ u(t)

u(t)


ur du

∣
∣
∣
∣ ≤ λM

 + λ max
|u′|≤M

∣
∣f

(
u′)∣∣TM + λMMT |ϕ̄| + λMT |h̄|,
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which gives

∣
∣
∣
∣

∫ u(t)

u(t)


ur du

∣
∣
∣
∣ ≤ M, for all t ∈ [t, t + T]. (.)

By
∫ 




ur du = ∞, and u(t) ≥ γ , there exists γ ∈ (,γ ) such that
∫ γ

γ


ur du > M. Therefore,
if there is a t∗ ∈ [t, t + T] such that u(t∗) ≤ γ, then

∫ u(t)

u(t∗)


ur du ≥

∫ γ

γ


ur du > M,

which contradicts (.). This contradiction shows that u(t) > γ for all t ∈ [, T].
Let m = min{D,γ} and m = max{D, M} be two constants, then from (.) and (.),

we see that each possible positive T-periodic solution u satisfies

m < u(t) < m,
∣
∣u′(t)

∣
∣ < M.

This implies that condition  and condition  of Lemma . are satisfied. Also, we can
deduce from Remark . that


cr – f () – ϕ̄c + h̄ >  for c ∈ (, m]

and


cr – f () – ϕ̄c + h̄ <  for c ∈ [m,∞),

which results in
(


mr


– f () – mϕ̄ + h̄

)(


mr


– f () – mϕ̄ + h̄
)

< .

So condition  of Lemma . holds. By using Lemma ., we see that equation (.) has at
least one positive T-periodic solution. The proof is complete. �

Example Considering the following equation:

x′′(t) +
(
x′(t)

) –


x(t)
+ a( +  sin t)x(t) = cos t, (.)

where a ∈ (, +∞) is a constant. Corresponding to equation (.), we have f (x) = x, ϕ(t) =
a( +  sin t) and h(t) = cos t. By simple calculating, we can verify that assumptions (H)-
(H) are satisfied. Furthermore,

∫ T


ϕ+(s) ds =

(
π


+ 

√

)

a,
∫ T


ϕ–(s) ds =

(


√

 –
π



)

a,

and then

σ :=
∫ T

 ϕ–(s) ds
∫ T

 ϕ+(s) ds
=


√

 – π


π
 + 

√


∈ (, )
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and

σ :=
T 



 – σ

(∫ T


ϕ+(s) ds

) 


=
√

a√
π

(
π


+ 

√

) 


.

If

a <
π

( π
 + 

√
)

,

then σ ∈ (, ), this implies that assumption (H) holds. Thus, by using Theorem ., we
see that equation (.) has at least one positive π-periodic solution.

Remark . Since the sign of  +  sin t in ϕ(t) is changing for t ∈ [, T], whether the
balance condition in [, ] is satisfied remains unclear. So the conclusion of the example
cannot be obtained by using the main results in [, ].
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