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Twisted Morita–Mumford classes on braid groups
NARIYA KAWAZUMI

Evaluating the twisted Morita–Mumford classes hp (Kawazumi [12]) on the Artin
braid group Bn , we give the stable algebraic independence of the hp ’s on the
automorphism group of the free group, Aut(Fn). This is sharper than the results
obtained by restricting them to the mapping class group (Kawazumi [9]).

20F36; 14H15, 20J06, 20F28, 32G15, 57R20, 57M50

Introduction

In the cohomological study of the mapping class group for a surface, the Morita–
Mumford classes, ei = (−1)i+1κi , i ≥ 1, [19, 17] play some important roles. As
was proved by Miller [16] and Morita [17] independently, they are algebraically
independent in the stable range ∗ < 2

3 g. Madsen and Weiss [15] proved that the
rational stable cohomology algebra of the mapping class groups, H∗(M∞; Q), is
generated by the Morita–Mumford classes. The Morita–Mumford classes have
twisted variants, mi,j ∈ H2i+j−2(Mg,1;

∧jH), i, j ≥ 0, introduced by the author
[11]. Here we denote by Σg,1 a 2–dimensional oriented compact connected C∞

manifold of genus g with 1 boundary component, Mg,1 its mapping class group,
Mg,1 := π0Diff(Σg,1, id on ∂Σg,1 ), and H the integral first homology group of the
surface Σg,1 . The mapping class groupMg,1 acts on H in an obvious way. The twisted
variants also satisfy the algebraic independence. More precisely, the algebra
H∗(Mg,1;

∧∗H)⊗Q is the polynomial algebra in the set {mi,j; i ≥ 0, j ≥ 1, and i + j ≥
2} over the algebra H∗(Mg,1; Q) in the range where the total degree ≤ 2

3 g (Kawazumi
[9, Theorem 1.C].) Hence, from the theorem of Madsen and Weiss [15] stated above, the
algebra H∗(Mg,1;

∧∗H)⊗Q is stably isomorphic to the polynomial algebra in the set
{mi,j; i ≥ 0, j ≥ 0, and i + j ≥ 2} over Q. Similar results hold for any other symplectic
coefficients (Kawazumi [9, Theorem 1.B].) Furthermore all the cohomology classes
on the mapping class group obtained by contracting the coefficients of the twisted
ones using the intersection pairing H⊗2 → Z are exactly the algebra generated by the
(original) Morita–Mumford classes ei ’s (Morita [18], Kawazumi and Morita [13]).

Some of the twisted ones have the advantage over the original ones of being defined on
the automorphism group of a free group, which has the mapping class group and the
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braid group as proper subgroups. Let n ≥ 2 be an integer, Fn a free group of rank n
with free basis x1, x2, . . . , xn

Fn = 〈x1, x2, . . . , xn〉,

and Aut(Fn) the automorphism group of the group Fn . The Dehn–Nielsen theorem
tells us the natural action of the group Mg,1 on the free group π1(Σg,1) of rank 2g
induces an injective homomorphism Mg,1 → Aut(F2g). In view of a theorem of Artin
[2] the braid group Bn of n strings is embedded into the group Aut(Fn).

Now we denote by H and H∗ the first integral homology and cohomology groups of
the group Fn

H := H1(Fn; Z) = Fn
abel = Fn/[Fn.Fn] and H∗ := H1(Fn; Z) = Hom(H,Z),

respectively, on which the automorphism group Aut(Fn) acts in an obvious way. We
write [γ] := γ mod [Fn,Fn] ∈ H for γ ∈ Fn , and Xi := [xi] ∈ H for i, 1 ≤ i ≤ n. In
[12] we introduced cohomology classes

hp ∈ Hp(Aut(Fn); H∗ ⊗ H⊗(p+1)) and hp ∈ Hp(Aut(Fn); H⊗p)

for p ≥ 1. Restricted to the mapping class group Mg,1 they coincide with the twisted
Morita–Mumford classes

(p + 2)! hp|Mg,1 = m0,p+2 ∈ Hp(Mg,1; H⊗(p+2)), and

p! hp|Mg,1 = −m1,p ∈ Hp(Mg,1; H⊗p).

Here H and H∗ are isomorphic to each other as Mg,1 modules because of the
intersection pairing of the surface Σg,1 . The class p!hp can be regarded as an element
in Hp(Aut(Fn);

∧pH).

In this note we confine ourselves to studying the behavior of hp ’s restricted to the braid
group Bn , and consider the rational coefficients

HQ := H ⊗Z Q and H∗Q := H∗ ⊗Z Q.

In this paper we prove the following result:

Theorem 1 The cohomology classes hp ’s are algebraically independent in the algebra
H∗(Bn;

∧∗HQ) in the range where the total degree ≤ n.

Here the total degree of hp is defined to be 2p. Theorem 1 implies the algebraic
independence on the automorphism group Aut(Fn). This is sharper than that obtained
by restricting them to the mapping class groupMg,1 [9, Theorem 1.C], where the range
is given by the inequality the total degree ≤ 2

3 g = 1
3 n.
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Theorem 1 was announced in [10]. Its proof given in Section 3 is based on some kind
of primitiveness of the hp ’s (Proposition 1.2) and the evaluation of hn−1 on the pure
braid group of n strings, Pn (Lemma 2.4). In Section 4 we will give some remarks on
the cohomology of the automorphism group Aut(Fn).

1 Twisted Morita–Mumford classes on the automorphism
group Aut(Fn)

Throughtout this paper we denote by C∗(G; M) the normalized standard complex of a
group G with values in a G–module M , and use the Alexander–Whitney cup product
∪ : C∗(G; M1)⊗ C∗(G; M2)→ C∗(G; M1 ⊗M2). Moreover we denote by Zp(G; M),
p ≥ 0, the p–cocycles in the cochain complex C∗(G; M).

Now we recall the definition of the twisted cohomology classes hp and hp on the
automorphism group Aut(Fn) for p ≥ 1. The semi-direct product

An := Fn o Aut(Fn)

admits an extension of groups

(1–1) Fn
ι→An

π→Aut(Fn)

given by ι(γ) = (γ, 1) and π(γ, ϕ) = ϕ for γ ∈ Fn and ϕ ∈ Aut(Fn). The map
k0 : An → H , (γ, ϕ) 7→ [γ], satisfies the cocycle condition. We write also k0 for the
cohomology class [k0] ∈ H1(An; H). For each p ≥ 1 we define hp by the image of the
(p + 1)-st power of the cohomology class k0 under the Gysin map of the extension (1–1)

(1–2) hp := π](k0
⊗(p+1)) ∈ Hp(Aut(Fn); H∗ ⊗ H⊗(p+1))

[12]. Contracting the coefficients by the GL(H)–homomorphism

(1–3) rp : H∗ ⊗ H⊗(p+1) → H⊗p, f ⊗ v0 ⊗ v1 ⊗ · · · ⊗ vp 7→ f (v0)v1 ⊗ · · · ⊗ vp,

we define

(1–4) hp := rp∗(hp) ∈ Hp(Aut(Fn); H⊗p).

The p-th exterior power k0
p = p!k0

⊗p can be regarded as a cohomology class with
coefficients in

∧pH . Hence, if we consider the rational coefficients HQ , we may regard
hp as a cohomology class in Hp(Aut(Fn);

∧pHQ).

A Magnus expansion θ of the free group Fn gives an explicit cocycle representing the
class hp . The completed tensor algebra generated by H , T̂ = T̂(H) :=

∏∞
m=0H⊗m ,

has a decreasing filtration of two-sided ideals T̂p :=
∏

m≥pH⊗m , p ≥ 1. It should
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be remarked that the subset 1 + T̂1 is a subgroup of the multiplicative group of the
algebra T̂ . We call a map θ : Fn → 1 + T̂1 a Magnus expansion of the free group
Fn , if θ : Fn → 1 + T̂1 is a group homomorphism, and if θ(γ) ≡ 1 + [γ] (mod T̂2)
for any γ ∈ Fn . We write θ(γ) =

∑∞
m=0 θm(γ), θm(γ) ∈ H⊗m . The m-th component

θm : Fn → H⊗m is a map, but not a group homomorphism. A Magnus expansion
std : Fn → 1 + T̂1 is defined by std(xi) := 1 + Xi , 1 ≤ i ≤ n. Here we denote
Xi := [xi] ∈ H , the homology class of the generator xi . We call it the standard Magnus
expansion. As is described in classical references, the value std(γ) for any word γ ∈ Fn

is explicitly computed by means of Fox’ free differentials. All the results of this paper
can be derived from the expansion std.

We define a map τ θ1 : Aut(Fn)→ H∗ ⊗ H⊗2 by

(1–5) τ θ1 (ϕ)[γ] = θ2(γ)− |ϕ|⊗2θ2(ϕ−1(γ)) ∈ H⊗2

for γ ∈ Fn and ϕ ∈ Aut(Fn). Here |ϕ| ∈ GL(H) is the automorphism of H = Fn
abel

induced by ϕ. This map τ θ1 satisfies the cocycle condition [12, Lemma 2.1]. Now we
introduce a GL(H)–homomorphism

ςp : (H∗ ⊗ H⊗2)⊗p = Hom(H,H⊗2)⊗p → Hom(H,H⊗(p+1)) = H∗ ⊗ H⊗(p+1)

for each p ≥ 1. If p ≥ 2, we define

ςp(u(1) ⊗ u(2) ⊗ · · · ⊗ u(p−1) ⊗ u(p))(1–6)

:=
(
u(1) ⊗ 1H

⊗(p−1)) ◦ (u(2) ⊗ 1H
⊗(p−2)) ◦ · · · ◦ (u(p−1) ⊗ 1H

)
◦ u(p),

where u(i) ∈ Hom(H,H⊗2) = H∗ ⊗ H⊗2 , 1 ≤ i ≤ p. In the case p = 1, we define
ς1 := 1H∗⊗H⊗2 . Then we have:

Theorem 1.1 [12, Theorem 4.1]

hp = ςp∗([τ
θ
1 ]⊗p) ∈ Hp(Aut(Fn); H∗ ⊗ H⊗(p+1))

for any Magnus expansion θ and each p ≥ 1. In the case p = 1 we have [τ θ1 ] = h1 ∈
H1(Aut(Fn); H∗ ⊗ H⊗2).

Some kind of primitiveness of the cohomology classes hp and hp follows from
the theorem. We write simply An := Aut(Fn) for the remainder of the section.
Suppose n1 + n2 ≤ n. Let An2 act on the words in the letters xn1+1, xn1+2,

. . . , xn1+n2 in an obvious way. Then we have a natural homomorphism

ι = ιn1,n2 : An1 × An2 → An.

We denote by $1 : An1 × An2 → An1 and $2 : An1 × An2 → An2 the first and the
second projections of the product An1 × An2 , respectively, and by H(n1) , H(n2) and
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H(n−n1−n2) the submodules of H spanned by {X1, . . . ,Xn1}, {Xn1+1, . . . ,Xn1+n2}
and {Xn1+n2+1, . . . ,Xn}, respectively. Then we have a direct-sum decomposition
H = H(n1) ⊕ H(n2) ⊕ H(n−n1−n2) , and can consider the map

$k
∗ : H∗(Ank ; H∗(nk) ⊗ H⊗(p+1)

(nk) )→ H∗(An1 × An2 ; H∗ ⊗ H⊗(p+1))

for k = 1 and 2. For any p ≥ 1 we have:

Proposition 1.2

(1) ι∗hp = $1
∗hp +$2

∗hp ∈ Hp(An1 × An2 ; H∗ ⊗ H⊗(p+1)),

(2) ι∗hp = $1
∗hp +$2

∗hp ∈ Hp(An1 × An2 ; H⊗p).

Proof Using the standard expansion std, we write simply

τ (k) := $k
∗τstd

1 ∈ Z1(An1 × An2 ; H∗ ⊗ H⊗2).

Clearly we have std(γ1) ∈
∏∞

p=0 H(n1)
⊗p ⊂ T̂ for any word γ1 in the letters x1, . . . , xn1 .

Similar conditions hold for any word γ2 in the letters xn1+1, . . . , xn1+n2 and any γ3 in
xn1+n2+1, . . . , xn . Hence, from the definition of τ θ1 (1–5), we have

ι∗τstd
1 = τ (1) + τ (2) ∈ Z1(An1 × An2 ; H∗ ⊗ H⊗2).

If we use the GL(H)–homomorphism ς2 : (H∗ ⊗ H⊗2)⊗2 → H∗ ⊗ H⊗3 in (1–6), then
we have

(1–7) ς2∗(τ
(1)τ (2)) = ς2∗(τ

(2)τ (1)) = 0 ∈ Z2(An1 × An2 ; H∗ ⊗ H⊗3).

In fact, f (u) = 0 for any f ∈ H∗(n1) and u ∈ H(n2) and vice versa. From Theorem 1.1
follows

ι∗hp = ςp∗(ι
∗[τstd

1 ]⊗p) = ςp∗((τ
(1) + τ (2))⊗p)

= ςp∗((τ
(1))⊗p) + ςp∗((τ

(2))⊗p) = $1
∗hp +$2

∗hp.

Here ςp∗ of each mixed term in τ (1) and τ (2) vanishes by (1–7). Applying rp∗ to (1),
we deduce (2). This completes the proof of the proposition.

2 Evaluation on the Artin braid groups

The n-th symmetric group Sn acts on the space Cn by permuting the components. The
open subset

Yn := {(z1, z2, . . . , zn) ∈ Cn; zi 6= zj for i 6= j}

Geometry & TopologyMonographs 13 (2008)
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is stable under the action of the group Sn . By definition, the Artin braid group of n
strings, Bn , is the fundamental group of the quotient space Yn/Sn , Bn := π1(Yn/Sn).
As was shown by Artin [2], the group Bn admits a presentation

generators: σi, 1 ≤ i ≤ n− 1,

relations: σiσj = σjσi, if |i− j| ≥ 2,(2–1)

σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n− 2.

The pure braid group of n strings, Pn , is defined to be the fundamental group of the
space Yn , Pn := π1(Yn). We have a natural extension of groups

Pn → Bn → Sn.

As is known, Ai,j , 1 ≤ i < j ≤ n, given by

Ai,j := σj−1σj−2 · · ·σi+1σi
2σi+1

−1 · · ·σj−2
−1σj−1

−1

can serve as a generating system of the group Pn . For details, see Birman [3].

The braid group Bn admits a natural homomorphism into the group Aut(Fn), ξ : Bn →
Aut(Fn). To recall how to construct it, we consider an action of the group Sn on the
space Yn+1 ⊂ Cn+1 = Cn × C given by

ρ(z1, . . . , zn, zn+1) = (zρ−1(1), . . . , zρ−1(n), zn+1)

for ρ ∈ Sn . We denote by B̂n the fundamental group of the quotient space Yn+1/Sn ,
B̂n := π1(Yn+1/Sn).

The forgetful map Yn+1 → Yn , (z1, . . . , zn, zn+1) 7→ (z1, . . . , zn), induces a fibration

C \ {n points} → Yn+1/Sn → Yn/Sn

with a section s : Yn/Sn → Yn+1/Sn given by (z1, . . . , zn) 7→ (z1, . . . , zn,
1
n

∑n
i=1zi +

∑n
j=1|zj − 1

n

∑n
i=1zi|) (Arnol’d [1]). This fibration with the section s

induces an extension of groups

(2–2) Fn
ι→ B̂n

π→Bn

with a split homomorphism s : Bn → B̂n . Thus we obtain a morphism of extensions of
groups

(2–3)

Fn −−−−→ B̂n −−−−→ Bn∥∥∥ bξy ξ

y
Fn −−−−→ An −−−−→ Aut(Fn).

Geometry & TopologyMonographs 13 (2008)
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The homomorphisms ξ and ξ̂ are explicitly given by

ι(ξ(x)(γ)) = s(x)γs(x)−1

ξ̂(ι(γ)s(x)) = (γ, ξ(x)) ∈ Fn o Aut(Fn) = An

for x ∈ Bn and γ ∈ Fn . The group B̂n is embedded into Bn+1 in an obvious way. Then
the homomorphisms s and ι are described as

s(σi) = σi for 1 ≤ i ≤ n− 1,(2–4)

ι(xj) = σnσn−1 · · ·σj+1σj
2σj+1

−1 · · ·σn−1
−1σn

−1

= Aj,n+1 for 1 ≤ j ≤ n

in terms of the presentation (2–1). So the homomorphism ξ is explicitly given by

(2–5) ξ(σi)(xj) =


xi+1, if j = i,

xi+1
−1xixi+1, if j = i + 1,

xj, otherwise.

We now evaluate the cohomology classes h1 and hn−1 on the braid group Bn . Here we
use the standard Magnus expansion std : Fn → 1 + T̂1 introduced in Section 1. For the
rest of this section we write simply k0 , τ1 , hp and hp for ξ̂∗k0 , ξ∗τstd

1 , ξ∗hp and ξ∗hp ,
respectively. Let {li}n

i=1 ⊂ H∗ denote the dual basis of {Xi}n
i=1 = {[xi]}n

i=1 ⊂ H .

Lemma 2.1
τ1(σi) = li ⊗ (Xi ⊗ Xi+1 − Xi+1 ⊗ Xi) ∈ H∗ ⊗ H⊗2

Proof From (1–5)

τ1(σi) =
∑n

j=1
lj ⊗ (std2(xj)− |σi|⊗2std2(σi

−1(xj)))

= −li ⊗ |σi|⊗2std2(σi
−1(xi))− li+1 ⊗ |σi|⊗2std2(σi

−1(xi+1))

= −li ⊗ |σi|⊗2std2(xixi+1xi
−1)− li+1 ⊗ |σi|⊗2std2(xi)

= −li ⊗ |σi|⊗2std2(xixi+1xi
−1).

On the other hand, we have

std2(xixi+1xi
−1) = Xi ⊗ Xi+1 − Xi+1 ⊗ Xi.

In fact, Xi ⊗ Xi+1 = std2(xixi+1) = std2(xixi+1xi
−1xi) = std2(xixi+1xi

−1) + std2(xi) +
Xi+1 ⊗ Xi = std2(xixi+1xi

−1) + Xi+1 ⊗ Xi . Therefore we obtain τ1(σi) = −li ⊗
|σi|⊗2(Xi⊗Xi+1−Xi+1⊗Xi) = −li⊗ (Xi+1⊗Xi−Xi⊗Xi+1), as was to be shown.

The pure braid group Pn acts on the homology H trivially. Hence, from [12, Theorem
3.1], the restriction of τ1 to Pn does not depend on the choice of Magnus expansions.
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Lemma 2.2
τ1(Ai,j) = (li − lj)⊗ (Xi ⊗ Xj − Xj ⊗ Xi)

Proof Recall the map τ1 satisfies the cocycle condition on the automorphism group
Aut(Fn). When we set γ := σj−1σj−2 · · ·σi+1 , we have Ai,j = γσi

2γ−1 , so that

τ1(Ai,j)

= τ1(γσi
2γ−1) = τ1(γ) + γτ1(σi

2) + γσi
2τ1(γ−1)

= τ1(γ) + γτ1(σi
2) + γτ1(γ−1) = τ1(1) + γτ1(σi

2) = γτ1(σi
2)

= γ(τ1(σi) + σiτ1(σi))

= γ(li ⊗ (Xi ⊗ Xi+1 − Xi+1 ⊗ Xi)) + γσi(li ⊗ (Xi ⊗ Xi+1 − Xi+1 ⊗ Xi))

= γ((li − li+1)⊗ (Xi ⊗ Xi+1 − Xi+1 ⊗ Xi))

= (li − lj)⊗ (Xi ⊗ Xj − Xj ⊗ Xi),

as was to be shown.

To prove the nontriviality of hn−1 on the group Bn , we recall some basic facts on the
cohomology of the pure braid group Pn . The space Yn is an Eilenberg–MacLane space
of type (Pn, 1). The subspace Yn ∩ {z1 + · · ·+ zn = 0} is a deformation retract of the
space Yn and a Stein manifold of complex dimension n− 1. Hence the cohomological
dimension of the group Pn , cdPn , is not greater than n− 1. Let A∗(Yn) be the algebra
of all the complex-valued differential forms on the space Yn . As was shown by Arnol’d
[1], the Z–subalgebra generated by the 1–forms

ωi,j :=
1

2π
√
−1

dzi − dzj

zi − zj
, 1 ≤ i < j ≤ n,

is isomorphic to the cohomology algebra H∗(Yn; Z) = H∗(Pn; Z). Especially in the
case ∗ = 1, {[ωi,j]}1≤i<j≤n is a Z–free basis of H1(Pn; Z), so that {[Ai,j]}1≤i<j≤n is a
Z–free basis of H1(Pn; Z) = Pn

abel .

Lemma 2.3

(1) k0
n 6= 0 ∈ Hn(Yn+1;

∧nHQ), where Pn+1 = π1(Yn+1) is regarded as a subgroup
of B̂n = π1(Yn+1/Sn).

(2) hn−1 6= 0 ∈ Hn−1(Pn; HQ
∗ ⊗

∧nHQ).

Proof (1) From (2–3) and (2–4) we have

k0(Ai,j) =

{
0, if i < j ≤ n,

Xi, if i < j = n + 1,

Geometry & TopologyMonographs 13 (2008)
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that is
k0 =

∑n

i=1
ωi,n+1 ⊗ Xi ∈ H1(Yn+1; H).

If we restrict the n–form

ω1,n+1ω2,n+1 · · ·ωn,n+1 = (1/2π
√
−1)n

∏n

i=1
(dzi − dzn+1)/(zi − zn+1)

to the subspace Yn+1 ∩ {zn+1 = 0}, then we obtain the non-zero n–form (1/2π
√
−1)n∏n

i=1(dzi/zi). Hence the cohomology class

k0
n = n!ω1,n+1ω2,n+1 · · ·ωn,n+1X1 ∧ X2 ∧ · · · ∧ Xn ∈ Hn(Yn+1;

∧n
HQ)

does not vanish, as was to be shown.

(2) Since cdPn ≤ n− 1, the Gysin map of the extension

Fn
ι→Pn+1

π→Pn

gives an isomorphism

π] : Hn(Pn+1; M)
∼=→Hn−1(Pn; H∗ ⊗M)

for any Pn –module M . Hence hn−1 = π]k0
n 6= 0 by (1).

The map rn : HQ
∗ ⊗

∧nHQ →
∧n−1HQ is an isomorphism because dimQ HQ = n.

Hence we obtain:

Lemma 2.4
hn−1 6= 0 ∈ Hn−1(Pn;

∧n−1
HQ).

3 Proof of Theorem 1

Our proof of Theorem 1 is based on Proposition 1.2 and Lemma 2.4. For q ≤ n we denote
by Pn−q(q) the set of all the non-negative partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λn−q ≥ 0)
of q into n− q parts. For λ = (λ1 ≥ λ2 ≥ · · · ≥ λn−q ≥ 0) ∈ Pn−q(q) we introduce
a cohomology class hλ and a subgroup Pλ ⊂ Pn by

hλ := hλ1hλ2 · · · hλn−q ∈ Hq(Bn;
∧q

HQ) ⊂ Hq(Pn;
∧q

HQ), and

Pλ := Pλ1+1 × Pλ2+1 × · · · × Pλn−q+1 ⊂ Pn,

respectively. Here P0+1 = P1 is the trivial group {1}. Denote by ιλ : Pλ ↪→ Pn

the obvious inclusion map and $k : Pλ → Pλk+1 the obvious projection. Theorem 1
follows from:

Geometry & TopologyMonographs 13 (2008)
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Theorem 3.1 The cohomology classes {hλ; λ ∈ Pn−q(q)} are linearly independent
in Hq(Pn;

∧qHQ).

In fact, when q ≤ n/2, the set of all the non-negative partitions of q into n− q parts
does not depend on n.

Endow the partitions Pn−q(q) with the lexicographic order. For example, (q ≥ 0 ≥
· · · ≥ 0) is the maximal partition. Theorem 3.1 is reduced to the following

Assertions For any λ and µ ∈ Pn−q(q) we have:

(A) ιλ
∗hλ 6= 0 ∈ Hq(Pλ;

∧qHQ)

(B) If µ 	 λ, then ιλ∗hµ = 0 ∈ Hq(Pλ;
∧qHQ).

In fact, assume we have a nontrivial linear relation

∑
λ∈Pn−q(q)

cλhλ = 0 ∈ Hq(Pn;
∧q

HQ).

Choose the minimum λ satisfying cλ 6= 0. Applying ιλ∗ to the relation, we obtain
cλιλ∗hλ = 0 from Assertion B. Assertion A implies cλ = 0, which contradicts the
choice of λ.

Proof of Assertion A Let b1 ≥ b2 ≥ · · · ≥ bλ1 > bλ1+1 = 0 be the dual partition of
λ. The number of λk ’s equal to p is bp − bp+1 . We abbreviate hp,k := $k

∗hp . Since
cd Pλk+1 ≤ λk , we have hp,k = 0 if p > λk , or equivalently, k > bp . Moreover we have
hλk,khp,k = 0 for any p ≥ 1 since Hλk+p(Pλk+1;

∧λk+pHQ) = 0. From Proposition 1.2
we have

ιλ
∗hp =

∑n−q

k=1
hp,k ∈ Hp(Pλ;

∧p
H),
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so that

ιλ
∗hλ =

n−q∏
k=1

ιλ
∗hλk =

λ1∏
p=1

(ιλ∗hp)bp−bp+1

=
λ1∏

p=1

(hp,1 + hp,2 + · · ·+ hp,n−q)bp−bp+1

=
λ1∏

p=1

(hp,1 + hp,2 + · · ·+ hp,bp)bp−bp+1 =
λ1∏

p=1

(hp,bp+1+1 + · · ·+ hp,bp)bp−bp+1

=
λ1∏

p=1

(bp − bp+1)! hp,bp+1+1 · · · hp,bp

=

 λ1∏
p=1

(bp − bp+1)!

 hλ1,1hλ2,2 · · · hλn−q,n−q.

Here the fifth equal sign comes from the equation hλk,khp,k = 0. Clearly rλ :=∏λ1
p=1(bp − bp+1)! is a positive integer. From Lemma 2.4 and the Künneth formula

hλ1,1hλ2,2 · · · hλn−q,n−q 6= 0 ∈ Hq(Pλ;
∧qHQ). This proves Assertion A.

Proof of Assertion B Suppose µ > λ with respect to the lexicographic order, namely,
µ1 = λ1 ≥ µ2 = λ2 ≥ · · · ≥ µh = λh ≥ µh+1 > λh+1 for some h, 0 ≤ h < n − q.
Let ν := (ν1 ≥ ν2 ≥ · · · ≥ νh) be the (truncated) partition of q′ := λ1 + λ2 + · · ·+ λh

defined by νk := λk = µk , k ≤ h. From Assertion A

ιλ
∗(hµ1hµ2 · · · hµh) = rνhµ1,1hµ2,2 · · · hµh,h ∈ Hq′(Pλ;

∧q′
H).

In fact, from µh > λh+1 , we have hµi,j = 0 if i < j. Since µh+1 	 λk for any
k ≥ h + 1, we have

ιλ
∗(hµ1 · · · hµhhµh+1) = rνhµ1,1 · · · hµh,h(hµh+1,1 + · · ·+ hµh+1,h) = 0

Hence ιλ∗(hµ) = 0, as was to be shown.

This completes the proof of Theorem 3.1 and Theorem 1.

4 Concluding remarks

We conclude this note by giving some remarks on the twisted cohomology of the
automorphism group Aut(Fn) and the braid group Bn .
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The IA–automorphism group IAn is defined to be the kernel of the action of the
group Aut(Fn) on the homology group H = Fn

abel . We have an extension of groups
IAn → Aut(Fn)→ GL(H). The map τ θ1 restricted to IAn gives an isomorphism of the
abelianization of the group IAn onto the module H∗ ⊗

∧2H

τ1 : IAn
abel ∼=→ H∗ ⊗

∧2
H

(Cohen and Pakianathan [5], Farb [6], Kawazumi [12]). Here we embed
∧2H into

H⊗2 by Xi ∧ Xj 7→ Xi ⊗ Xj − Xj ⊗ Xi for 1 ≤ i, j ≤ n. Lemma 2.2 implies
ξ∗ : H1(IAn; Z) → H1(Pn; Z) is surjective. From the result of Arnol’d [1] quoted in
Section 2, the cohomology algebra H∗(Pn; Z) is generated by the first cohomology
classes. Hence we obtain:

Corollary 4.1 The algebra homomorphism

ξ∗ : H∗(IAn; Z)→ H∗(Pn; Z)

induced by the homomorphism ξ : Pn → IAn is surjective.

It should be remarked that it does not imply that the map ξ∗ : H∗(Aut(Fn); M) →
H∗(Bn; M) is surjective for a Q[GL(H)]–module M . In fact, the quotient groups
Aut(Fn)/IAn = GL(H) and Bn/Pn = Sn differ from each other.

Fred Cohen [4, Lemma 7.2, page 261] described the action of the symmetric group Sn

on the integral cohomology of the group Pn , H∗(Pn; Z). Later Lehrer and Solomon [14]
gave another explicit description of the Q[Sn]–module H∗(Pn; Q). Moreover Cohen
[4, Theorem 3.1, page 225] computed the twisted cohomology H∗(Bn; H⊗m ⊗ F) for
any field F and any m ≥ 0. It would be interesting if one could describe the submodule
of H∗(Bn; M) generated by all the possible algebraic combinations coming from the
twisted Morita–Mumford classes hp ’s in an explicit manner. Here we should remark
the Sn –invariant inner product · : H ⊗H → Z defined by Xi · Xj = δi,j , 1 ≤ i, j ≤ n,
gives a Bn –isomorphism H ∼= H∗ .

As was stated in Introduction, the algebra H∗(Mg,1;
∧∗HQ) is stably isomorphic to the

polynomial algebra in the twisted Morita–Mumford classes mi,j ’s. The intersection
pairing of the surface Σg,1 , H⊗2 → Z, gives an isomorphism H ∼= H∗ of Mg,1 –
modules, so that the cocycle τ θ1 restricted to Mg,1 can be regarded as a cocycle
τ θ1 : Mg,1 → H⊗3 . As was proved by Kawazumi and Morita in [13], for any twisted
Morita–Mumford class mi,j we have an Mg,1 –homomorphism C : (H⊗3)⊗(2i+j−2)

→ Z obtained from the intersection pairing such that C∗[τ θ1 ]2i+j−2 = mi,j . In other
words, the natural map

((
∧∗

H1(Ig,1; Q))⊗M)Sp(H) → H∗(Mg,1; M)
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is stably surjective for any finite dimensional Q[Sp(H)]–module M . Here Ig,1 is the
Torelli group, i.e, the kernel of the action of Mg,1 on the homology H .

Recently Galatius [7] proved the rational reduced cohomology H̃∗(Aut(Fn); Q) vanishes
in a stable range. It would be very interesting to know whether a similar result holds
also for twisted coefficients.

Expectation 4.2 For a finite dimensional Q[GL(H)]–module M , the natural map

((
∧∗

H1(IAn; Q))⊗M)GL(H) → H∗(Aut(Fn); M)

is surjective in some stable range.

In the case M is the trivial module Q, this expectation is exactly the fact that
H̃∗(Aut(Fn); Q) vanishes in some stable range, which Galatius [7] proved. A result of
Hatcher and Wahl [8] tells us it holds also for M = (H∗)⊗m for any m ≥ 1.
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