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Abstract: Development of new biodegradable implants and devices is necessary to meet the 

increasing needs of regenerative orthopedic procedures. An important consideration while 

formulating new implant materials is that they should physicochemically and biologically mimic 

bone-like properties. In earlier studies, we have developed and characterized magnesium based 

biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported 

the biological properties of four Mg-Zr alloys containing different quantities of strontium or 

calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White 

rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were 

carried out. A total of 30 experimental animals, three for each implant type, were studied, and 

bone induction was assessed by histological, immunohistochemical and radiological methods; 

cavities in the femurs with no implants and observed for the same period of time were kept as 

controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium 

were more efficient in inducing good quality mineralized bone than other alloys. Our results 

have been discussed in the context of physicochemical and biological properties of the alloys, 

and they could be very useful in determining the nature of future generations of biodegradable 

orthopedic implants.

Keywords: osteoblasts, bone mineralization, corrosion, osseointegration, surface energy, 

peri-implant

Introduction
Because of their varied attractive properties, many metals and their alloys have been 

considered as biomedical implants. The idea of biodegradable alloys initiated with 

the necessity for secondary surgery for removal of the implanted material and their 

unsuitability in load bearing applications. A number of magnesium (Mg) based alloys, 

prepared with alloying elements from the same group of the periodic table, have been 

reported for dental replacements and orthopedic applications.1–3 Mg enriched materi-

als have been studied as oral implants4 and as filler materials in extracted sockets5 

in animal models to evaluate their influence in restoration or replacement of dental 

 abutments. The application of alloys and implant materials placed into the extracted 

sockets immediately after tooth extraction have reported beneficial effects;6,7 however, 

such techniques could not demonstrate their capability of maintaining the bony crest in 

its original shape for long periods of time because of their high corrosion and degrada-

tion in vivo. The biological and corrosion properties of Mg alloys have been studied in 

detail,8–11 and their application as orthopedic implants has been widely accepted due to 

(1) their characteristic biodegradability and biocompatibility in vivo,8–10 and (2) their 
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established role in bone formation, eg, ability to influence 

mineral metabolism in the bone matrix and promotion of 

osteoblast specific cell signaling in vivo, without causing 

inflammatory reactions in the neighboring tissues.12 In 

addition, mechanical properties such as elastic modulus and 

compressive yield strength of many Mg based alloys closely 

match with that of natural bone tissue.13

In spite of the above mentioned advantages, Mg based 

alloys present some significant challenges in their usage as 

bio-implants, for example, (1) many Mg containing implants 

corrode quickly at the physiological pH range of 7.4–7.6,1,14 

and (2) they release hydrogen (H
2
) gas around the implant 

area leading to loss of mechanical integrity even before 

the tissue is healed and the new bone is mineralized.15,16 

The performance of Mg based alloys is also affected because 

of the instability of the protective hydroxide film on their 

surface that dissolves in aqueous environments.17 These 

defects of Mg based alloys can be significantly reduced 

by using appropriate combinations of alloying elements 

with the base alloy. An ideal alloying element composition 

would stabilize the hydroxide film on the surface, increase 

their corrosion resistance and mechanical properties, and 

thus improve their biocompatibility and bio-efficacy. In this 

direction, alloys of Mg with strontium (Sr), rare earth ele-

ments, calcium (Ca), aluminum, trace levels of manganese, 

zinc, zirconium (Zr), silicon, etc have been used to make 

new generations of orthopedic implants.18–26 An important 

factor while designing these bioactive implant surfaces is the 

biological response of cells to the alloys, which ultimately 

correlates with the success of implants in the host tissue. The 

idealized biological efficacy of an implant would be where 

the implant material gets totally amalgamated with the newly 

formed osseous tissue and thereafter it disintegrates into the 

blood stream without causing damage to the vital organs or 

losing its functionality.27

The main aim of the present study was to check the stabil-

ity and in vivo cellular response to Mg alloyed with Zr, Sr 

and Ca and to evaluate the influence of these divalent cations 

on the in vivo compatibility of these alloys. We hypothesize 

that inclusion of Sr in Mg alloys can change their surface 

properties and can control the potential of these alloys to 

interact with the osteoblast cells. This can lead to osteogen-

esis, osteoinduction, and osseointegration leading to extra-

cellular matrix formation around them upon  implantation. 

The addition of Zr, Sr, and Ca to Mg can influence their 

degradability and biocompatibility in different ways.  Taking 

these facts into consideration, we report the effect of Mg 

alloys on the in vivo degradation, bone forming ability, and 

 mineralization in addition to the impact of these alloys on 

the bone mineral content (BMC) and bone mineral density 

(BMD) of the implanted animals.

Materials and methods
Implant composition
Cylindrical pins (2 mm diameter × 4 mm length) and discs 

(10 mm diameter/2 mm thickness) made of Mg-Zr alloys 

were used as substrates for in vivo implants and for in vitro 

experiments respectively. The following compositions of 

alloys Mg-5Zr, Mg-5Zr-Ca, Mg-2Zr-5Sr and Mg-Zr-2Sr 

were used. All implants were prepared, and their nominal 

alloy compositions were determined according to the pro-

cedures described earlier.28

Physicochemical characterization: X-ray 
diffraction and compressive strength
The chemical compositions of the alloys were determined 

by wavelength dispersive X-ray fluorescence spectroscopy 

(S4 Pioneer; Bruker, Karlsruhe, Germany). X-ray diffraction 

(XRD) analysis was carried out to characterize the physico-

chemical properties of the Mg alloys. To characterize the 

phase constituents of the alloys, XRD analysis was performed 

at 40 kV and 30 mA with a scan rate of 0.05 degree. The 

scan ranged between the angles of 20 degrees and 80 degrees. 

Compressive strengths were determined at an initial strain 

rate of 10−3 s−1 using an Instron 5567 universal tester equipped 

with a video extensometer (Instron, Norwood, MA, USA).

Surface energy measurements
The surface free energy of the alloys was estimated by mea-

suring the static contact angles (θ) of two different solvents, 

ie, water and glycerol on the respective alloy surfaces in two 

independent experiments by using a sessile drop method and a 

video camera based contact angle goniometer OCA 40 micro 

(DataPhysics, Filderstadt, Germany). Average values of θ for 

left and right side of the drop were measured for each solvent 

at four different positions on each alloy surface as per the 

details described earlier.29 Surface energies of the substrates 

were calculated using SCA20_U software (DataPhysics), 

applying the Wu and Owens–Wendt method.30 Results from 

two independent experiments were used for calculating the 

mean surface energy of each alloy.

Scanning electron microscopy (SEM)  
and hydrogen evolution measurements
The degradation of Mg alloys is correlated with the amount 

of H
2
 gas evolved and was evaluated using simulated body 
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fluid (SBF) as the corrosive media. The H
2
 evolution rate 

was studied at varied immersion time points and plotted as 

H
2
 evolution versus immersion time. The Mg alloy substrates 

were gold-coated in an ion sputter coater SC7620 (Quorum 

Technologies, Ringmer, UK) and the surface morphology 

were visualized by SEM with an accelerated voltage of 5 kV 

(3400 N Hitachi; Hitachi Ltd, Tokyo, Japan).

Implant preparation and surgery
Prior to surgery, all implants were sonicated in 2% chromium 

oxide for 20–30 minutes, followed by a 10 minute wash with 

each acetone, ethanol, and distilled water, then they were 

air-dried and sterilized. Male New Zealand White rabbits 

of approximate age 4–6 months and weighing 2.5 ± 0.85 kg 

were used for in vivo study. Three animals were used for 

each alloy and as controls in each experiment. A total of 

30 animals were used for the in vivo experiments, and we 

report the results of two experiments for an implant period of 

3 months. Alloys were implanted in a hole drilled in the lower 

end of the femur bone of rabbits as per the surgical procedures 

approved by the institutional animal ethics committee of 

CSIR-Centre for Cellular and Molecular Biology and Deakin 

University. Control animals did not receive an implant but 

did have a hole drilled the same size as the implant. Animal 

surgery was performed in an operation room. The animals 

were administered local anesthetics (ketamine hydrochloride 

[25–40 mg/kg body weight] and xylazine hydrochloride 

[10 mg/kg body weight]) (Troy laboratories, Glendenning, 

Australia) intramuscularly prior to surgery. The surgery area 

on the left knee was shaved, and the surface was disinfected 

with antimicrobial povidone iodine solution (Win-Medicare, 

New Delhi, India). After exposing the outer lateral side of the 

tibial end of the left femur, a small cavity of approximately 

5 mm depth was drilled through the cortical region about 

1 cm above the knee joint using a hand-operated surgical 

drill attached to a drill bit of 2.4 mm diameter and 10 mm 

length. A single implant piece was pressed into the drilled 

cavity in each animal. After this procedure, the muscular 

area around the implant was sutured using absorbable suture 

material (Ethicon, Somerville, NJ, USA), and the skin layer 

surrounding the muscular region was sutured by interrupted 

suturing with non-absorbable silk thread. All the animals 

were kept under close observation for 3 months, during which 

time no mortality or morbidity in the animals was observed. 

Meloxicam analgesic (Intas Pharma, Ahmedabad, India) was 

administered orally at 3 mg/kg body weight twice a day for a 

period of three days; local application of Lorexane ointment 

(Virbac Animal Health, Mumbai, India) was done until the 

wound healed. After 3 months the animals were euthanized 

using carbon dioxide inhalation for biochemical, radiological, 

and histological analyses as described below.

Blood-cell count and serum biochemical 
measurements
Blood samples were collected from all animals, by retro-

orbital puncture, 3 months post-implantation. For blood 

cell count, samples were collected in K3-EDTA tubes and 

routine analysis of blood samples were performed in a Tulip 

CounCell23 automatic blood analyzer (The Tulip Group, 

Goa, India). Serum samples were obtained by centrifuging 

the collected blood at 3,000 rpm for 10 minutes at 4°C and 

stored in −80°C until use. Serum biochemical tests were done 

in Tulip CORALAB-3000 serum analyzer (Coral Clinical 

Systems, The Tulip Group).

In vivo radiography
To follow up the healing process after the surgery and before 

removal of the implanted femur, radiography was performed 

to measure the BMC and BMD around the implant area of 

live animals at 1, 2, and 3 months after implantation using 

dual energy X-ray absorptiometry (DXA) in a Hologic 

Discovery QDR Series (Bedford, MA, USA). The mineral 

concentration and density of the region was calculated using 

the QDR software.

Histochemical staining
Immediately after euthanizing the animals, bone specimens 

(size of ∼1 cm3) from the peri-implant area from all animals 

were excised and fixed in 10% buffered formaldehyde at 

4°C for a period of 3 days. After fixation the specimens were 

dehydrated in increasing grades of isopropyl alcohol (70%, 

80%, 95%, 100%) and cleared with xylene. The samples 

were embedded in methyl-methacrylate and, to facilitate 

complete infiltration of the bone tissue with the embedding 

medium, cold polymerization of methyl-methacrylate was 

done with specimens at 4°C for 3 days. Benzoyl peroxide 

was used as initiator, and final polymerization was done 

with N-N  Dimethyl-p-toluidine as accelerator. Sections of 

10 µm thickness of each specimen were cut using a saw 

microtome Leica SP1600 (Leica Microsystems, Wetzlar, 

Germany) in the perpendicular plane to the implant surface 

(sagittal  sections). Each bone was cut into eight to 12 sagit-

tal sections through the marrow region, depending on their 

thickness and three sections from each bone were used for 

single staining. Images of the best stained sections were 

reported in this study. Sections were stained with hematoxylin 
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and eosin (H&E) and Masson’s trichrome (MT)31 to study 

the cellularity and mineralization of osteoblasts near the 

bone-implant interface. Tartrate-resistant acid phosphatase 

(TRAP) assay was carried out to study bone remodeling at 

the peri-implant bone interface and to assess the osteoclast 

activity. Slides were incubated in acetate buffer at room 

temperature and incubated in substrate solution prepared 

in acetate buffer with naphthol AS-MX phosphate (Sigma-

Aldrich, St Louis, MO, USA) and Fast-Red (Sigma-Aldrich) 

as enzyme substrates, and Orange G (Sigma Aldrich) as azo 

dye at 37°C for 1–4 hours until the osteoclasts were bright 

red in color, after which the sections are washed in distilled 

water and mounted in Permount Mounting Medium (Thermo 

Fisher Scientific, Waltham, MA, USA).

Immunohistochemistry
Collagen type-I (Col) immunostaining was carried out to 

study the bone forming activity. After deplasticization, sec-

tions were rehydrated and given a brief wash in Tris-buffered 

saline (TBS). This was followed by an antigen retrieval step. 

Blocking of endogenous peroxidase activity was carried out 

using 3% hydrogen peroxide for 30 minutes. The sections 

were incubated in 3% bovine serum albumin for nonspecific 

binding of antibody. Further, sections were incubated with 

primary antibody (mouse monoclonal IgG1 anti-bovine Col 

antibody) (Sigma-Aldrich) at room temperature for 1 hour 

and washed in TBS three times. Thereafter, sections were 

incubated with horseradish peroxidase-tagged secondary 

antibody (rabbit anti-mouse IgG) (Sigma-Aldrich) for 1 hour 

at room temperature and washed three times with TBS. 

Diaminobenzidine (Sigma-Aldrich) was used as a substrate 

for the colored visualization of peroxidase activity. After 

color development, sections were washed in distilled water 

and mounted using Kaiser’s glycerol gelatin (Merck KGaA, 

Darmstadt, Germany). Images of the stained sections were 

taken using Zeiss Axioplan 200 M microscope (Carl Zeiss, 

Oberkochen, Germany) fitted with an Axiocam Mrc digital 

camera and the images were processed via the Axiovision 

Version 5 software provided by the instrument supplier.

Statistical analysis
The statistical evaluation of data obtained from three differ-

ent animals for each alloy and controls was used for serum 

biochemical measurements, estimation of blood counts, 

and determination of BMC and BMD of the bones in the 

implanted area. One-way analysis of variance (ANOVA) 

with unstacked technique and Tukey’s family error rate of 5 

was performed using MiniTab software (MiniTab Inc, State 

College, PA, USA). Standard errors in the data points were 

determined at 95% confidence level. P-values of less than 

0.05 were considered statistically significant. Data presented 

in the graphs or tables are mean values ± standard error of 

the mean.

Results
The detailed alloy compositions of all the four substrates are 

given in Table 1. As can be seen, the substrates were almost 

free of contaminants such as aluminum, iron, manganese, 

and silicon, and the relative contents of base (Mg) and alloy-

ing (Zr, Sr, and Ca) metals were as per the desired values 

in every substrate. The XRD data (Figure 1) showed that 

all alloys contained a dominant and primary α-Mg phase. 

In addition to this, in Mg-2Zr-5Sr and Mg-Zr-2Sr alloys, a 

strong and intermediate peak for the Mg
17

Sr
2
 intermetallic 

phase could be seen; this peak was absent in the other two 

alloys. Intermetallic Mg-Zr peaks were absent in alloys; this 

could be attributed to their low solubility in the presence of 

Mg and distribution of α-Zr particles in Mg matrix, as has 

been explained by others.32 Almost all the alloys exhibited 

good mechanical strength, that matched the properties of 

normal bone tissue, making these alloys suitable and poten-

tial candidates for temporary implant applications. The 

compressive strengths of Mg-5Zr,  Mg-5Zr-Ca,  Mg-2Zr-5Sr, 

and  Mg-Zr-2Sr alloys were estimated to be 237.8 MPa, 

255.7 MPa, 209.7 MPa, and 242.9 MPa, respectively, which 

was within the range of the compressive strength of normal 

cortical bone (164–240 MPa),14 except Mg-5Zr-Ca. As can 

be seen, addition of Ca to the Mg-Zr base alloy in Mg-5Zr-Ca 

made it stiffer and more inflexible than the other three alloys. 

The SEM images of the alloys before incubation (Figure S1) 

in the culture media showed rough surfaces, with scattered 

distribution of particles having a floral arrangement. After 

incubation in culture media (Figure 2), we observed the 

appearance of cracks, pits, and more roughened edges on 

all surfaces that could be biologically advantageous for the 

implants because such surface topographies can accelerate 

the osteoblast adhesion.33 Table 2 and Figures S2 and S3, 

Table 1 Nominal compositions magnesium-based alloys

Alloy Chemical composition (% wt)

Zr Sr Ca Al Si Fe Mn Mg

Mg-5Zr 4.88 – – 0.02 0.01 0.01 0.01 Balance
Mg-5Zr-Ca 4.41 – 0.91 – – 0.01 0.01 Balance
Mg-2Zr-5Sr 1.89 4.8 – 0.03 0.02 0.01 0.01 Balance
Mg-Zr-2Sr 0.92 1.82 – 0.04 0.02 0.02 0.01 Balance

Abbreviations: Zr, zirconium; Sr, strontium; Ca, calcium; Al, aluminum; Si, silicon; 
Fe, iron; Mn, manganese; Mg, magnesium; wt, weight.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2890

Mushahary et al
 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/ b

y 
13

7.
10

8.
70

.1
4 

on
 1

5-
Ja

n-
20

20
F

or
 p

er
so

na
l u

se
 o

nl
y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2013:8

2000

1500

1000

500

2500

0
20 30 40 50 60 70 80

2θ degree

R
el

at
iv

e 
in

te
n

si
ty

R
el

at
iv

e 
in

te
n

si
ty

R
el

at
iv

e 
in

te
n

si
ty

R
el

at
iv

e 
in

te
n

si
ty

Mg-5Zr

α-Mg

Mg(103)/Zr(103)

2000

1500

1000

500

2500

0
20 30 40 50 60 70 80

2θ degree

Mg-2Zr-5Sr

2500

2000

1500

1000

500

0
20 30 40 50 60 70 80

2θ degree

Mg-5Zr-Ca

α-Mg

Mg(103)/Zr(103)
Mg2Ca(110)
Mg2Ca(313)

α-Mg

Mg(103)/Zr(103)

Mg17Sr2(300)

2500

2000

1500

1000

500

0
20 30 40 50 60 70 80

2θ degree

Mg-Zr-2Sr

α-Mg

Mg(103)/Zr(103)

Mg17Sr2(300)

Figure 1 X-ray diffraction spectra of four magnesium alloys.
Abbreviations: Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.

Figure 2 Scanning electron micrographs of magnesium alloys after incubation in the culture media for 7 days.
Abbreviations: Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2891

Efficiency of magnesium based biodegradable alloys in osseointegration
 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/ b

y 
13

7.
10

8.
70

.1
4 

on
 1

5-
Ja

n-
20

20
F

or
 p

er
so

na
l u

se
 o

nl
y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2013:8

respectively, show the calculated free surface energy values, 

the shapes of individual drops, and the left and right contact 

angles of all the alloys. Mean contact angles of the alloys 

were between 23°–75°, and the corresponding surface ener-

gies were in the range of 40–70 µJ/mm2, as shown in Table 2. 

Based on this data, we concluded that the surface energies 

of the alloys were in the following order:  Mg-5Zr-Ca . Mg-

5Zr . Mg-2Zr-5Sr . Mg-Zr-2Sr. It is known that substrates 

with low surface energies are more hydrophobic than surfaces 

with high surface energies.34 Therefore, in our study, since 

Mg-Zr-2Sr showed the least surface energy and Mg-5Zr-Ca 

the most, Mg-Zr-2Sr was considered as most hydrophobic 

and Mg-5Zr-Ca as most hydrophilic. Based upon the com-

pressive strengths and the composition of the alloys, we 

decided to compare the bone inducing activity of Mg-5Zr-Ca 

versus Mg-5Zr implants and Mg-2Zr-5Sr versus Mg-Zr-2Sr 

implants. The first grouping was to evaluate the role of Ca 

and the second for evaluating the combined roles of Zr and 

Sr in the alloys.

The histological study of the implant-induced bone prop-

erties at 12 weeks after implantation of the alloys gave us a 

two-fold approach: on one hand, the focus was on identifying 

the cell types within the newly induced bone tissue by doing 

H&E and TRAP staining, and on the other hand, features of 

the extracellular matrix (ECM) of new bone were depicted by 

Col immunostaining and MT staining. H&E staining showed 

no significant features of local inflammatory responses around 

the implants, but the fibrous encapsulation of the Mg-5Zr 

and Mg-5Zr-Ca implant-induced new bone (NB) indicated 

inflammatory response toward these implants (Figure 3). H&E 

staining of the Mg-5Zr- and Mg-5Zr-Ca-induced bones also 

showed a non-uniform bone formation pattern that was rich in 

fibroblast-like cells and an ECM that was filled with remnants 

of degraded alloy particles. These features of Mg-5Zr and 

Mg-5Zr-Ca implant-induced bones were indicative of “dis-

tance osteogenesis” behavior. In contrast, Mg-2Zr-5Sr- and 

Mg-Zr-2Sr implant-induced bones showed firm adhesion of 

the new tissue to the implant surface and a uniform osteoblast-

rich bone tissue, which represented the features of “contact 

osteogenesis” (see Discussion section). TRAP staining of 

the peri-implant site showed a significantly higher number of 

osteoclasts in the Mg-2Zr-5Sr- and Mg-Zr-2Sr-induced bones 

as compared to Mg-5Zr and Mg-5Zr-Ca (Figure 4), indicating 

more appropriate bone remodeling behavior in the former. 

We also noticed the complete degradation of the Mg-2Zr-5Sr 

and Mg-Zr-2Sr implant materials, which could be responsible 

for the activation of osteoclasts. Between the Mg-2Zr-5Sr 

and Mg-Zr-2Sr implants, the total number of TRAP-positive 

cells was more in the Mg-2Zr-5Sr-induced bones (Figure 4) 

than in Mg-Zr-2Sr-induced bones. The poor degradation of 

the Mg-5Zr and Mg-5Zr-Ca implants, even after 12 weeks, 

indicated their lesser osteoclast-inducing capacity.

Positive Col immunostaining could be seen in the ECMs 

of all the new induced peri-implant bones, but its levels 

were higher in Mg-2Zr-5Sr- and Mg-Zr-2Sr-induced bones 

 (Figure 5). Collagen type-I is one of the most abundant 

protein of the mineralized bone matrix, and it is a marker 

of early osteoblast differentiation.35 It is synthesized in the 

osteoblasts, and its secretion in the matrix indicates formation 

of an osteoid matrix. MT staining was used to differentiate the 

unmineralized osteoids (red staining) from the mineralized 

ECM (blue staining) of mature bone tissue in the implant 

area. The bone response around the implants Mg-5Zr and 

Mg-5Zr-Ca (Figure 6) were separated by a gap interface rich 

in fibrous tissue. The thickness of the fibrous tissue enclosing 

the implant Mg-5Zr was 135 µm and that of Mg-5Zr-Ca was 

176 µm. The cellular details of the dense fibrous envelope 

formed is well depicted in the MT stained sections, where 

the well-structured collagen fibers are stained blue-green in 

color and the cell nuclei in red. The peri-implant site of these 

implants showed superior bone contact after 3 months of heal-

ing, as depicted in Figure 6. These images are depictive of 

mature woven bone, which distinguishes between osteoblasts 

and fibroblast mineralization. Implant Mg-Zr-2Sr represented 

prominent osteogenic activity with mature woven trabecular 

bone formation after 3 months, with the implant site filled 

with spongy bone and no degradable particles, illustrating 

Table 2 Mean left and right contact angle (CA) values and 
the respective surface energies (SE), with statistical standard 
deviations in the values, of all the four magnesium-based alloys

Alloy Liquid Left Right

Mg-5Zr Water CA 25.25° ± 0.92° 27.25° ± 0.49°
Glycerol CA 43.9° ± 1.27° 46.65° ± 0.07°
Surface energy 66.76 µJ/mm2 66.53 µJ/mm2

Average SE 66.64 ± 0.162 µJ/mm2

Mg-5Zr-Ca Water CA 23.3° ± 0.71° 24.3° ± 0.99°
Glycerol CA 45.7° ± 0.57° 48.1° ± 1.98°
Surface energy 68.27 µJ/mm2 69.40 µJ/mm2

Average SE 68.83 ± 0.79 µJ/mm2

Mg-2Zr-5Sr Water CA 43.45° ± 0.64° 41.65° ± 2.33°
Glycerol CA 53.65° ± 6.15° 54.35° ± 3.04°
Surface energy 55.60 µJ/mm2 57.17 µJ/mm2

Average SE 56.38 ± 1.11 µJ/mm2

Mg-Zr-2Sr Water CA 63.85° ± 1.76° 64.15° ± 1.91°
Glycerol CA 74.4° ± 2.68° 73.55° ± 0.64°
Surface energy 42.42 µJ/mm2 41.85 µJ/mm2

Average SE 42.13 ± 0.40 µJ/mm2

Abbreviations: Zr, zirconium; Sr, strontium; Ca, calcium; Mg, magnesium.
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Figure 3 Hematoxylin and eosin stained bone sections (100×) of all magnesium alloys 3 months post-implantation.
Note: The dots represent the implant–bone interface.
Abbreviations: Imp, implant site; NB, newly formed trabecular bone; Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.

Figure 4 Tartrate-resistant acid phosphatase staining of bone sections (100×) 3 months post-implantation.
Notes: The red colored cells represent osteoclasts at the peri-implant interface. The dots represent the implant–bone interface.
Abbreviations: Imp, implant site; OC, osteoclasts; Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.
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Figure 5 Immunostaining of implanted bone sections (100×) by collagen type-I, 3 months post-implantation.
Notes: Panels show osteoblasts lining the newly formed bone. The osteoblasts occupied significantly higher bone surface near the implant site in Mg-2Zr-5Sr and Mg-Zr-2Sr. 
The dots represent the implant–bone interface.
Abbreviations: Imp, implant site; OL, osteoblast lining; Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.

uniform disintegration of the implant. The newly formed 

bone was completely mineralized in Mg-Zr-2Sr, while 

Mg-2Zr-5Sr showed unmineralized bone (osteoid) in red 

when stained with MT. The osteoblasts lining the trabecular 

surface were predominant around the peri-implant interface 

of the implants Mg-2Zr-5Sr and  Mg-Zr-2Sr, as shown by 

MT stained images. The mean BMC and BMD values of 

the implant-induced bones (three animals for each alloy) and 

three control animals recorded at monthly intervals for three 

months are shown in Figure 7A and B, respectively. BMC val-

ues for control animals did not show any increase with time, 

whereas in all implant containing bones, the values increased 

significantly by the third month, when for Mg-2Zr-5Sr and 

Mg-Zr-2Sr implants, they were higher than Mg-5Zr and 

Mg-5Zr-Ca. Interestingly, BMD values for all the implants 

remained more or less similar to control values, showing no 

significant change. This difference in the variation of BMC 

and BMD values implies that after 3 months, the total area 

(or volume) of healed bone in Mg-2Zr-5Sr and Mg-Zr-2Sr 

implant-bearing wounds was bigger than the healed areas of 

control or Mg-5Zr-Ca implant-bearing bones. Further, this 

data reflects the osteoinductive property of the Mg alloys. 

Hydrogen evolution rates were calculated based on immer-

sion tests performed by incubating the substrates in SBF, and 

Figure 7C shows the data for all the four alloys. As expected, 

all the substrates exhibited release of H
2
 gas upon immersion 

in SBF, which was in direct correlation with their immersion 

time. Mg-5Zr-Ca showed maximum H
2
 evolution at 72 hours, 

indicating that it had corroded and dissolved entirely in SBF 

by that time. In contrast, the Sr-containing alloys showed a 

more optimized H
2
 evolution and degradation behavior in 

relation to those alloys that did not contain Sr. A representa-

tive X-ray image of implanted area for the Mg-Zr-2Sr implant 

is shown in Figure 7D. None of the alloys showed any indi-

cation of peri-implant gas bubble formation or its shadows 

up to 3 months. It is, however, possible that small amounts 

of H
2
 gas were generated around the implant area within the 

first few days after implantation. This release of H
2
 gas was 

considered within tolerable limits, and therefore H
2
 evolution 

from the implants was of little concern in our study. We also 

noticed that 3 months post-implantation, the implanted pellets 

of the alloy had degraded, and their edges had become too 
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Figure 6 Masson’s Trichrome stained sections (100×) of magnesium alloys 3 months post-implantation.
Note: The dots represent the implant bone interface.
Abbreviations: FT, fibrous tissue; Imp, implant site; MB, mineralized bone; Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.

fuzzy to be recognized (Figure 7D). The degradation levels of 

the implants were variable from alloy to alloy, which became 

more evident in the histological analysis.

Total blood-cell count and serum biochemical analysis 

of the rabbits performed 3 months after implantation gave 

information regarding inflammation and liver and kidney 

functions. The blood examination results are listed in Table 3. 

Rabbits implanted with Mg-5Zr and Mg-2Zr-5Sr showed a 

slight increase in lymphocytes, hematocrit, mean corpus-

cular volume, and mean cell hemoglobin concentration. An 

increase in platelet count was found in Mg-Zr-2Sr. However, 

these elevations do not indicate any kind of disturbances in 

the blood count. All the animals were in good physical condi-

tion and free from any kind of diseases within the prescribed 

implant period. Furthermore, it did not indicate any kind of 

systemic inflammatory reactions. Serum biochemical values 

of urea, uric acid, creatinine, serum glutamic oxaloacetic 

transaminase (SGOT), serum glutamic pyruvic transaminase 

(SGPT), alkaline phosphatase (ALP), total protein, Mg, Ca, 

and chloride from rabbits implanted with Mg alloys are listed 

in Table 4. The kidney-related parameters include urea, uric 

acid, and creatinine levels in the serum. Liver functions 

were monitored by checking SGOT, SGPT, ALP, and total 

protein, whereas normal body electrolytes were monitored by 

checking the total Mg, Ca and chloride levels in the serum. 

All the alloys showed elevated values for urea as compared 

to the control, except Mg-Zr-2Sr. This could indicate that the 

degradation of Mg alloys caused a limited effect on kidney 

function. Serum ALP and Ca showed elevated values beyond 

the normal recommended levels. All the other serum param-

eters were within the normal range. This suggests that by 

3 months, the liver function was not affected by degradation 

of these alloys. Balance of electrolytes in the body is neces-

sary for normal functions of cells and organs. The unaltered 

electrolyte balance signifies that the in vivo degradation of 

Mg alloys did not cause any disturbance to the normal elec-

trolyte levels of the implanted subjects.

Discussion
Implant stability plays a vital role in determining the 

biological efficacy of endosseous prostheses. The material 

stability criteria becomes even more critical in the case of 
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biodegradable implants because it is essential for the implant 

to induce sufficient and quality bone tissue around itself 

before its properties are diminished and the implant itself 

decomposes. The surfaces of metal based implants are highly 

reactive in biological systems and a number of reactions are 

observed at the implant–bone interface that can determine the 

stability of the implant and quality of osseous regeneration. 

Some of the important factors that facilitate optimum 

osseointegration include physicochemical properties of the 

material surface, bioactivity of alloying elements, rate and 

kinetics of implant degradation, and the type of interaction 

between implant material and surrounding tissues.

Our work has mainly focused on studying the stability 

of four different Mg alloys, containing different quantities 

Table 3 Blood cell count of control and experimental animals 3 months after implantation

Sl no Agent Unit Control Mg-5Zr Mg-5Zr-Ca Mg-2Zr-5Sr Mg-Zr-2Sr Range

1 WBC 103/mL 9.03 ± 2.07 7.07 ± 0.38 6.16 ± 2.50 7.63 ± 2.47 10.52 ± 1.69 5.1–9.7
2 LYM % 77.15 ± 16.00 77.03 ± 1.39 27.25 ± 1.34 87.20 ± 5.49 57.62 ± 17.05 39–68
3 RBC 106/mL 5.92 ± 0.28 6.50 ± 0.16 5.52 ± 0.35 6.03 ± 0.46 4.76 ± 0.75 5.3–6.8
4 HGB g/dL 12.98 ± 1.15 14.27 ± 0.46 12.18 ± 0.69 10.80 ± 2.19 11.18 ± 2.56 9.8–14.0
5 HCT % 40.38 ± 0.54 50.37 ± 1.33 35 ± 3.25 45.53 ± 1.42 35.20 ± 2.02 34–43
6 MCV fL 68.43 ± 4.20 77.53 ± 0.15 63.45 ± 1.87 75.77 ± 3.63 75.21 ± 10.49 60–69
7 MCH pg 21.88 ± 0.87 21.90 ± 1.05 22.01 ± 0.16 18.23 ± 3.74 23.27 ± 2.17 20–23
8 MCHC g/dL 32.15 ± 3.28 28.30 ± 1.45 34.80 ± 1.27 24.07 ± 4.39 31.54 ± 5.97 31–35
9 PLT 103/mL 418.67 ± 237.59 472.33 ± 160.38 1219.50 ± 104.16 479.00 ± 224.53 1085.28 ± 316.51 158–650

Abbreviations: HCT, hematocrit; HGB, hemoglobin; LYM, lymphocytes; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; 
MCV, mean corpuscular volume; PLT, platelet; RBC, red blood cells; WBC, white blood cells; Mg, magnesium; Zr, zirconium; Ca, calcium; Sr, strontium.
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Figure 7 Physiological, physicochemical, and anatomical effects of the four magnesium alloys used for implantation.
Notes: Panels A and B show BMC and BMD, respectively, of the implanted animals after 1, 2, and 3 months post-implantation for control and experimental animals. Data 
shown are mean values taken from three experimental animals in each time point. Panel C shows hydrogen evolution rates of magnesium alloys upon incubation in simulated 
body fluid for 7 days. Panel D shows X-ray radiograph of a representative implanted live animal (Mg-Zr-2Sr) after 3 months implantation.
Abbreviations: Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium; BMC, bone mineral content; BMD, bone mineral density; 1M, one month; 2M, two months; 3M, 
three months.
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of Zr, Sr, and Ca and correlating the surface energy of each 

alloy to its capacity for osteoinduction and integration at the 

implant site in rabbit femur bones. Based on our results, we 

have demonstrated that Mg with Zr-Sr alloys (Mg-2Zr-5Sr and 

Mg-Zr-2Sr) are superior biomaterials for orthopedic applica-

tions than are alloys that contain only Zr or a combination 

of Zr and Ca. It can be seen from the XRD data in Figure 1 

(Mg-2Zr-5Sr and Mg-Zr-2Sr) that there is a formation of 

Mg
17

Sr
2
 intermediate phase in Sr-containing alloys. Mg

17
Sr

2
 

is reported to be the most Mg-rich stable compound in the 

Mg-Sr system,36 which can improve the corrosion resistance of 

Mg based alloys. Inclusion of Zr in Mg alloys acts as a grain 

refining agent, which causes strengthening of the alloy by 

formation of α-Zr phases and grain boundary  strengthening.37 

In our study, only Ca or Zr containing alloys (Mg-5Zr and 

Mg-5Zr-Ca) were more unstable, and upon degradation in 

vivo, they showed an abundance of residual alloy material at 

the implant site (Figures 3 and 4). This has not been reported 

earlier because the stability of Ca-containing Mg alloys has 

been studied only in the absence of Zr,38–41 and Mg alloys con-

taining only Zr have not been reported so far. The elemental 

constitution of the alloying metals also affects the properties 

of newly induced bone, as several charged groups (O, OH−, 

etc) on the alloy surface contribute to the overall electrone-

gativity of the implant material.42 In a recent report using 

titanium based implants, it has been shown that in addition 

to the electronegativity of the implant surface, several other 

factors can also influence the osteoinduction process in vivo.43 

The advantages and limitations of individual alloying metals 

have also been described in our previous report,28 where we 

had shown that alloying processes improved the mechanical 

strength of implant materials and made their properties 

similar to those of bone tissue. Based upon these criteria, 

we can conclude from our results that Mg-5Zr-Ca implant, 

which showed high compressive strength, was not suitable 

for osteointegration, whereas Mg-2Zr-5Sr and Mg-Zr-2Sr 

implants, tend to resemble natural bone in their properties 

due to decreased compressive strength.

For assessment of bone formation in vivo, the two most 

important properties of implant-induced NB tissue are 

osteoinduction and osteointegration. These two processes 

were evaluated by histological and immunohistochemical 

staining of peri-implant bone sections. In contact osteogenesis, 

the NB formation occurs on the surface of the implant itself. 

The osteoblasts secrete a collagen-rich bone matrix directly 

on the implant surface as they differentiate into osteocytes. 

In later stages, the matrix is mineralized as calcified collagen, 

and a matrix free area separates the old bone from the NB.44 In 

distance osteogenesis, NB is formed over the old bone surface, 

and the differentiating osteoblasts/osteocytes and the secreted 

matrix are all seen in close association with the surface of the 

old bone. Due to this pattern of cells and bone matrix, a space 

is generated between the NB and the implant surface, which 

becomes occupied with dying or undifferentiated osteoblast 

that are unable to migrate from the bone surface.44 As men-

tioned earlier Mg-2Zr-5Sr alloy- and Mg-Zr-2Sr alloy-induced 

NB exhibited contact osteogenesis, whereas Mg-5Zr- and 

Mg-5Zr-Ca-induced NB had distance osteogenesis properties, 

which are highlighted in the H&E staining patterns shown 

in Figure 3. In addition, the presence of differentiated osteo-

clasts, which is indicative of better bone resorption activity 

in Mg-2Zr-5Sr- and Mg-Zr-2Sr-induced bones (Figure 4), 

Table 4 Values of serum biochemical parameters of control and experimental animals after 3 months implantation

Parameters Control Mg-5Zr Mg-5Zr-Ca Mg-2Zr-5Sr Mg-Zr-2Sr Recommended 
level

Liver functions 49.51 ± 9.736 25.17 ± 1.914
 Urea (mg/dL) 24.91 ± 2.186 35.68 ± 8.426 22.83 ± 4.173 5.00–25.00
 Uric acid (mg/dL) 0.76 ± 0.016 0.82 ± 0.185 0.69 ± 0.084 1.59 ± 0.634 1.13 ± 0.559 1.0–4.3
 Creatinine (mg/dL) 1.03 ± 0.046 1.23 ± 0.195 0.76 ± 0.062 0.5–2.6
Kidney functions 1.39 ± 0.126

61.50 ± 10.136
1.27 ± 0.369

19.92 ± 9.581
 SGOT (U/L) 22.48 ± 2.410 19.18 ± 2.333 31.29 ± 3.358 10.0–86.0
 SGPT (U/L) 28.20 ± 2.870 37.78 ± 1.333 65.42 ± 16.494 37.57 ± 10.667 43.79 ± 2.822 20.0–120.0
 ALP (U/L) 116.02 ± 9.770 125.80 ± 2.921 105.13 ± 27.555 89.62 ± 1.324 105.81 ± 0.584 25.0–65.0
 Total protein (g/dL) 4.30 ± 0.470 6.52 ± 3.344 3.40 ± 0.301 5.16 ± 0.026 8.42 ± 0.888 5.0–7.5
Electrolytes
 Magnesium (mmol/L) 2.50 ± 0.138 2.36 ± 0.534 2.21 ± 0.385 2.61 ± 0.019 2.51 ± 0.387 2.0–5.4
 Calcium (mg/dL) 15.95 ± 0.759 17.95 ± 0.002 18.69 ± 1.297 14.85 ± 2.589 16.75 ± 0.059 5.6–12.1
 Chloride (mmol/L) 95.08 ± 12.371 95.61 ± 22.144 91.65 ± 4.134 117.48 ± 4.614 105.73 ± 2.681 92.0–120.0

Abbreviations: ALP, alkaline phosphatase; SGOT, serum glutamic oxaloacetic transaminase; SGPT, serum glutamic pyruvate transaminase; Ca, calcium; Mg, magnesium; 
Zr, zirconium; Sr, strontium.
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suggested that the quality of bone tissue around these implants 

was superior to the other bone types. In contrast, we observed 

hyperactivity of osteoclasts in Mg-5Zr-Ca-induced bones, 

which led to deformed and weaker bone tissue.

The facilitation of bone formation around the Mg-based 

implants is associated with the release of free Mg2+ ions 

during the biodegradation process, which can contribute to 

enhanced activity of osteoblasts and a consequent increase 

in ECM quantity in the peri-implant bone. In our study, we 

analyzed this activity by Col immunostaining and MT  staining. 

Collagen type-I is an important marker of osteogenesis,45 and 

we could observe this in Mg-2Zr-5Sr- and Mg-Zr-2Sr-induced 

bones (Figure 5). The extent of mineralization is shown by 

deep blue staining of MT and the DXA results (Figure 7A 

and B). The blue stained sections distinguish the mineralized 

and nonmineralized ECM, and DXA measurements of BMC 

and BMD suggested bone growth and mineral accumulation 

in and around the implant site. Most of the components of 

bone accumulation that are associated with change in bone 

size are detected as bone mass and bone  density. Our results 

show good BMC and BMD for the implanted femur bones, 

which are in line with the results of histology and immuno-

histochemical studies. Further, the impact on bone formation 

can be determined based on blood and serum biochemical 

analysis. The elevated blood platelet numbers in Mg-Zr-2Sr in 

the third month (Table 3) indicates platelet activation, which 

can make cells aggregate and form a clot. Stable clot forma-

tion is required for secretion of biochemical components for 

osteoconduction.46 We have reported the blood cell counts 

obtained at 3 months postsurgery, which is a lengthy time 

period for the cells to come back to their normal level, even if 

there happens to be any kind of alterations in their values dur-

ing the early time period postsurgery. It could also be reasoned 

that an inflammatory response has occurred and returned to 

baseline by 3 months. Nevertheless, the alloys showed no 

inflammatory response or side effects by the specified time 

period of study and, hence, can be a suitable biodegradable 

implant material.

The surface energy and wettability of the implant material 

are significant in determining cell–biomaterial interactions, 

and they significantly influences biological events at the 

subcellular and cellular level (eg, protein adsorption, cell 

attachment and spreading, etc).47 In our study,  Mg-Zr-2Sr 

alloy exhibited lowest surface energy, which could be attrib-

uted to lower weight percent of Zr and Sr (1% and 2% wt, 

respectively) and, hence, more availability of free Mg2+ ions 

in the vicinity of this alloy. Further, lower surface energy 

levels of Sr-containing Mg-2Zr-5Sr and Mg-Zr-2Sr alloys 

in comparison to Mg-5Zr and Mg-5Zr-Ca alloy surfaces 

 signifies the role of Sr in controlling the surface energy 

levels of these alloys. Since Mg-2Zr-5Sr and Mg-Zr-2Sr 

 alloy-induced NB tissues exhibited contact osteogenesis 

properties, whereas Mg-5Zr and Mg-5Zr-Ca alloy-induced 

bone tissues showed distance osteogenesis properties, it can 

be predicted that Sr-containing Mg-Zr alloys with lower sur-

face energy could induce better bone formation in vivo than 

high surface energy containing Sr-deficient Mg-Zr alloys.

The surface integrity of the alloys determine the 

rate and extent of bone formation, osseointegration, and 

osteoconduction. In vivo evaluation becomes necessary to 

understand how the implant will perform in a physiological 

environment. Various physicochemical factors can play 

equally important roles in new bone induction,43 therefore, 

no single property should be considered as the only criterion 

for selecting an implant material for orthopedic application. 

Our study highlights the importance of including Sr and 

excluding Ca in optimal combinations of Mg-Zr alloys to 

obtain good osteogenic outcome in rabbit bones.

The clinical significance of our study undoubtedly lies in 

alloying Sr with Mg-Zr-based biodegradable alloys and that 2% 

wt of Sr alloying in Mg-Zr system can improve the bone remod-

eling rate in vivo. Although we have used a total of 30 animals 

for the in vivo experiments, more detailed investigation on bone 

formation on the Mg-Zr-Sr/Ca implants in a cohort animal study 

would be needed before the implants can proceed to clinical 

trial. Also, supplemental in vivo investigations on larger animal 

models is required to determine the efficacy of the Mg alloy 

system under more complex biological conditions. Nonethe-

less, Mg-Zr alloys containing Sr as a complementary bivalent 

cation in optimum quantities can be used to promote efficient 

osseointegration for orthopedic implant applications.

Conclusion
In this paper we have studied a new class of biocompatible 

and biodegradable implants that are made of Mg as a base 

alloy and contain varying quantities of Zr, Sr, and Ca. Some 

basic physicochemical properties of these alloys have been 

described earlier.2 Here we have estimated the surface energy 

of the alloys by measuring the contact angle of polar solvents 

on the alloy surface and correlated it with their bone forming 

capacity in the peri-implant area by histological and radio-

logical evaluation. Our major findings are as follows:

1. It was found through our physicochemical investiga-

tions that inclusion of Sr into the Mg-Zr alloy increases 

both the corrosion resistance and stability of these 

alloys. Presence of Sr led to the formation of Mg
17

Sr
2
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intermediate phase that strengthens the alloy in a Mg-rich 

system. Upon addition of Sr, the compressive strength of 

these alloys resemble more closely natural bone.

2. Our results show that optimal contents of Zr and Sr increase 

the surface energy of the alloys and their capacity to simu-

late contact osteogenesis in the peri-implant area.

3. We have also shown that inclusion of Ca without Sr 

reduces the surface energy on the alloy surface and 

decreases its bone-inducing activity.

4. The osteogenesis, osteoinduction, and osseointegra-

tion of Sr-containing alloys could be seen by mineral 

and trabecular bone formation on the implant surface. 

Further, the DXA and blood and serum biochemical 

measurements prove that the bone growth and mineral 

accumulation on the implant surface is best for the Sr-

containing alloy.

5. The pattern of contact osteogenesis remained the same 

in both the Sr-containing Mg alloys; however, the higher 

concentration of Sr (5% wt) gave a greater level of bone 

formation. This was probably due to the presence of higher 

amount of secondary phase, which promoted more uncon-

trolled growth of osteoblast cells in vivo as compared to 

the lower concentration (2% wt) as seen by histological 

and immunohistochemical studies of these alloys.

6. Although more detailed in vivo studies are required to 

confirm the superior bone healing capacity of Sr, the 

present results indicate that Sr in Mg-based alloys  notably 

increases early bone apposition in rabbit cancellous 

bones and that 2% wt Sr is the optimum concentration 

for  Mg-Zr-Sr alloys to elicit the best osseointegration. 

Further, it also helps in complete degradation of the 

implant within the specified period of surgery.

 In the future, our results can guide the formulation 

of more efficient biodegradable alloys for orthopedic 

applications.
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Figure S1 Scanning electron micrographs of magnesium alloys before incubation in the culture media.
Abbreviations: Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.

Supplementary figures

Mg-5Zr

Mg-2Zr-5Sr

Left CA = 25.25 ± 0.92

Right CA = 27.25 ± 0.49

Left CA = 43.45 ± 0.64

Right CA = 41.65 ± 2.33

Left CA = 63.85 ± 1.76

Right CA = 64.15 ± 1.91

Left CA = 23.3 ± 0.71

Right CA = 24.3 ± 0.99

Mg-5Zr-Ca

Mg-Zr-2Sr

Figure S2 Representative figures of contact angles of the four magnesium alloys used for calculating surface energy.
Note: The contact angles (CA) were determined using water and measured within 60 seconds of the droplet release from the syringe probe.
Abbreviations: Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.
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Mg-5Zr

Mg-2Zr-5Sr

Left CA = 42.90 ± 1.27

Right CA = 47.65 ± 0.07

Left CA = 53.65 ± 6.15

Right CA = 54.35 ± 3.04

Left CA = 74.40 ± 2.68

Right CA = 73.55 ± 0.64

Left CA = 44.70 ± 2.26

Right CA = 45.10 ± 3.39

Mg-5Zr-Ca

Mg-Zr-2Sr

Figure S3 Representative figures of contact angles of the four magnesium-based alloys used for calculating surface energy.
Note: The contact angles (CA) were determined using glycerol and measured within 60 seconds of the droplet release from the syringe probe.
Abbreviations: Ca, calcium; Mg, magnesium; Zr, zirconium; Sr, strontium.
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