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Abstract

Background: Echo-state networks (ESN) are part of a group of reservoir computing methods and are basically a
form of recurrent artificial neural networks (ANN). These methods can perform classification tasks on time series
data. The recurrent ANN of an echo-state network has an ‘echo-state’ characteristic. This ‘echo-state’ functions as a
fading memory: samples that have been introduced into the network in a further past, are faded away. The echo-
state approach for the training of recurrent neural networks was first described by Jaeger H. et al. In clinical
medicine, until this moment, no original research articles have been published to examine the use of echo-state
networks.

Methods: This study examines the possibility of using an echo-state network for prediction of dialysis in the ICU.
Therefore, diuresis values and creatinine levels of the first three days after ICU admission were collected from 830
patients admitted to the intensive care unit (ICU) between May 31th 2003 and November 17th 2007. The outcome
parameter was the performance by the echo-state network in predicting the need for dialysis between day 5 and
day 10 of ICU admission. Patients with an ICU length of stay <10 days or patients that received dialysis in the first
five days of ICU admission were excluded. Performance by the echo-state network was then compared by means
of the area under the receiver operating characteristic curve (AUC) with results obtained by two other time series

analysis methods by means of a support vector machine (SVM) and a naive Bayes algorithm (NB).

Results: The AUC'’s in the three developed echo-state networks were 0.822, 0.818, and 0.817. These results were
comparable to the results obtained by the SYM and the NB algorithm.

Conclusions: This proof of concept study is the first to evaluate the performance of echo-state networks in an ICU
environment. This echo-state network predicted the need for dialysis in ICU patients. The AUC's of the echo-state
networks were good and comparable to the performance of other classification algorithms. Moreover, the echo-
state network was more easily configured than other time series modeling technologies.

Background

Echo-state networks (ESN), first described by Jaeger H.
et al. [1-3], are part of a group of reservoir computing
methods and are basically a form of recurrent artificial
neural networks (ANN). Modeling of time series in
medical databases by classification methods is not easy
due to the problem of correlation between the different
input variables, also known as the problem of multicolli-
nearity. Analysis of the trend of physiological data
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however is of vital importance in an ICU environment.
Research into techniques that analyze these ICU time
series data will become ever more important. The com-
plex modeling of time series can be tackled by using
highly specialised tools such as hidden Markov modeling
or by extracting features from the time series that will
be of help to classify unseen data sets which is thus a
method of feature extraction. Echo-state networks
belong to this second class of classification methods. Till
this time, no echo-state network applications in clinical
research have been published although echo-state net-
work technology for time series prediction has been stu-
died in a variety of engineering applications such as
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telecommunication [1] and robotics [2], as well as in lin-
guistics to detect grammatical structure [3]. An echo-
state network is a ‘black box’ method since the network
does not give clear insight in the parameters of the data
model, and thus gives no direct explanatory power.
Regression methods with the use of ‘penalization’, survi-
val analysis with competing risk analysis or functional
data analysis are other alternatives for these kinds of
time series data sets but will not be discussed in this
paper. In an echo-state network, the input variables are
applied to a dynamical system called the ‘reservoir’. In
figure 1, the most general structure of an echo-state net-
work is shown. The reservoir is a recurrent ANN with a
large number of units and weighted connections
between these units that remain constant. This contrasts
with a standard feedforward ANN where these connec-
tions vary and are trained via different algorithms, most
amply the backpropagation algorithm. The echo-state
network however, is trained by modifying the readout
function of the network: the readout function of an
echo-state network is mapped onto the desired outcome
parameter during training till a sufficiently low mean
squared error has been reached between the predicted
and the real classification data. The training of the read-
out function of an echo-state network, which is a simple
linear function, gives rise to a much more efficient train-
ing algorithm than would be the case in a standard feed-
forward ANN computation. The reservoir of an echo-
state network acts as a ‘fading memory’ (hence the term
‘echo-state’) and can therefore perform analysis on tem-
poral data such as time series. This could mean a lot of
potential future clinical applications since temporal data
in the ICU environment are ubiquitous but more diffi-
cult to model with statistical regression methods [4,5].

Methods

The study was approved by the Ethics Committee of the
Ghent University Hospital prior to the start of the data
retrieval. Informed consent was waived because of the
non interventional study design. This study examines
the possibility of using an echo-state network for pre-
dicting the need for dialysis in the ICU. Moreover, the
study compared the performance in prediction obtained
by the echo-state network with that obtained by two
other time series analysis methods, namely a support
vector machine (SVM) and a Naive Bayes classifier (NB)
(cf. appendix). To reach these objectives, diuresis and
creatinine values were retrieved from the ICU database
from a study population consisting of an observational
cohort of 916 patients admitted consecutively to the
ICU between May 31th 2003 and November 17th 2007,
selected from a total of 9752 MICU/SICU patients
admitted in this period after application of inclusion/
exclusion criteria. Only diuresis and creatinine values of
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the first three days after ICU admission were retrieved
(cf. Figure 2). The outcome parameter in this study was
the prediction of dialysis between day 5 and day 10 after
ICU admission (cf. Figure 2). 8725 patients with a length
of stay (LOS) on the ICU <10 days and 111 patients that
received dialysis in the first five days of ICU admission
were excluded from analysis. Some further preproces-
sing of the diuresis and creatinine data was needed:
diuresis was only measured in 2 hour intervals while
creatinine was measured once, twice or exceptionally
three times a day. Hence, the interval between creatinine
measurements was larger than the interval between two
diuresis measurements. Since the input of time series
need to contain measurements over regular time inter-
vals which have to be the same for both parameters,
interpolation of the data was the first preprocession
step. Furthermore, since the availability of both diuresis
and creatinine measurements did not fully overlap, addi-
tional preprocessing was at hand. After preprocessing of
the data of the 916 patients that had fulfilled the inclu-
sion criteria, 830 patients in total were available with 60
interpolated measurements for both creatinine and diur-
esis. 62% of these patients were male, mean age of the
study population was 58.6 years, total mortality was 17%
and mean SAPS II score was 37.2. The echo-state net-
work performance in predicting dialysis was measured
by calculating the area under the receiver operating
curve (AUC). For comparison, the AUC’s for the same
prediction problem, obtained by two other time series
analysis methods consisting of a support vector machine
(SVM) and a naive Bayes (NB) algorithm were calcu-
lated. Several parts of the algorithms had a stochastic
nature, such as the random initialization of the reservoir
weights. Therefore, the ESN, SVM and NB analyses
were repeated three times each time using another initi-
alization of the weights in the echo-state network, to see
whether or not the variations seen in different analyses
were caused by contingent network characteristics.
Furthermore, the computational complexity of the three
methods will be compared through their required execu-
tion times.

Construction of the echo-state network

The basic ESN architecture used in this study is shown
in figure 1. This basic structure consists of K input
units, N reservoir units and L output units. The input
variables are presented to the input units, the reservoir
units form the dynamical reservoir and the output units
represent the classification or prediction results. Remark
that - in contrast to a standard feedforward neural net-
work - there are feedback connections to previous hid-
den layers of the reservoir and that there are loops
within single units. First, the different matrices wherein
the weights between the units are stored, were config-
ured. These matrices are very important for the
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Figure 1 Basic echo-state network architecture, first described by H. Jaeger [6], Dotted lines indicate optional connections within the
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Figure 2 Graphical outline of the study concept, schematic of timing of data retrieval, data used in the graphic are fictitious and for
didactical purposes only.
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functioning of the network, because the echo-state char-
acteristic of the network is dependent upon the mathe-
matical properties of these matrices [6]. Three different
matrices are constructed: W' consists of the weights
between input and reservoir units, W holds the weights
between units of the reservoir, W°"' the weights
between the input, the reservoir and the output units. It
is important to note that only the weights of the output
function i.e. W°"* will be mapped onto the desired out-
put. The other matrices (connections/weights) remain
constant after initialization, this in contrast with a stan-
dard ANN (cf. introduction). Second, the training of the
echo-state network was performed by sampling of the
teacher data into the network (sampling phase) and cal-
culation of the output weights. Third, after the training
phase, the echo-state network was exploited with new
unseen data (exploitation phase). During these training
and validation phases k-fold cross-validation was used.
Cross-validation is a technique wherein the total data
set is split into k equally sized parts, called k folds. Each
of these k folds are consecutively used for validation of
the part of the database ‘outside’ the k fold, so for vali-
dation of the remaining k-1 folds. This procedure is
repeated for all of the k folds. The final performance is
the total of those measured in each of the k iterations,
which thus covers the total amount of available data.
The spectral radius of the echo-state network was set at
0.99 [6]. Figure 3 shows the basic scheme of the echo-
state network model that was used in this study. The
echo-state network for this study consisted of 2 input
nodes (one for the diuresis values and one for the crea-
tinine values), 10 reservoir nodes and 1 output node
(dialysis: yes/no?). The number of reservoir nodes was
selected by analyzing the results of a parameter sweep.
Using 10 reservoir nodes resulted in stable results and
optimal classification performance. Each node represents
a perceptron which is the simplest form of a neural net-
work [7]. The time series presented to the network’s
two input nodes thus consisted of 60 diuresis values and
60 creatinine values (i.e. 60 points in time from T =1
to T = 60, cf. Figure 3) for every of the 830 patients
included (cf. supra). The time series R; is for patient 1
and time series Rgzp is for the last patient presented to
the network. After presentation of the 60 diuresis and
creatinine values (i.e. T = 1 till 60) of the first patient,
an output weight and the status of the network can be
calculated. Indeed, the status of the network at time-
point T = 60 is a function of the previously seen data
for that patient: the network status is an ‘echo’ of all
previously seen data. Therefore, the output weight
together with the status of the network at time-point T
= 60 is all that is needed for the training algorithm of
the echo-state network. The same is then done for every
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other patient, till all patients (from R; through Rgz()
(Figure 3) have been presented to the network.
Statistical analysis

The AUC results for the three compared methods (ESN,
SVM and NB) were calculated using a 10-fold cross-vali-
dation. In each of the different methods, the same folds
were used. The AUC results obtained by the echo-state
network were then compared with the AUC results of
the SVM classifier and the Naive Bayes (NB) algorithm
by a non-parametric statistical test [8] within SAS ver-
sion 9.1.3 (macro %roc). A Dunn-Sidak correction [9]
for multiple testing was performed on the obtained p-
values.

Results

In total, 830 patients were retained from the ICU data-
base, after initial assessment of 916 patients for inclu-
sion eligibility and after preprocessing of the data. From
these 830 patients, 82 (9.9%) received dialysis and 748
(90.1%) did not receive dialysis between day 5 and day
10 of ICU admission. Table 1 indicates the AUC’s in the
three consecutive testruns for the prediction of the ESN,
SVM and NB networks with two input variables (diur-
esis and creatinine), the 95% confidence intervals for the
developed algorithms and there statistical differences
with the echo-state network results. All AUC’s demon-
strated good discrimination. As shown in Table 1, there
were no major differences in AUC’s between the differ-
ent tested methods. Only small statistical differences
were seen at the .05 level between the ESN and the NB
in testrun 2 and 3, at the advantage of the NB algo-
rithm. It was concluded that ESN, SVM and NB per-
formed well when predicting the need for dialysis in this
ICU population (Table 1). So far as computational com-
plexity was concerned, the SVM and NB each required
almost 5 hours of computation time, whereas the ESN
only required 2 seconds, which was a major advantage
for the echo-state network approach.

Discussion

This is the first study to investigate the clinical applica-
tion of echo-state networks for classification in large
ICU databases. In general, it is non-trivial to model time
series data with classical statistical techniques such as
longitudinal data analysis, due to the high degree of cor-
relation within the data. In recent years there has been
an evolution towards the development of risk-prediction
models that use daily assessment of organ function to
evaluate the patient status, and thus incorporate already
a certain degree of time dependency [10]. Echo-state
networks are specifically designed for the analysis of
time series. Other algorithms such as Hidden Markov
modeling or dynamic time warping are outside of the
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Figure 3 Schematic of the input, reservoir and the output nodes, number of time points (T1 through T60) and number of time series
(i.e. number of patients: R1 through R830).

scope of this study, but can be suitable alternatives for
time series analysis as are methods like functional data
analysis and survival analysis methods with considera-
tion of competing risks. The presence of time series in
the ICU is ubiquitous and hence the number of possible
future ICU applications for this technology are hudge.
Echo-state networks have successfully been employed
for numerous prediction problems in telecommunica-
tion research [1] and robotics [2], as well as in

linguistics to detect grammatical structure [3]. Most of
these applications come down to prediction of future
states of a time series. In this study however, the basic
echo-state network architecture is being adapted so that
not only prediction by the network of future states is pos-
sible, but finding solutions to classification problems
becomes possible too. It is noticed that the results from
the SVM and NB are slightly better than the results
obtained by the echo-state network. All AUC’s were
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Table 1 AUC’s for the three test runs with their
respective 95% Cl and Dunn-Sidak corrected p-values as
statistical difference in comparison with the ESN
performance: ESN as reference (ref.) algorithm.

AUC 95% Cl AUC p-value (ESN = ref.)

Testrun 1

ESN 0.822 0.778-0.865

SVM 0.831 0.786-0.875 0.238
NB 0.850 0.811-0.890 0.134
Testrun 2

ESN 0.818 0.773-0.864

SVM 0.833 0.784-0.881 0.356
NB 0.856 0.817-0.894 0.048
Testrun 3

ESN 0817 0.774-0.861

SVM 0.833 0.789-0.876 0.093
NB 0.855 0.817-0.894 0018

above 0.8 and clinically acceptable. The time series
modeling process in itself was much harder to realize
for the SVM and NB, which are not easily configured
for time series analysis applications, in contrast to the
developing of the echo-state network which is perfectly
suitable for time series analysis and therefore relatively
easily configured. To be able to input time series in NB
and SVM, preprocessing of the data is needed by
extracting non-correlated data out of the time series.
This preprocessing step needs not to be performed in
the echo-state network configuration. The NB and SVM
algorithms needed a much longer computation time
than the ESN method. These are all clear advantages in
favour of the echo-state network approach. It can there-
fore be concluded that ESN perform well at the task at
hand. As a limitation of the study, we can state that no
competing risk analysis for competing events (e.g. dis-
charge, death, dialysis before day 5) was performed
relating to the more general problem of missing data as
seen in other survival analysis methods. The results
obtained in this study can be considered as a proof of
concept for the use of reservoir computing methods in
the ICU. It is clear for every clinician working in an
ICU environment that possible future applications for
this new data modeling method are amply found: there
are a vast number of continuously monitored physiolo-
gical variables retrieved at the bedside that have time
series characteristics. Just to name a few, haemodynamic
parameters, ventilatory settings and consecutively
retrieved blood samples, are all potential candidates for
time series analysis through an echo-state network
approach in the ICU. Till now, most of the dynamical
and thus time-dependent features of these patient vari-
ables were lossed during the modeling process of ICU
databases, in spite of the fact that analysis of the trend
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of physiological data are of vital importance in an ICU
environment. The fact that now and in the near future
advanced dynamical modeling capabilities through novel
technologies such as these described in this study will
become possible in clinical practice, is a thrilling evolu-
tion for every clinician caring for the welfare of his
patients.

Conclusion

This proof of concept study evaluated the performance
of echo-state networks for the first time in predicting
the need for dialysis in an ICU population. The classifi-
cation performance of the echo-state network was good.
Moreover, the echo-state network was easily configured
compared to SVM and NB modeling techniques, and
the echo-state network needed much less computation
time. Since time series data in the ICU are amply avail-
able and since the modeling of ICU time series data
with regression techniques are more difficult due to the
problem of high correlation within the data, the authors
state that ESN might contribute to the development of
future modeling methods of ICU databases.

Appendix

a. SVM

The heuristic behind the SVM algorithm is quite differ-
ent from that of the commonly used logistic regression
modeling for prediction. This latter approach is the
golden standard for prognostic modeling in the ICU and
is best known by clinicians. The LR algorithm uses a
weighted least squares algorithm, i.e. the prediction is
based on construction of a regression line as the best fit
through the data points by minimizing a weighted sum
of the squared distances to the fitted regression line.
SVM, in contrast, tries to model the input variables by
finding the separating boundary - called hyperplane - to
reach classification of the input variables: if no separa-
tion is possible within a high number of input variables,
the SVM algorithm still finds a separation boundary for
classification by mathematically transforming the input
variables and thereby increasing the dimensionality of
the input variable space. The general term for a separat-
ing straight line in a high-dimensional space is a hyper-
plane. Moreover, statistical learning theory predicts that
the SVM algorithm will find the hyperplane with the
maximum-margin to the nearest data point on either
side of the hyperplane.

b. Naive Bayes algorithm

Bayesian theory and Bayesian probability are named
after Thomas Bayes, a British eighteenth century mathe-
matician. Bayesian logic combines the result of a test for
a particular patient with a pre-test probability (of the
population), to forecast or determine the chance of find-
ing a disease: clinicians intuitively combine these two



Verplancke et al. BMC Medical Informatics and Decision Making 2010, 10:4

http://www.biomedcentral.com/1472-6947/10/4

probabilities routinely. Bayesian theory suggests that
Bayes’ theorem can be used as a rule to infer or update
the degree of ‘belief’ in light of new information (hence
the name ‘belief networks’). Bayesian networks can be
seen as an alternative to logistic regression models
where statistical dependence or independence between
different variables are explicitly formulated and not hid-
den in the regression coefficients as in logistic regres-
sion. In a naive Bayes network, as used in this study,
there are no dependencies between the different feature
variables, they are thus considered to be conditionally
independent, hence the term ‘naive’. A nice example of
the applicability in classification problems of these naive
Bayesian networks is the article by Price et al. for the
classification of cercival cancer patients [11].
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