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Abstract
Background: Protein-protein docking for proteins with large conformational changes was analyzed by using 
interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for 
searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined 
method for analyzing protein-protein docking by taking large conformational changes into consideration. This 
combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and 
cluster analysis using interaction fingerprints and energy profiles.

Results: To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from 
the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, 
the CaM-binding peptides of cyclic nucleotide gateway (CNG), CaM kinase kinase (CaMKK) and the plasma membrane 
Ca2+ ATPase pump (PMCA), and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand 
complexes were generated in the docking step and the relationship between their energy profiles and structural 
similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were 
obtained in the case of CNG and CaMKK.

Conclusions: The interaction fingerprint method discriminated near-native structures better than the RMSD method 
in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for 
protein-protein docking analysis of certain cases.

Background
Protein-protein interactions are important events for reg-
ulating biological functions. A network of protein-protein
interactions is considered scale-free type, rather than
random [1-3], suggesting that from this network of pro-
tein-protein interactions we can find proteins interacting
with various targets. Such proteins, referred to as hub
proteins, are intrinsically disordered protein [1,4,5],
which is one of the problems associated with predicting
protein complexes from the rigid-body docking approach
because of protein flexibility. In general, the rigid-body
docking process is composed of four different steps:
selection or building of molecular structures, docking for

generating complex structures, refinement of models and
finally the scoring or ranking step. We adopted the
ensemble docking approach for the rigid-body docking
analysis after taking protein flexibility into consideration,
because backbone flexibility, resulting from the large con-
formational changes in the protein structure, is one of the
important factors of protein-protein interactions [6].

A selection step is generally used to define conforma-
tional space in structure analysis. There are different
methods for generating multiple structures: molecular
dynamics (MD), normal-mode analysis (NMA), and 3-
dimensional (3D) structural data generated by nuclear
magnetic resonance (NMR). These methods are often
combined to account for backbone and side-chain flexi-
bilities [7-10]. However, for rigid-body docking with large
conformational changes, backbone flexibility should be
considered before side-chain rearrangement. Multiple
structures associated with rigid-body docking could pro-
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vide the information required for taking the backbone
flexibility into account in ensemble docking analysis [11].
Following this step, side-chain flexibility could be
induced locally at the docking sites of the receptor and
ligand complex using the soft-docking method of modify-
ing the side-chain volumes [12,13].

Ensemble docking analysis can generate various com-
plex structures based on the rigid-body data, and usually
contains many false-positive structures. Therefore,
another post-docking step could be added to the ensem-
ble docking process to search for near-native structures.
Cluster analysis is one such reliable approach available for
use in this post-docking process. In this case, it is neces-
sary to use certain parameters that would specify similar-
ity or distance between the complex structures. There
can also be issues in comparing structures using the root
mean square distance (RMSD). Global Distance Test
(GDT) plot [14] is a 2D diagram of the similarity of two
molecular conformations based on searching sequence
alignment regions with less RMSD, which is used for
evaluating predicted structures in protein structure pre-
diction contest, CASP (the Critical Assessment of protein
Structure Prediction). Figure 1 is a GDT plot showing the
differences in structure between the bound and unbound
state of docking targets. As shown in Figure 1, there are
two types of conformational differences between the
unbound and bound forms in protein-protein interaction.
One type shows less structural changes, which is typical
of docking targets. The others diverge even when small

portions are aligned - in this particular case they are
calmodulin (CaM) and some of the critical assessment of
prediction interactions (CAPRI) targets. It is, therefore,
an important and a challenging problem to be able to pre-
dict the protein-protein interaction of a protein with
large conformational changes. To tackle the problem of
docking in proteins with large conformational changes,
the RMSD value, although still useful, often depends on
the superposition step. For comparing the structures of
complexes generated from the docking process, we there-
fore introduced a protein interaction profile, called inter-
action fingerprints (IFPs), which is composed of binary
states of interacting amino acid residues, as a scale for
measuring unique similarities between the complex
structures.

IFP is useful for classifying or selecting representative
complex structures, and has been previously used for
analyzing the protein-ligand docking problems rather
than analyzing the protein-protein interactions [15,16].
IFP allows examination of the properties of protein-pro-
tein interactions simply by comparing the docking struc-
tures in terms of their interaction patterns, for example
by using the Tanimoto index (Tc-IFP) [15,16]. It is, there-
fore, possible that by using IFP one could select the near-
native structures at the contact residue string level, rather
than obtaining the exact complex structure at the Carte-
sian coordinate level.

In the present study, we used an ensemble of native
(bound state) and 30 different NMR-derived structures of
calmodulin (CaM), which largely differed from the native
structure as indicated by the dotted lines in Figure 1, for
our analysis. We then applied IFP to the protein-protein
post-docking process for the reconstruction of various
CaM-ligand complexes. IFPs were obtained from the gen-
erated complex structures and were used for the cluster
analysis. Subsequently, we analyzed relationship between
the energy profile and structural similarity or distance
using Tc-IFP or RMSD in order to improve reliability of
the overall process for proteins with large conformational
changes. We also briefly discussed about searching near-
native groups by cluster analysis in terms of their energy
scores.

Results
Decoy structures were obtained from the rigid-body
docking simulations using one of the 3 peptides (CNG,
CaMKK, or PMCA) as a ligand and CaM multi-struc-
tures generated from NMR analysis (Figure 2). Through
one docking simulation round for each CaM-ligand pair,
we obtained 2000 decoys. For each peptide, two types of
decoys, 60000 decoys called as "a-decoys" and 2000
decoys called as "b-decoys", were generated from 30 apo-
CaMs and one bound state CaM, respectively. Some com-
plex structures were rejected in the process of side-chain

Figure 1 Structure differences between the bound and unbound 
forms in protein-protein interaction using GDT plots. Dotted lines 
represent comparison of the NMR-derived structures (1DMO) of 30 un-
bound states of CaM with the CaM structure extracted from the CaM-
CNG complex (1SY9). Rigid lines show comparison between the 
bound and unbound structures of CAPRI targets: T09, 10, 14, 18-21.
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rearrangement because of their unavailable arrange-
ments, as detailed in the "Protein docking process" of the
Methods section. Consequently, out of 62000 (31 x 2000)
decoys for each peptide, the numbers of decoys used for
post-docking analysis were 61830 for PMCA, 61909 for
CaMKK and 61854 for CNG.

Interaction energy scores of decoys
Figure 3 shows the distribution of interaction energy
scores in decoys of CaM-peptide ligand complexes. Here,
we plotted a-decoys and b-decoys separately, and adopted
ZRANK score as the interaction energy score (see the
Methods). As shown, for each ligand, a-decoys have simi-
lar peaks and deviations, whereas the distributions of the
b-decoys were different from those of the a-decoys.

In the case of CNG, the b-decoy set showed lower
mean values and larger standard deviations than the a-
decoys. In the case of CaMKK, distributions of the b-
decoys were similar to those of the a-decoys. However,
the b-decoys showed larger deviations because of the
existence of a low energy peak around -200 in the interac-
tion energy score (inset of CaMKK panel), which was
completely divided at -170 and included 18 b-decoys. In
contrast to CNG, PMCA had more b-decoys with higher
interaction energy scores than the a-decoys.

Structural similarities between the decoys and the native 
structure
In order to analyze the structural landscape of decoys, it
is important to investigate whether the near-native

decoys could be discriminated from all decoys. Thus, we
next investigated which method, Tc-IFP or RMSD, is bet-
ter able to discriminate the near-native decoys from all
decoys. Figure 4 shows distributions of a-decoys (open
bar), near-native b-decoys with RMSD less than 5.0 ang-
strom (solid bar), and other b-decoys (gray bar). Areas I,
II, and III indicate areas containing only b-decoys, over-
lap of b-decoys and a-decoys, and only a-decoys, respec-
tively. As shown in Figure 4A, the b-decoys are
distributed in the lower RMSD compared to the a-decoys,
which are distributed in bell-shaped manner in the case
of CNG and CaMKK. There were 133 and 1867 of CNG
b-decoys, and 18 and 1982 CaMKK b-decoys in areas I
and II, respectively. B-decoys in area I of CaMKK have
the lowest energy groups of around -200 energy scores, as
previously seen in the inset of Figure 3, which could be
divided from a-decoys. In area I of CNG, b-decoys have
energy scores between -50 and -150.

In the case of Tc-IFP (Figure 4B), most a-decoys in all
three cases were distributed around 0.0, indicating that
almost all a-decoys did not have any similarity with the
native interactions. On the other hand, b-decoys were
distributed more broadly than a-decoys in the case of
CNG and CaMKK. We found 660 and 1340 CNG b-
decoys, and 51 and 1949 CaMKK b-decoys in the Tc-IFP

Figure 3 Distributions of interaction energy scores . Dotted and 
rigid lines indicate a-decoys and b-decoys, respectively. Mean values 
and standard deviations of a-decoys for CN, CaMKK and PMCA were -
43.0 ± 21.6 (n = 59,854), -60.2 ± 23.0 (n = 59,909), and -48.6 ± 21.89 (n 
= 59,830), respectively. Mean values and standard deviations of b-de-
coys for CNG, CaMKK and PMCA were -76.13 ± 31.84 (n = 2,000), -60.23 
± 28.69 (n = 2,000), and -16.52 ± 12.06 (n = 2,000), respectively. The in-
set in the CaMKK panel shows the presence of one peak for b-decoys 
around -200.

Figure 2 Structures of ligand-bound and unbound CaM. Three dif-
ferent types of CaM complexes were used in this work: complexes with 
A) CNG, B) CaMKK and C) PMCA. (D) Thirty structures of the single un-
bound state CaM are shown after superposing of the N-terminal do-
mains.



Uchikoga and Hirokawa BMC Bioinformatics 2010, 11:236
http://www.biomedcentral.com/1471-2105/11/236

Page 4 of 10
areas I and II, respectively, indicating that the b-decoys
contained more near-native structures than the a-decoys.
B-decoys in the Tc-IFP area I of CNG were consisted of
decoys with RMSD lower than 5.0 angstrom and other b-
decoys. The latter b-decoys have slightly higher energy
scores than the former decoys. In CaMKK, b-decoys in
area I consisted of portions of b-decoys with RMSD lower
than 5.0 angstrom and other b-decoys with energy scores
between -100 and -150. Comparison of the Tc-IFP and
RMSD results indicate that for both CNG and CaMKK,
the Tc-IFP method produced more b-decoys in area I
than the RMSD method. Furthermore, the b-decoys,
obtained using the Tc-IFP method, could be better
divided into groups than the RMSD method. Thus, it
appears that the Tc-IFP is a more desirable method than
RMSD for discriminating b-decoys from other decoys.

In contrast to the CNG and CaMKK b-decoys, the
number of PMCA b-decoys in areas I and II, obtained
using the RMSD method, were 46 and 1954, respectively,
and those obtained using the Tc-IFP method were 1 and
1875, respectively. Clearly, the Tc-IFP method resulted
less number of PMCA b-decoys in area I than the CNG
and CaMKK b-decoys. This might have resulted from the
high-energy scores of b-decoys (Figure 3) and the smaller
interacting surface of the CaM-PMCA complex than the

respective CNG and CaMKK complexes, as shown in Fig-
ure 2.

To examine the difference between the Tc-IFP and
RMSD, we also paid attention to the b-decoys with low
RMSD. Three types of distributions were found in Tc-
IFP: (1) only area I type, all 79 b-decoys with low RMSD
in CNG are found in area I; (2) almost area I type, 3 out of
18 b-decoys with low RMSD in CaMKK are in area II; and
(3) only area II type, all 27 b-decoys with low RMSD in
PMCA are in area II. Thus, in the case of globular cognate
structure of CaM (i.e., CaM-CNG and CaM-CaMKK
complexes), b-decoys with low RMSD values were found
in an area of Tc-IFP that scored higher similarity than the
a-decoys.

Cluster analysis
Cluster analysis is useful for choosing near-native decoys
without prior knowledge of native structures. Using a
certain threshold, decoys could be classified into groups
composed of similar decoys. Uniformity of every group
could then be investigated by using interaction energy
scores. When groups with more uniformity of interaction
energy scores were obtained, the used parameters were
considered to be better suited for the cluster analysis. We,
therefore, used the unweighted pair group method with
arithmetic mean (UPGMA) to construct hierarchical tree

Figure 4 Distributions of similarities between the decoys and native structures. Decoys were obtained using (A) RMSD and (B) Tc-IFP. Open bars 
indicate a-decoys (right vertical axis). Gray bars indicate b-decoys (left vertical axis). Solid bars indicate decoys with less than 5.0 angstrom RMSD for 
CNG and CaMKK, and less than 10.0 angstrom RMSD for PMCA.
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from the results obtained by Tc-IFP and RMSD analyses.
After generating a dendrogram, groups of decoys
obtained using Tc-IFP or RMSD were divided according
to their similarities. Figure 5A shows two examples of
deviations of interaction energy scores of groups of
decoys generated from CaMKK; results from the Tc-IFP
analysis is derived from 0.8 threshold and results from
the RMSD analysis is derived from 8.0 angstroms thresh-
old. In this case, result obtained from the Tc-IFP analysis
appears to be better than that from the RMSD analysis
because magnitudes of the error bars are smaller in the
Tc-IFP than in the RMSD. Next, we used 0.6, 0.8 and 0.9
as thresholds of Tc-IFP and 3.0, 5.0, 8.0 and 10.0 ang-
stroms as thresholds of RMSD, respectively. Figure 5B
shows the standard deviations of interaction energy
scores for every group with error bars; clearly, for each
parameter, the deviations become large as the threshold
was increased. In the case of CNG, deviations and error
bars were almost of similar magnitudes irrespective of

whether Tc-IFP or RMSD was used for the analysis. On
the other hand, in the cases of CaMKK and PMCA, devi-
ations and error bars obtained using Tc-IFP were of
smaller magnitudes than those obtained using RMSD.
These results suggest that in terms of interaction energy
scores we could obtain more uniform groups by using Tc-
IFP than by RMSD.

Discussion
We introduced IFP for describing interaction profiles by
taking protein flexibility into consideration. In the case of
the globular cognate structure of CaM (i.e., CaM-CNG
and CaM-CaMKK complexes), b-decoys scored higher
similarities to the native complex than the a-decoys
derived by the Tc-IFP analysis (Figure 4B). We also used
the cluster analysis to determine the abilities of Tc-IFP
and RMSD in dividing the decoys into groups of similar
decoys according to the Tc-IFP or RMSD threshold. We
obtained more uniform groups in terms of interaction

Figure 5 Deviations of interaction energy scores. A: Example of interaction energy scores for each divided group with error bars (n = 61909) gen-
erated from CaMKK decoys. In the left panel (IFP), energy score is derived from 0.8 threshold of Tc-IFP, and in the right panel (RMSD), energy score is 
derived from 8 angstroms of RMSD. B: Interaction energy score deviations for each threshold: for Tc-IFP, the thresholds are 0.6, 0.8 and 0.9; for RMSD, 
the thresholds are 3, 5, 8 and 10 angstroms. Detail values are indicated in the text. Gray, striped and open bars indicate CNG, CaMKK, and PMCA, re-
spectively.
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energy scores by Tc-IFP than by RMSD (Figure 5). These
results indicated that IFP can be used as one of the pro-
files of decoys for determining similarities among them-
selves in terms of interacting amino acids.

We then tried to discriminate the near-native clusters
without the knowledge of native complex structure. For
this purpose, decoys were classified into groups of similar
decoys by cluster analysis, which was slightly different
from the cluster analysis described in the Results section.
In this analysis, 2000 decoys, derived from the structural
data of each CaM-ligand pair, were divided into 10 groups
by using the statistical computing "R" software. Because
we used 31 CaM structures, we therefore had 310 (= 10 ×
31) groups for each CaM-ligand complex. Accordingly,
using both IFP and RMSD, we found near-native clusters
(shown as open circles with a cross mark inside in Figure
6), having most number of interacting residues identical
to the native complex or having highest similarities (Sfrac)
to the native complex, for each ligand except for PMCA.
In the case of CNG, we could discriminate the near-
native groups in both Tc-IFP and RMSD by searching for
groups with lower energy scores. The number of decoys
in the near-native group was the second largest and the
largest among the b-decoy groups obtained by Tc-IFP and
RMSD analyses, respectively. Similarly, in the case of
CaMKK, the near-native groups obtained by Tc-IFP anal-
ysis could be discriminated as a group with the lowest
energy score among all groups, which includes the set of
b-decoys with the lowest energy scores (shown in the
inset of Figure 3). However, the number of decoys in the
near-native groups was not so large. On the other hand,
for CaMKK, the near-native group obtained by RMSD
analysis consisted of the most number of b-decoys,
although the energy score was lowest only among the b-
decoy groups.

Based on the energy scores we could discriminate the
near-native groups in the case of CaM-CNG both by Tc-
IFP and RMSD. However, in the case of CaM-CaMKK,
energy score could not be the index for searching the
near-native groups by RMSD, indicating that the RMSD
method is unable to classify the decoys with the lowest
energy scores (shown in Figure. 3). We, therefore, com-
pared the interaction frequencies of near-native clusters.
As shown in Figure 7, more frequently interacting resi-
dues were found on the surface of CaM in the near-native
clusters obtained by RMSD than those found in the native
structure and also than those in the near-native clusters
obtained by IFP. This result suggests that by using the IFP
method one could identify interactions similar to the
native interactions. Therefore, the cluster analysis in
combination with IFP, rather than with RMSD, appears to
be a much better approach in predicting the near-native
decoys without any prior structural knowledge.

In the case of the CaM-CaMKK complex, we obtained a
set of desired near-native decoys with lowest interaction
energy (Figure 3) and high Tc-IFPs (Figure 4). These
results are explained by the structure of the CaM-
CaMKK complex, which is different from those of the
CaM-CNG and CaM-PMCA complexes. The globular
cognate structure of CaM in the CaM-CaMKK complex
differed only slightly from that of the CaM-CNG com-
plex, indicating that the cavity of the CaM-CaMKK com-
plex is narrower than that of the CaM-CNG complex, as
shown in Figure 2. In contrast to the simple alpha helical

Figure 6 Dispersion diagrams showing relationship between the 
number of decoys and energy scores in clusters. Groups were ob-
tained using (A) Tc-IFP and (B) RMSD. Energy scores and the numbers 
of decoys for each group are plotted. For each CaM structure, decoys 
were divided into 10 groups. Closed circles indicate groups consisting 
of only a-decoy. Open circles indicate groups consisting of only b-de-
coy. Open circles with a cross mark inside indicate near-native groups. 
In the case of PMCA, near-native groups were not found.
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structure of the CNG and PMCA ligand peptides, the
CaMKK ligand peptide has an additional loop region in
the C-terminal end. These structural features of the
ligand have contributed in obtaining a set of near-native
decoys for the CaM-CaMKK complex. In context with
the shape of the ligand peptide, it is noteworthy that we
found CaM-CNG b-decoys in which the CNG was bound
to the CaM cavity in an inverse manner as compared to
the native complex; this inverse binding of CNG might
have contributed to the broad distribution of the CaM-
CNG b-decoys (Figure 4B). In any general docking prob-
lem, any ligand with simple alpha helix-like pseudo-sym-
metrical shape might have similar binding characteristic
of CNG.

In the case of CaM-PMCA, near-native decoys could be
discriminated clearly from the native complexes using
RMSD. On the other hand, in the case of Tc-IFP, less
number of near-native decoys (Figure 4) and none of the
near-native groups (Figure 6) were obtained for the CaM-
PMCA complex. This is in contrast to the CaM-CNG and
CaM-CaMKK complexes, in both of which the number of
interacting residues are similar [17,18]. PMCA interacts
with CaM using about half the number residues than
those involved in CaM-CNG or CaM-CaMKK interac-
tions [19], because it interacts only with the C-terminal
lobe of CaM. In a general docking problem, this type of
interaction is normally involved in "solvent-accessible
ligand" and "open and shallow form of receptor" cases.
That the number of near-native decoys for the CaM-
PMCA complex was found to be less by our analysis,
could be related to the fact that the decoys were obtained
not only from the extended cognate structure of CaM (b-

decoys), but also from some unbound states of CaM (a-
decoys). Therefore, in order to obtain better near-native
decoys following the post-docking process, we need to
further improve on the IFP method in terms of physico-
chemical approach, and also need to develop a combina-
tion method of IFP and RMSD.

Although we could discriminate near-native decoys in
CaM-CNG and CaMKK, diversity of decoys were also
obtained using this method. To further develop the IFP
method for solving the docking problem of proteins with
large conformational changing, we need to generate bet-
ter ensemble of bound structures by using MD or NMA
methods for the cross-docking analysis.

Conclusions
In the present study, IFP was introduced for describing
interaction profiles, which could be used for comparing
different structures of decoys by taking protein flexibility
into consideration. In cluster analysis, IFP could clearly
discriminate the near-native structures better than
RMSD in terms of energy scores. We also showed that a
combined method that included IFP was useful for pro-
tein-protein docking analysis. We believe that this
method, in combination with other docking software,
such as RosettaDock software that optimizes both side-
chains and backbones, could be applied to other protein
complexes deposited in the protein structure databases.

Methods
To perform ensemble docking simulations, we used
structural data of multiple forms of unbound states and a
single rigid ligand-bound state of a receptor protein,
which in this case is calmodulin (CaM). Trimming and
optimization of side-chains were taken into consideration
in soft docking for obtaining IFPs. IFP, in combination
with cluster analysis, was used to classify the near-native
structures of the CaM complexes by comparing their
structures with different known CaM structures.

Protein structural data
Multiple structural data of a receptor protein were used
for ensemble docking simulations. In the present study,
we used CaM as the receptor protein. CaM is a widely
studied protein that undergoes large conformational
changes both in the unbound and bound states, and has
been normally used in molecular biological studies rather
than in docking problems. Structurally, CaM consists of
two globular domains at the N- and C-termini connected
by a central helix domain, known as a dumbbell-like
shape. Because of the presence of a disordered region in
the central domain, a single CaM molecule can structur-
ally switch between the open and closed conformational
states. Indeed, structure analysis using NMR revealed
that a single CaM molecule existed in a variety of struc-

Figure 7 Binding sites of near-native clusters in complexes of 
CaM with CNG (top panel) and CaMKK (bottom panel). Binding 
sites are depicted as van der Walls (VDW) balls. Darker VDW balls indi-
cate the decoy residues interacting more with the ligand. Interaction 
clusters obtained using IFP are more similar to the native interactions 
than those obtained using RMSD.
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tural conformations [20]. Such structural changes allow
CaM to bind with various target proteins, and the bound
states are classified into open and closed conformations.
In the present study, we used the interacting parts of the
cyclic nucleotide gateway (CNG), CaM kinase kinase
(CaMKK) and the plasma membrane Ca2+ ATPase pump
(PMCA), as CaM ligands, all of which were shown to con-
tain alpha helix-rich structures. Figure 2 shows the struc-
tures of three bound states of CaM-ligand complexes and
a single unbound state of CaM. In their CaM-bound
states, the CNG (Figure 2A) [17] and CaMKK (Figure 2B)
[18] interacted with the bended form of CaM, but in the
opposite directions. In contrast, PMCA bound to the C-
terminal part of the extended form of CaM (Figure 2C)
[19]. For each ligand, 31 different structures of CaM were
used as receptor molecules for the rigid-body docking
simulations. Structures of thirty unbound states of CaM
(Figure 2D) were obtained from the Protein Data Bank
(PDB; PDBID: 1DMO, containing 30 NMR structures)
[20]. The other CaM structures used in this study were
the bound state structural data of 'Model 1' of chain 'A' in
1SY9 (20 NMR structures), 1CKK (30 NMR structures),
and 1CFF (26 NMR structures); these structural data cor-
responded to the bound states of CaM with the respective
ligands used in the present work. For all structures, the
amino acid sequence of the CaM protein, which is 148
amino acids long, was same except for an asparagine resi-
due at position 127 in the unbound form was an aspartic
acid residue in the bound form.

Structures of ligands used in this study were chosen
from the bound state structural data: CaM bound to
CNG olfactory channel (PDBID: 1SY9, Model 1 of chain
B), CaM bound to CaMKK (PDBID: 1CKK, Model of
chain B) and CaM bound to PMCA (PDBIB: 1CFF, Model
1 of chain B). The three chosen ligands were short pep-
tides derived from CNG, CaMKK and PMCA and con-
tained 20, 26 and 19 amino acid residues, respectively.

Protein docking process and cluster analysis
In this work, we considered backbone flexibility by using
rigid-body ensemble docking with multiple structures
derived from NMR analysis. Side-chains of amino acids
in decoys were optimized through side-chain trimming
process, which is similar to the induced fit process.

To obtain decoys by rigid-body docking, we used
ZDOCK ver.2.3 [21] with the option for sampling at 6-
degree rotational steps. Using Fast Fourier Transform,
ZDOCK searches for all possible binding orientations of
a ligand along the surface of a receptor protein, optimiz-
ing desolvation, shape complementarity and electrostat-
ics [21]. The top 2000 structures, along with their
ZDOCK scores, were used as candidates of near-native
structures. The docking score was calculated by consider-
ing several interaction properties, e.g., shape comple-

mentarity, desolvation, and electrostatics [21,22]. For
side-chain rearrangement, volume of each side-chain of
the receptor protein was modified to that of alanine
before docking. The coordinates of alanine side-chains
were modelled by using the software MOE ver. 2007.09.
After rigid-body docking, structures of top 2000 relative
positions of a ligand bound to a receptor structure were
obtained. Side-chains of the protein-ligand complex
structures were next optimized by using SCWRL3 [23],
followed by substituting the trimmed side-chain contain-
ing receptor structural data with those of the original
structural data. This side-chain rearrangement process is
similar to induced fit analysis. We did not optimize the
backbones because multiple NMR generated CaM struc-
tures corresponded to backbone flexibility; moreover,
CaM structure is almost rigid except for a central helical
domain connecting the N- and C-terminal globular
domains. During this process, we found some decoys
with unavailable arrangement side-chain, which was
defined as the arrangement that took more than 10 min
of CPU time for optimization. Such decoys were not be
used in the post-docking process.

We call the protein-ligand complex structures, gener-
ated through this docking process, as "decoys." For full-
atom complex structures modelled by MOE ver. 2007.09,
we used ZRANK [24] to determine the interaction energy
scores, which is a linear weighted sum of the van der
Walls, electrostatic and desolvation energies.

We also performed cluster analysis using distance
matrices. For generating tree of decoys based on similari-
ties, we used the unweighted pair group method with
arithmetic mean (UPGMA) algorithm, which is one of
the pair group methods and is often used for generating
phylogenetic tree of life. We used the statistical comput-
ing R software ver.2.8.0 for this analysis.

Comparison of decoys with interaction fingerprint (IFP)
RMSD is generally considered a suitable and powerful
parameter when comparing structures of molecular com-
plexes. However, in the case of proteins with large confor-
mational changes (Figure 1), it is sufficient to compare
the interacting fragments rather than the whole struc-
tures [15,16]. For this purpose, profiles of interacting
amino acid residue pairs were obtained by the dimplot
command of the LIGPLOT program [25]. LIGPLOT
counts the numbers of both hydrogen bond and non-
bonded contact. In this work, we reconstructed CaM
complexes, whose key interactions involve in hydropho-
bic residues [17-19]. Actually, the number of non-bonded
contacts in the native CaM complexes are much higher
than the hydrogen-bonded contacts; the number of non-
bonded and hydrogen-bonded contacts are, respectively,
139 and 6 in CaM-CNG, 139 and 6 in CaM-CaMKK, and
57 and 0 in CaM-PMCA. In our docking process, we do

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1DMO
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1SY9
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CKK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CFF
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1SY9
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CKK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CFF
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not have any process involved in optimization of hydro-
gen bond. Therefore, we used the non-hydrogen bond
contacts to generate the interaction profiles. Information
on residue pairs were entered into a bit sequence, in
which one bit corresponded to a residue pair. If a pair was
found, the bit was assigned a numerical value of 1; if not,
the bit was assigned a numerical value of 0.

After generating an interaction profile of molecular
complexes, cluster analysis was performed. Similarity
between the decoys and native molecular complexes was
calculated as the Tversky similarity [26] as follows:

where a and b are the number of bits including queries
a and b, respectively, and c is the common bit-number
between a and b, c = a  b.

Parameters α and β varied from 1 to 0 independently.
When α = 1 and β = 1, the similarity between the queries
a and b could be calculated as follows:

indicating similarity between the queries a and b, which
is known as the Tanimoto index (Tc-IFP). We used Tc-IFP
when comparing decoys to native interactions. When α =
1 and β = 0, the ratio of the common bit-number to query
a as IFP of native was calculated as follows:

This equation includes the bit-number of query b
implicitly, through index c. Sfrac is the ratio of native
amino acid pairs included in a decoy to all the native pair
numbers. The numbers of bits in the native structures are
invariable, which are 25 bits in CNG, 57 in CaMKK, and
17 in PMCA. Therefore, values of index Sfrac are discon-
tinuous. We used index Sfrac to compare decoys with
native structures because when query b has many more
bits than query a, the value of index STanimoto loses linear-
ity with the bit number of query b [27]. IFPs were subse-
quently used to perform cluster analysis to compare
interactions of decoys, which are independent of the
methods used for the superposition of 3D structural data.
The index of STanimoto was used to quickly calculate whole
pairs of decoys.

List of abbreviations
IFP: interaction fingerprints; Tc-IFP: Tanimoto index;
RMSD: root mean square distance; CaM: calmodulin;
CNG: cyclic nucleotide gateway; CaMKK: CaM kinase

kinase; PMCA: plasma membrane Ca2+ ATPase pump;
UPGMA: unweighted pair group method with arithmetic
mean
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