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Abstract
We study new types for minimax theorems with a couple of set-valued mappings,
and we propose several versions for minimax theorems in topological vector spaces
setting. These problems arise naturally from some minimax theorems in the vector
settings. Both the types of scalar minimax theorems and the set minimax theorems
are discussed. Furthermore, we propose three versions of minimax theorems for the
last type. Some examples are also proposed to illustrate our theorems.
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1 Introduction and preliminaries
Let X, Y be two nonempty sets in two Hausdorff topological vector spaces, respectively,
Z be a Hausdorff topological vector space, C ⊂ Z a closed convex and pointed cone with
apex at the origin and intC �= ∅, this means that C is a closed set with nonempty interior
and satisfies λC ⊆ C, ∀λ > ; C + C ⊆ C; and C ∩ (–C) = {}. The scalar bilevel minimax
theorems stated as follows: given two set-valued mappings F ,G : X × Y ⇒R, under suit-
able conditions the following relation holds:

(s – B) min
⋃
x∈X

max
⋃
y∈Y

F(x, y) ≤max
⋃
y∈Y

min
⋃
x∈X

G(x, y).

Given two mappings F ,G : X × Y ⇒ Z, the first version of bilevel minimax theorems
stated that under suitable conditions the following relation holds:

(B) Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) ⊂Min

(
co

⋃
x∈X

Maxw
⋃
y∈Y

F(x, y)
)
+C.

The second version of bilevel minimax theorems stated that under suitable conditions
the following relation holds:

(B) Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) ⊂Min
⋃
x∈X

Maxw
⋃
y∈Y

F(x, y) +C.
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The third version of bilevel minimax theorems stated that under suitable conditions the
following relation holds:

(B) Min
⋃
x∈X

Maxw
⋃
y∈Y

F(x, y)⊂Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) + Z \ (
C \ {}).

The case G = F of (s – B) and (B)-(B) has been discussed in [–] for set-valued map-
ping and in [] for vector-valued mapping, respectively. Scalar minimax theorems and set
minimax theorems for non-continuous set-valued mappings were first proposed by Lin et
al. []. These results can be compared with the recent existing results [, ]. In this paper,
we establish bilevelminimax results with a couple of non-continuous set-valuedmappings
(Theorem. in Section , Theorems .-. in Section ). These resultsmight not hold for
each individual non-continuous set-valued mapping since it always lack some conditions
so that the existing minimax theorems are not applicable, such as Theorems .-. [],
Theorem . [] or Proposition . [].
We present some fundamental concepts which will be used in the sequel.

Definition . [, , ] Let A be a nonempty subset of Z. A point z ∈ A is called a
(a) minimal point of A if A∩ (z –C) = {z};MinA denotes the set of all minimal points

of A;
(b) maximal point of A if A∩ (z +C) = {z};MaxA denotes the set of all maximal points

of A;
(c) weakly minimal point of A if A∩ (z – intC) = ∅;Minw A denotes the set of all weakly

minimal points of A;
(d) weakly maximal point of A if A∩ (z + intC) = ∅;Maxw A denotes the set of all

weakly maximal points of A.

Following [], we denote both Max and Maxw by max (both Min and Minw by min) in
R since both Max and Maxw (both Min and Minw) are same in R. We note that, for a
nonempty compact set A, the both sets MaxA and MinA are nonempty. Furthermore,
MinA⊂Minw A,MaxA⊂Maxw A, A⊂MinA +C, and A⊂MaxA –C.
In the sequel we shall use the following geometric result.

Lemma . [] Let X, Y be nonempty convex subsets of two real Hausdorff topological
spaces, respectively, A⊂ X × Y be a subset such that
(a) for each y ∈ Y , the set {x ∈ X : (x, y) ∈ A} is closed in X; and
(b) for each x ∈ X , the set {y ∈ Y : (x, y) /∈ A} is convex or empty.

Suppose that there exist a subset B of A and a compact convex subset K of X such that B is
closed in X × Y and
(c) for each y ∈ Y , the set {x ∈ K : (x, y) ∈ B} is nonempty and convex.

Then there exists a point x ∈ K such that {x} × Y ⊂ A.

Definition . Let U , V be Hausdorff topological spaces. A set-valued map F : U ⇒ V
with nonempty values is said to be
(a) lower semi-continuous at x ∈U if for any net {xμ} ⊂ U such that xμ → x and any

y ∈ F(x), there exists a net yμ ∈ F(xμ) such that yμ → y;

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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(b) upper semi-continuous at x ∈U if for every x ∈ U and for every open set N
containing F(x), there exists a neighborhoodM of x such that F(M) ⊂N ;

(c) continuous at x ∈U if F is upper semi-continuous as well as lower semi-continuous
at x.

We note that T is upper semi-continuous at x and T(x) is compact, then for any net
{xν} ⊂U , xν → x, and for any net yν ∈ T(xν) for each ν , there exist y ∈ T(x) and a subnet
{yνα } such that yνα → y. For more details, we refer the reader to [, ].

Definition . [, ] Let k ∈ intC and v ∈ Z. The Gerstewitz function ξkv : Z → R is de-
fined by

ξkv(u) =min{t ∈R : u ∈ v + tk –C}.

We present some fundamental properties of the scalarization function.

Proposition . [, ] Let k ∈ intC and v ∈ Z. The Gerstewitz function ξkv : Z →R has the
following properties:
(a) ξkv(u) ≤ r ⇔ u ∈ v + rk –C;
(b) ξkv(u) < r ⇔ u ∈ v + rk – intC; and
(c) ξkv(·) is a continuous convex increasing and strictly increasing function.

We also need the following different kinds of cone-convexities for set-valued mappings.

Definition . [] LetX be a nonempty convex subset of a topological vector space. A set-
valued mapping F : X ⇒ Z is said to be
(a) above-C-convex (respectively, above-C-concave) on X if for all x,x ∈ X and all

λ ∈ [, ],

F
(
λx + ( – λ)x

) ⊂ λF(x) + ( – λ)F(x) –C(
respectively, λF(x) + ( – λ)F(x)⊂ F

(
λx + ( – λ)x

)
–C

)
;

(b) above-naturally C-quasi-convex on X if for all x,x ∈ X and all λ ∈ [, ],

F
(
λx + ( – λ)x

) ⊂ co
{
F(x)∪ F(x)

}
–C,

where coA denotes the convex hull of a set A;

Let C� = {g ∈ Z� : g(c) ≥  for all c ∈ C}, where Z� is the set of all nonzero continuous
linear functional on Z.

Proposition . Let A be a nonempty compact subset of Z, for any ξ ∈ C�, we have
ξ Maxw A⊂max ξA –R+ and max ξA ∈ ξ Maxw A –R+.

Proof max ξA exists since ξA is compact. There is u ∈ A such that ξu = max ξA. By the
Proposition . of [], we have u ∈ Maxw A. Thus, max ξA ∈ ξ (Maxw A) ⊂ ξ (Maxw A) –
R+. Furthermore, for any t ∈ ξ Maxw A, there exists u ∈ Maxw A ⊂ A such that t = ξu ≤
max ξA. Thus, ξ Maxw A ⊂max ξA –R+. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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By using a similar argument as in Proposition ., we can deduce the following conclu-
sion.

Proposition . Let A be a nonempty compact subset of Z, for any ξ ∈ C�, we have
ξ Minw A⊂min ξA +R+ and min ξA⊂ ξ Minw A +R+.

The following proposition can be derived from Definition . and Proposition ., so we
omit the proof.

Proposition . Suppose that
⋃

x∈X F(x) is compact. For any given k ∈ intC, v ∈ Z
and a Gerstewitz function ξkv : Z → R. Then, for any d ∈ Minw

⋃
x∈X F(x), we have

ξkvd ∈ min
⋃

x∈X ξkvF(x) + R+. Similarly, for any d ∈ Maxw
⋃

x∈X F(x), we have ξkvd ∈
max

⋃
x∈X ξkvF(x) –R+.

We note that, if X is nonempty compact set and F : X ⇒ Z is upper semi-continuous
with nonempty compact values, then Proposition . is also valid.

Proposition . If x �→G(x, y) is above-naturally C-quasi-convex on X for each y ∈ Y , and
a Gerstewitz function ξkv : Z → R, then x �→ ξkvG(x, y) is above-naturallyR+-quasi-convex
on X for each y ∈ Y .

In the proof of Proposition ., we need to use the monotonicity and positive homoge-
neous property of ξkv, and a similar technique of Proposition . [], we leave the readers
to prove it.

2 Scalar bilevel minimax theorems
We first establish the following scalar bilevel minimax theorem.

Theorem. Let X, Y be two nonempty compact convex subsets of real Hausdorff topolog-
ical vector spaces, respectively. The set-valued mappings F ,G : X × Y ⇒ R with F(x, y) ⊂
G(x, y) such that the sets

⋃
y∈Y F(x, y),

⋃
x∈X G(x, y) and G(x, y) are compact for all (x, y) ∈

X × Y , and they satisfy the following conditions:
(i) x �→ F(x, y) is lower semi-continuous on X for each y ∈ Y and y �→ F(x, y) is

above-R+-concave on Y for each x ∈ X ;
(ii) x �→G(x, y) is above-naturally R+-quasi-convex for each y ∈ Y , and (x, y) �→G(x, y)

is lower semi-continuous on X × Y ; and
(iii) for each w ∈ Y , there is an xw ∈ X such that

maxG(xw,w) ≤max
⋃
y∈Y

min
⋃
x∈X

G(x, y).

Then the relation (s – B) holds.

Proof For each y ∈ Y , the compactness of
⋃

x∈X G(x, y) implies the existence of
min

⋃
x∈X G(x, y). By the lower semi-continuity of G and Lemma . [], the mapping

y �→ ⋃
x∈X G(x, y) is lower semi-continuous with nonempty compact values. By Lemma .

[], the mapping y �→ min
⋃

x∈X G(x, y) is upper semi-continuous function on Y . Since Y
is nonempty and compact, the set

⋃
y∈Y min

⋃
x∈X G(x, y) is nonempty and compact. This

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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implies that the maximal points of
⋃

y∈Y min
⋃

x∈X G(x, y) exist. Another similar argument
to explain the left-hand side of (s – B) exists. Therefore, both sides of the relation (s – B)
make sense.
For any given t ∈R with t >max

⋃
y∈Y min

⋃
x∈X G(x, y). Define two sets A,B ⊂ X×Y by

A =
{
(x, y) ∈ X × Y : ∀f ∈ F(x, y), f ≤ t

}
,

and

B =
{
(x, y) ∈ X × Y : ∀g ∈G(x, y), g ≤ t

}
.

Since F(x, y)⊂G(x, y) for all (x, y) ∈ X × Y , we have

∅ �= B⊂ A.

The nonempty property of B can be deduced from the choice of t and (iii).
Choose any y, y ∈ Y \ A(x) = {y ∈ Y : ∃f ∈ F(x, y), f > t}. There exist f ∈ F(x, y) with

f > t and f ∈ F(x, y) with f > t. Then, for any λ ∈ [, ], t ∈ λF(x, y) + ( –λ)F(x, y) –R+.
By the above-R+-concavity of F , we see that there is fλ ∈ F(x,λy +(–λ)y) such that fλ > t.
Thus, λy + ( – λ)y ∈ Y \A(x), and hence Y \A(x) is convex for each x ∈ X. Similarly, by
the above-naturally R+-convexity of G, the set {x ∈ X : (x, y) ∈ B} is convex for each y ∈ Y .
Furthermore, by the lower semi-continuity of G, we know that the set B is closed.
Since all conditions of Lemma . hold, by Lemma ., there exists a point x ∈ X such

that {x} × Y ⊂ A, that is, there exists a point x ∈ X such that

∀f ∈ F(x, y), f ≤ t,

for all y ∈ Y . Thus, we know that max
⋃

y∈Y F(x, y) ≤ t and the relation (s – B) is valid.
�

Wesee that Theorem. includes the caseG = F as a special case.We state the following.

Corollary . Let X, Y be two nonempty compact convex subsets of real Hausdorff topo-
logical vector spaces, respectively. The set-valuedmapping F : X×Y ⇒R such that the sets⋃

y∈Y F(x, y),
⋃

x∈X F(x, y) and F(x, y) are compact for all (x, y) ∈ X×Y , and they satisfy the
following conditions:

(i) y �→ F(x, y) is above-R+-concave on Y for each x ∈ X ;
(ii) x �→ F(x, y) is above-naturally R+-quasi-convex for each y ∈ Y , and (x, y) �→ F(x, y)

is lower semi-continuous on X × Y ; and
(iii) for each w ∈ Y , there is an xw ∈ X such that

maxF(xw,w) ≤max
⋃
y∈Y

min
⋃
x∈X

F(x, y).

Then we have the relation (s – B) with G = F holds.

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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If, in additional, the mapping (x, y) �→ F(x, y) is upper semi-continuous with nonempty
compact values on X × Y in Corollary ., then we can easy see that the both sets⋃

y∈Y F(x, y) and
⋃

x∈X F(x, y) are compact. Hence we can deduce the following result due
to Li et al. ([, Proposition .]).

Corollary . Let X, Y be two nonempty compact convex subsets of real Hausdorff topo-
logical vector spaces, respectively. The set-valued mapping F : X × Y ⇒ R is continuous
with nonempty compact values and satisfies the following conditions:

(i) y �→ F(x, y) is above-R+-concave on Y for each x ∈ X ;
(ii) x �→ F(x, y) is above-naturally R+-quasi-convex for each y ∈ Y ; and
(iii) for each y ∈ Y , there is an xy ∈ X such that

maxF(xy, y) ≤max
⋃
y∈Y

min
⋃
x∈X

F(x, y).

Then we have the relation (s – B) with G = F holds.

Throughout the rest of this paper, we assume that X, Y are two nonempty compact con-
vex subsets of real Hausdorff topological vector spaces, respectively, and Z is a complete
locally convex Hausdorff topological vector space.

3 The bilevel minimax theorems
In this section, we will present three versions of bilevel minimax theorems. As the follow-
ing result illustrates, the relation (B) is true.

Theorem . Suppose that the set-valued mappings F ,G : X × Y ⇒ Z with F(x, y) ⊂
G(x, y) for all (x, y) ∈ X × Y , and they satisfy the following conditions:

(i) the mapping (x, y) �→ F(x, y) is upper semi-continuous with nonempty compact
values, the mapping x �→ F(x, y) is lower semi-continuous for each y ∈ Y , and
y �→ F(x, y) is above-C-concave on Y for each x ∈ X ;

(ii) x �→G(x, y) is above-naturally C-quasi-convex for each y ∈ Y , (x, y) �→G(x, y) is
continuous with nonempty compact values on X × Y ;

(iii) for each w ∈ Y and for each ξ ∈ C�, there is an xw ∈ X such that

max ξG(xw,w) ≤max
⋃
y∈Y

min
⋃
x∈X

ξG(x, y);

and
(iv) for each w ∈ Y ,

Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) ⊂Minw
⋃
x∈X

G(x,w) +C.

Then the relation (B) is valid.

Proof Let�(x) :=Maxw
⋃

y∈Y F(x, y) for all x ∈ X. From Lemma . [] and Proposition .
[], themapping x �→ �(x) is upper semi-continuous with nonempty compact values onX.
Hence

⋃
x∈X �(x) is compact, and so is co(

⋃
x∈X �(x)). Then co(

⋃
x∈X �(x)) + C is closed

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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convex set with nonempty interior. Suppose that v /∈ co(
⋃

x∈X �(x)) + C. By separation
theorem, there is a k ∈ R, ε >  and a nonzero continuous linear functional ξ : Z �→ R

such that

ξ (v)≤ k – ε < k ≤ ξ (u + c) ()

for all u ∈ co(
⋃

x∈X �(x)) and c ∈ C. From this we can see that ξ ∈ C� and

ξ (v) < ξ (u)

for all u ∈ co(
⋃

x∈X �(x)). By Proposition . of [], for any x ∈ X, there is a y�
x ∈ Y and

f (x, y�
x) ∈ F(x, y�

x) with f (x, y�
x) ∈ �(x) such that

ξ f
(
x, y�

x
)
=max

⋃
y∈Y

ξF(x, y).

Let us choose c =  and u = f (x, y�
x) in equation (), we have

ξ (v) < ξ
(
f
(
x, y�

x
))

=max
⋃
y∈Y

ξF(x, y)

for all x ∈ X. Therefore,

ξ (v) <min
⋃
x∈X

max
⋃
y∈Y

ξF(x, y).

From conditions (i)-(iii), applying Proposition . and Proposition . in [], all condi-
tions of Theorem . hold. Hence we have

ξ (v) <max
⋃
y∈Y

min
⋃
x∈X

ξG(x, y).

Since Y is compact, there is a y′ ∈ Y such that

ξ (v) <min
⋃
x∈X

ξG
(
x, y′).

Thus,

v /∈
⋃
x∈X

G
(
x, y′) +C,

and hence

v /∈Minw
⋃
x∈X

G
(
x, y′) +C. ()

By (iv) and (), we have

v /∈Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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Hence, for every v ∈Max
⋃

y∈Y Minw
⋃

x∈X G(x, y), we have

v ∈ co

(⋃
x∈X

�(x)
)
+C.

That is, the relation (B) is valid. �

Remark . We note that Theorem . includes the case G = F as a special case, and
it almost can be compared with Theorem . []. Neither F nor G is able to apply the
theorems in [, ] to deduce the minimax properties since F is not continuous andG does
not satisfy the conditions (iv)-(v) of Theorem . [], (H)-(H) of Theorem . [] or (H)-
(H) of Theorem . [].

We note that the relation (B) does not hold for any two mappings satisfy the condition
F(x, y) ⊂ G(x, y) for all (x, y) ∈ X × Y , even though both of F and G are continuous set-
valued mappings. For example, let F(x, y) = {x} × [ –

√
 – y,  +

√
 – y] and G(x, y) =

{x}× [–, +
√
 – y] for all x, y ∈ [–, ] = X = Y . Hencewe propose the following example

to illustrate the validity of Theorem ..

Example . Let X = [, ], Y = [–, ], Z =R
 and C = C� =R


+. Define H : X ⇒ X by

H(y) =

{
[–, ], y = –,
{}, y �= –.

Define F ,G : X × Y �→ Z by

F(x, y) =
{
x

} ×H(y),

and

G(x, y) =
[
,x

] × [y, ]

for all (x, y) ∈ X ×Y . We can see that F(x, y)⊂G(x, y) for all (x, y) ∈ X ×Y , and conditions
(i)-(ii) of Theorem . hold. We now claim that the condition (iii) of Theorem . is valid.
Indeed, for each ξ = (ξ, ξ) ∈ C�, since

max ξG(x, y) = max
{
ξs + ξt : ≤ s ≤ x, y ≤ t ≤ 

}
= ξx

for all (x, y) ∈ X × Y , and

min
⋃

x∈[,]
ξG(x, y) = ξy

for all y ∈ Y , we have

max
⋃

y∈[–,]
min

⋃
x∈[,]

ξG(x, y) = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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For each w ∈ Y , we can choose xw =  such that the condition (iii) is valid. The reason so
that the condition (iv) is valid can be explained as follows: for each w ∈ Y , we see that

Minw
⋃
x∈X

G(x,w) =
({} × [w, ]

) ∪ (
[, ]× {w}),

and

Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) =
{
(, )

}
.

This implies that

Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) ⊂Minw
⋃
x∈X

G(x,w) +C,

and so the condition (iv) holds. Finally, from the observation of

Min

(
co

⋃
x∈X

Maxw
⋃
y∈Y

F(x, y)
)
=

{
(,–)

}
,

the relation (B) is valid.

Corollary . Suppose that the set-valued mapping F : X ×Y ⇒ Z such that the following
conditions are satisfied:

(i) the mapping (x, y) �→ F(x, y) is continuous with nonempty compact values, and
y �→ F(x, y) is above-C-concave on Y for each x ∈ X ;

(ii) x �→ F(x, y) is above-naturally C-quasi-convex for each y ∈ Y ;
(iii) for each w ∈ Y and for each ξ ∈ C�, there is an xw ∈ X such that

max ξF(xw,w) ≤max
⋃
y∈Y

min
⋃
x∈X

ξF(x, y);

and
(iv) for each w ∈ Y ,

Max
⋃
y∈Y

Minw
⋃
x∈X

F(x, y)⊂ Minw
⋃
x∈X

F(x,w) +C.

Then the relation (B) with G = F is valid.

In the following result, we apply the Gerstewitz function ξkv : Z �→ R to introduce the
second version of bilevel minimax theorems, where k ∈ intC and v ∈ Z.

Theorem . Suppose that the set-valued mappings F ,G : X × Y ⇒ Z such that F(x, y) ⊂
G(x, y) for all (x, y) ∈ X × Y , and the following conditions are satisfied:

(i) the mapping (x, y) �→ F(x, y) is upper semi-continuous with nonempty compact
values, the mapping x �→ F(x, y) is lower semi-continuous for all y ∈ Y ;

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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(ii) x �→G(x, y) is above-naturally C-quasi-convex on X for each y ∈ Y , (x, y) �→G(x, y)
is continuous with nonempty compact values on X × Y ;

(iii) given any Gerstewitz function ξkv with v /∈ ⋃
x∈X Maxw

⋃
y∈Y F(x, y) +C satisfies the

following conditions:

(iiia) y �→ ξkvF(x, y) is above-R+-concave for all x ∈ X ; and
(iiib) for each w ∈ Y , there is an xw ∈ X such that

max ξkvG(xw,w) ≤max
⋃
y∈Y

min
⋃
x∈X

ξkvG(x, y); and

(iv) for each w ∈ Y ,

Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) ⊂Minw
⋃
x∈X

G(x,w) +C.

Then the relation (B) is valid.

Proof Let �(x) be defined in the same way as in Theorem . for all x ∈ X. Using the same
process in the proof of Theorem ., we know that the set

⋃
x∈X �(x) is nonempty and

compact. For any v /∈ ⋃
x∈X �(x) +C, there is a Gerstewitz function ξkv : Z �→R with some

k ∈ intC such that

ξkv(u) >  ()

for all u ∈ ⋃
x∈X �(x). Then, for each x ∈ X, there is y�

x ∈ Y and f (x, y�
x) ∈ F(x, y�

x) with
f (x, y�

x) ∈Maxw
⋃

y∈Y F(x, y) such that

ξkv
(
f
(
x, y�

x
))

=max
⋃
y∈Y

ξkvF(x, y).

Choosing u = f (x, y�
x) in equation (), we have

max
⋃
y∈Y

ξkvF(x, y) > 

for all x ∈ X. Therefore,

min
⋃
x∈X

max
⋃
y∈Y

ξkvF(x, y) > .

By Proposition . and combining conditions (i)-(iii), we know that all conditions of The-
orem . hold, and by relation (s – B) we have

max
⋃
y∈Y

min
⋃
x∈X

ξkvG(x, y) > .

Since Y is compact, there is a y′ ∈ Y such that

min
⋃
x∈X

ξkvG
(
x, y′) > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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Thus,

v /∈
⋃
x∈X

G
(
x, y′) +C,

and hence

v /∈Minw
⋃
x∈X

G
(
x, y′) +C. ()

If v ∈Max
⋃

y∈Y Minw
⋃

x∈X G(x, y), then, by (iv), we have

v ∈Minw
⋃
x∈X

G
(
x, y′) +C,

which contradicts (). Therefore, we can deduce the relation (B) is valid. �

The following example illustrates the validity of Theorem ..

Example . Let X = Y = [, ], C =R

+, Z =R

 and F(x, y) = {x}×{– s(y–) : s ∈ [,x]},
G(x, y) = {x} × { – s(y – ) : s ∈ [, ]} for all (x, y) ∈ X × Y . Then F(x, y) ⊂ G(x, y) for all
(x, y) ∈ X × Y ,

⋃
x∈X

Maxw
⋃
y∈Y

F(x, y) =
{
(s, t) : ≤ s ≤ ,  – s ≤ t ≤ 

}
,

Min
⋃
x∈X

Maxw
⋃
y∈Y

F(x, y) =
{
(s, t) : ≤ s≤ , s + t = 

}

and

Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y) =
{
(, )

}
.

We can easily see that the set-valued mappings F and G satisfy all of the continuities
in the conditions (i) and (ii) of Theorem .. Let 	 = {g(x, y), g(x, y)}, where g(x, y) =
–x and g(x, y) = –y for all (x, y) ∈ X × Y . Let k = (, ) ∈ intC and choose v = (,–) /∈⋃

x∈X Maxw
⋃

y∈Y F(x, y) +C. By Corollary . [], we have

ξkv(u) =max
i=,

{
gi(u) – gi(v)/gi(k)

}
=max{u – ,u + }

for all u = (u,u) ∈ Z. Then ξkv(u) >  for all u ∈ ⋃
x∈X �(x), and

ξkvF(x, y) =
{
 – s(y – ) : ≤ s≤ x

}
and

ξkvG(x, y) =
{
 – s(y – ) : ≤ s ≤ 

}
for all (x, y) ∈ X × Y .

http://www.journalofinequalitiesandapplications.com/content/2014/1/182
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We claim that the mapping y �→ ξkvF(x, y) is above-R+-concave for each x ∈ X. Indeed,
for each f ∈ ξkvF(x, y) and f ∈ ξkvF(x, y), there exist s, s ∈ [,x] such that

f =  – s(y – ), f =  – s(y – ).

Then, for each λ ∈ [, ],

λf + ( – λ)f =  – λs(y – ) – ( – λ)s(y – )

=  –
(
sλ(y – ) + s( – λ)(y – )

)
≤  – s

(
λy + ( – λ)y – 

).
The last inequality holds by the facts that the mapping y �→ (y–) is a real-valued convex
function and we take s =min{s, s}. Hence λf + ( – λ)f ∈ ξkvF(x,λy + ( – λ)y) –C and
the mapping y �→ ξkvF(x, y) is above-R+-concave for each x ∈ X. The above-naturally C-
quasi-convexity for the mapping x �→ G(x, y), for each y ∈ Y , can be deduced by a simple
calculation, so we leave the proof to the readers.
Furthermore, the condition (iiib) holds since for each w ∈ Y and any xw ∈ X, we have

ξkvG(xw,w) = { – s(w– ) : ≤ s ≤ }, and hencemax ξkvG(xw,w) = . On the other hand,
max

⋃
y∈Y min

⋃
x∈X ξkvG(x, y) = max

⋃
y∈Y min

⋃
s∈[,]{ – s(y – )} = . Thus, the condi-

tion (iiib) is valid.
SinceMinw

⋃
x∈X G(x,w) = ({}× [– (w–), ])∪ ([, ]×{– (w–)}) for each w ∈ Y ,

we have

Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y)

=
{
(, )

}
⊂ ({} × [

 – (w – ), 
]) ∪ (

[, ]× {
 – (w – )

})
+C

=Minw
⋃
x∈X

G(x,w) +C

for each w ∈ Y . This tells us that condition (iv) of Theorem . holds.
Therefore, all conditions of Theorem . hold, and the relation (B) is valid since

Max
⋃
y∈Y

Minw
⋃
x∈X

G(x, y)

=
{
(, )

}
⊂ {

(s, t) : ≤ s≤ ,  – s ≤ t ≤ 
}
+C

=Min
⋃
x∈X

Maxw
⋃
y∈Y

F(x, y) +C.

The third version of the bilevel minimax theorems is as follows. We remove the condi-
tion (iv) in Theorem . to deduce the relation (B).

http://www.journalofinequalitiesandapplications.com/content/2014/1/182


Lin Journal of Inequalities and Applications 2014, 2014:182 Page 13 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/182

Theorem . Given any Gerstewitz function ξkv with

v ∈Min
⋃
x∈X

Maxw
⋃
y∈Y

F(x, y).

Under the framework of Theorem . except the condition (iv). Then the relation (B) is
valid.

Proof For each x ∈ X, let �(x) be defined the same as in Theorem .. For any v ∈
Min

⋃
x∈X �(x),

(⋃
x∈X

�(x) \ {v}
)

∩ (v –C) = ∅.

Then there is a Gerstewitz function ξkv : Z �→R with some k ∈ intC such that

ξkv(u) > 

and

ξkv(v) = 

for all u ∈ ⋃
x∈X �(x) \ {v}. Since ξkv is continuous, by the compactness of

⋃
y∈Y F(x, y), for

each x ∈ X, there exist y ∈ Y and f ∈ F(x, y) such that

ξkv(f) =max
⋃
y∈Y

ξkvF(x, y).

By Proposition . [], f ∈Maxw
⋃

y∈Y F(x, y). Thus, for each x ∈ X, we have

max
⋃
y∈Y

ξkvF(x, y)≥ ,

or

min
⋃
x∈X

max
⋃
y∈Y

ξkvF(x, y)≥ .

From the conditions (i)-(iii) and according to similar arguments in Theorem ., we know
that all conditions of Theorem . hold for the mappings ξkvF and ξkvG. Hence, by Theo-
rem ., we have

max
⋃
y∈Y

min
⋃
x∈X

ξkvG(x, y)≥ .

Since X and Y are compact, there are x ∈ X, y ∈ Y and g ∈ G(x, y) such that

ξkv(g) =min
⋃
x∈X

ξkvG(x, y) ≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/182


Lin Journal of Inequalities and Applications 2014, 2014:182 Page 14 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/182

Applying Proposition . in [], we have g ∈ Minw
⋃

x∈X G(x, y). If g = v, we have v /∈
g +(C \{}). If g �= v, we have ξkv(g) > , and hence g /∈ v–C. Therefore, v /∈ g +(C \{}).
Thus, in any case, we have v ∈ g +Z \ (C \ {}). This implies that the relation (B) is valid.

�

We illustrate Theorem . by the following example.

Example . Let X, Y , F , G, C, Z, g, g, 	 be given the same as in Example .. Then
F(x, y)⊂G(x, y) for all (x, y) ∈ X × Y and

Min
⋃
x∈X

Maxw
⋃
y∈Y

F(x, y) =
{
(t,  – t) : t ∈ [, ]

}
.

Let k = (, ) ∈ intC and choose v = (, ) ∈ Min
⋃

x∈X Maxw
⋃

y∈Y F(x, y). By Corollary .
[], we have

ξkv(u) =max
i=,

{
gi(u) – gi(v)/gi(k)

}
=max{u – ,u}

for all u = (u,u) ∈ Z. Then

ξkv(u) > 

for all u ∈ ⋃
x∈X Maxw

⋃
y∈Y F(x, y) \ {v}, and

ξkvF(x, y) =
{
 – s(y – ) : ≤ s ≤ x

}
and

ξkvG(x, y) =
{
 – s(y – ) : ≤ s ≤ 

}
for all (x, y) ∈ X × Y .
By a similar discussion in Example ., we know that the mapping y �→ ξkvF(x, y) is

above-R+-concave for each x ∈ X, the mapping x �→ G(x, y) is above-naturally C-quasi-
convex for each y ∈ Y and the condition (iiib) is valid.
Therefore, all conditions of Theorem . hold, and the relation (B) is valid since

Min
⋃
x∈X

Maxw
⋃
y∈Y

F(x, y)

=
{
(t,  – t) : t ∈ [, ]

}
⊂ {

(, )
}
+ Z \ (

C \ {})
=Max

⋃
y∈Y

Minw
⋃
x∈X

G(x, y) + Z \ (
C \ {}).

Remark . We note that Theorems .-. include the case G = F as a special case.
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