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1 Introduction
As an important direction of harmonic analysis, the theory of multilinear Calderén-
Zygmund singular integral operators has attracted more and more attention, which orig-
inated from the work of Coifman and Meyer [1], and it systematically was studied by
Grafakos and Torres [2, 3]. The literature of the standard theory of multilinear Calderén-
Zygmund singular integrals is by now quite vast, for example see [2, 4—6].In 2009, the au-
thors [7] introduced the new multiple weights and new maximal functions and obtained
some weighted estimates for multilinear Calderén-Zygmund singular integrals. They also
resolved some problems opened up in [8] and [9].

Let S(R”) and S'(R”) be the Schwartz spaces of all rapidly decreasing functions and
tempered distributions, respectively. Having fixed m € N, let T be a multilinear operator
initially defined on the m-fold product of Schwartz spaces and taking values into the space

of tempered distributions,
T:S(R") x --- x S(R") - §'(R").

Following [2], the m-multilinear Calderén-Zygmund operator T satisfies the following
conditions:

(S1) there exist g; < o0 (i = 1,...,m), it extends to a bounded multilinear operator from
L7 x ... x L9 to L9 , where % =L 4L

q1 qm
(S2) there exists a function K, defined off the diagonal x = y; = - - - = y,,, in (R")"*1, satis-
fying
T(F)®) = T(hy ... fon) @) = f( ) K@y, ymdiO00) - - fnm) dyr -+ - Ay @)
Rm 4

©2014 Wang and Jiang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

L]
@ Sprlnger Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.


https://core.ac.uk/display/194823241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2014/1/109
mailto:ysjiang@xju.edu.cn
http://creativecommons.org/licenses/by/2.0

Wang and Jiang Journal of Inequalities and Applications 2014, 2014:109 Page2of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/109

forall x ¢ (), suppf; and fi,....fn € S(R"), where

A

2
(ko Ly = yxl)mn (2)

|I(()/0,y1, .. .,ym)i <

and

Aly; =yl
Qo |y = yilymme

|K(y0,...,y}-,...,ym)—K(yo,...,y]/-,...,ym)| < (3)

for some € > 0 and all 0 <j < m, whenever |y; - yj| < 3 maxXo<k<m |y — Vkl-
We also use some notation following [10]. Given a locally integrable vector function
b= (by,...,b,) € (BMO)", the commutator of b and the m-linear Calderén-Zygmund op-

erator T, denoted here by T’xp, was introduced by Pérez and Torres in [9] and is defined

via
- _ " ] -
Tes(f) =) T, (),
j=1
where

T () = BT () = T(fiy. o, iy ).
The iterated commutator Ty, is defined by

Tl'[b(f) = [bl) e [bm—l’ [bmr T]m]m—l e ]1(?)'

To clarify the notations, if T is associated in the usual way with a Calderén-Zygmund
kernel K, then at a formal level

T (f)(x) = /(W)m Y (5@ = BON) K@y y)fi01) ) s -+
j=1
and

Tnb(?)(x) = /(;R”)m l—[(bl(x) - bj(-)/f))l((x’yl’ = "ym)ﬁ(yl) e 'fm(.)/m)dyl te dym
j=1

It was shown in [2] that if é = % oot qu, then an m-linear Calderén-Zygmund operator
T maps from L7 x --- x LT to LY, when 1 < g; < oo for all j = 1,...,m; and from L% x
<o x LI to L?%°, when 1 < gj < oo for all j = 1,...,m, and min; <<, g; = 1. The weighted
strong and weak L? boundedness of T is also true for weights in the class Az which will be
introduced in next section (see Corollary 3.9 [7]). It was proved in [9] that Ts, is bounded
from L7 x --- x L% to L7 for all indices satisfying é = q% oot qu withg>1andg; > 1,
j=1,...,m. The result was extended in [7] to all g > 1/m. In fact, the authors obtained the

weighted L?-version bounds as follows, for all & € Ajp:

m
| 756 4y, < Cllbllacon [ Tl

j=1
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As may be expected from the situation in the linear case, Tsy, is not bounded from L! x
.-« x L' to LY. However, a sharp weak-type estimate in a very general sense was obtained
in [7], that is, for all ® € A, ),

m g 1/m
\)g,{xe R”: |Tgb(}7)(x)| > t"‘} < CH(/W @(m(tx)')wj(x)dx> s
j=1

where ®(¢) = (1 + log* t). When m = 1, the above endpoint estimate was obtained in [11].
The same as for Ty, the strong type bound and the endpoint estimate for 71y, were also
established by Pérez et al. in [10].

The weighted Morrey spaces L”*(w) was introduced by Komori and Shirai [6]. More-
over, they showed that some classical integral operators and corresponding commuta-
tors are bounded in weighted Morrey spaces. Some other authors have been interested
in this space for sublinear operators, see [12-14]. In [15], Ye proved two results similar to
Pérez and Trujillo-Gonzélez [11] for the multilinear commutators of the normal Calderén-
Zygmund operators on weighted Morrey spaces. Wangand Yi [16] considered the multilin-
ear Calderén-Zygmund operators on weighted Morrey spaces and obtained some results
similar to weighted Lebesgue spaces.

We will prove the following strong type bound for T, on weighted Morrey spaces.

Theorem 1.1 Let T be an m-linear Calderdn-Zygmund operator; @ € Ap N (Axo)™ with

1 1
= — 4+ —
p Pm

"=

and1<pj<oo,j=1,...,m;andb € BMO™. Then, for any 0 < k < 1, there exists a constant
C such that

m m
|7 k) < CT LB saa0 [ 15,015,
j=1 j=1

The following endpoint estimate will also be proved.

.....

(Aoo)™, and b € BMO™. Then, for any A > 0 and cube Q, there exists a constant C such that

1 N m .
Wua{x €Q:|Tm(HW)| > 1} < CH[M/)‘”L@W).k(wj)]U ,

j-1

m

——
where @ = ® o ... 0 ®, ®(t) = t(1 + log* t) and ”f”ch(m),k(w) = ||(D(m)(lf|)||L1,k(w).
Remark 1.1 Here we remark that the above estimate is also valid for Tsy,.

2 Some definitions and results
In this section, we introduce some definitions and results used later.

Definition 2.1 (A, weights) A weight w is a nonnegative, locally integrable function
on R”. Let 1 < p < 00, a weight function w is said to belong to the class A, if there is a
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constant C such that for any cube Q,

1 1 .o\
— dx ) — 17 g :
(|Q|/Q"’(x) x)(l@/Q‘”(x) x) =¢

and to the class Ay, if there is a constant C such that for any cube Q,
! f (%) dx < C inf w(x)
— | w(x)dx < Cinf w(x).
1Ql Jo x€Q

We denote A = .1 Ap-
Definition 2.2 (Multiple weights) For m exponents py,...,p,, € [1,00), we often write p

for the number given by p = Z]’Zl pj and denote by P the vector (p1y---»pm)- A multiple
weight & = (w1,...,w,,) is said to satisfy the A3 condition if for

m
Vg = 1_[ P,
j=1

we have
1 v 1 N
sup —/ v;)(x)dx) <—/wl(x)_/dx) < 00,
Q (IQI Q !—1[ QlJo
when p; =1, (fa fQ wj(x)lfp//‘ dx)””; is understood as (inf, w(x))™'. As remarked in [7],

1

m . . . . . - .
[ 12, Ap is strictly contained in Ap, moreover, in general @ € A; does not imply o; € L,

for any j, but instead

. (V&) € Ay,
w € AI') =4 l—p]’.

w; EAmp//_, j=1...,m,

Lo 1y . .
where the condition o, " €A,,, inthe case p; = 1 is understood as a)}/”’ €A
]

Definition 2.3 (Weighted Morrey spaces) Let 0 < p < 00, 0 < k <1, and w be a weight
function on R”. The weighted Morrey space is defined by

LPKw) = {f € L, If | ke < 00}

where

1 » 1/p
1l 2ok (o) :SEP(W/;V(?C” a)(x)) .

The weighted weak Morrey space is defined by

WLPK (w) = {f measurable : |[f|lypk(,) < oo},
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where

({x € Q:[flx)> k})llp.

Wl wzok) = Supl

30 w(Q)k/P

Definition 2.4 (Maximal function) For ®(¢) = £(1 + log* £) and a cube Q in R” we will
consider the average ||f| o, of a function f given by the Luxemburg norm

|Lf||¢,Q=inf{A>0 Q|/ ( )d <1}

and the corresponding maximal is naturally defined by

Mof (x) = sup [|f e,
Qox

and the multilinear maximal operator Mg is given by

Mo (F)x) = Z“pn flle.-

Er j=1
The following pointwise equivalence is very useful:
Mof (x) ~ Mf (x),

where M is the Hardy-Littlewood maximal function. We refer reader to [7, 10] and their
references for details.

We say that a weight w satisfies the doubling condition, simply denoted w € Ay, if thereis
a constant C > 0 such that w(2Q) < Cw(Q) holds for any cube Q. If w € A, with 1 < p < o0,
we know that 0(AQ) < A" [w]4,@(Q) for all A > 1; then w € A,.

Lemma 2.1 ([6]) Suppose w € A, then there exists a constant D > 1 such that
0(2Q) = Dw(Q)
for any cube.

Lemma 2.2 ([16]) If w; € A, then for any cube Q, we have

fl_[w’(x x>H(wi;(x)dx) |

[w]]OO
where 371 6;=1,0 <6 <1.

Lemma 2.3 ([17]) Suppose w € A, then ||b| smow) ~ |10l pmo. Here

1
BMO(w) = {b: 161 Bpo(w) = o) /le(x) —bou|w(x) dx < OO},

and bq,, = ﬁQ) fQ b(x)w(x) dx.
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From the fact |b,; — bgl < Cjl|bllsmo and Lemma 2.3, we deduce that by, — bgel <
Gjllbllsmo- The following lemma is the multilinear version of the Fefferman-Stein type

inequality.

Lemma 2.4 (Theorem 3.12 [7]) Assume that w; is a weight in A, foralli=1,...,m, and
set v = (17, w)V™. Then

m
< [Tl ot
j=1

LPoo(v)

Lemma 2.5 (Proposition 3.13 [7]) Letl% == 4.+ zﬁ' Ifl1<p<oc0,j=1,...,m,then

1
n
”M(}?)”um( 1_[ 5117 (Mw))

j=1

Lemma 2.6 (Theorem 3.2 [10]) Let p > 0 and let w be a weight in A,. Suppose that b €
BMO™. Then there exist C,, (independent of b) and C,, such that

/ | T (F)(0) | (x) dx < C, l_[”b”BMO/ Mo (f) @Y (x) dx

j=1

and

1 -
sup oy (1 < B T D] > 7))

1 -
< Ca),b Stlj(f)) Wu)({y S R™: |./\/l<1>(f)()’)| > tm})

for all f (i, - - - »fm) bounded with compact support.

Lemma 2.7 (Theorem 4.1 [10]) Let w € Aq,..,1). Then there exists a constant C such that

.....

m . 1/m
v,,;({x eR”: ‘MLlOgL(f)(x)‘ > t’"}) < CH(/Rn dJ(m)(@)wj(x)dx) .
j=1

By the above two inequalities, Pérez and Trujillo-Gonzalez obtained the following re-
sults.

Lemma 2.8 (Theorem 1.1 [10]) Let T be an m-linear Calderén-Zygmund operator; & € Ay
with

1 1
_— + e + —_—
bh Pm

"=

and1<pj<oo,j=1,...,m;and b € BMO™. Then there exists a constant C such that

m m
I Tnb(f)”Lp(%) < CH 161l a0 l_[ W5 223 )
j=1 J=1
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Lemma 2.9 (Theorem 1.2 [10]) Let T be an m-linear Calderén-Zygmund operator; & €
1), and b € BMO™. Then, for any X > 0 and cube Q, there exists a constant C such that

g 1/m
vafx € R”: [T ()] > 2} <CH(/ )(Wf”)wﬂx)d’c) ’

j=1

,,,,,

-

S NS—
where ®(t) = t(1 +log* t) and ®" = o-.. 0 ®.

3 Proofs of theorems
We only present the case m = 2 for simplicity, but, as the reader will immediately notice, a
complicated notation and a similar procedure can be followed to obtain the general case.

Our arguments will be standard.

Proof of Theorem 1.1 For any cube Q, we split f; into ]?0 + /7, where ]?0 =fix2q and £ =
fi—- jjo, j=1,2. Then we only need to verify the following inequalities:

1p
( /|Tnb(f1 S @) va dx) <C'l_lllb ||BMol_[|lf||Lp,
1/p 2 2
I = ( /‘Tl'[b(fi S22 @[ v )dx) SCH||bj||BMol_[|lﬁ||Lp;,k(wj),
j=1 j-1
1p
HI:(vw(Q f]Tm,(,q S @) vp dx) <Cl_[||b||BMOl_[”f||LP,

1 ) Up 2 2
= (m/(JTnb(ﬁoo,ﬁoo)(x)‘ v;)(x)dx> SCE[HijBMo[l[|U§||Lp,-,k(wj)-

From Lemma 2.8 and Lemma 2.2, we get

! : 0/ |2 Upj
= CWH”@”BMO(Anw (x)i 160;(X)dx>

2
1 1_[ kip;
- Cvz)(Q)k/P j=1 [”bj“BMowj(zQ) p}”ﬁ”L”f‘k(wj)]

2

= CT Tl a0 51 s, ]

j-1

Since II and III are symmetric we only estimate /I. Taking A; = (b,»)Q,w/., the operator T,

can be divided into four parts:

T (f.5°) (%)
= (5166) = 21) (b2(9) = 22) T(R'. 1) () = (B1(%) = 20) T (£, (b2 = 22)f5°) (%)
— (ba(®) = 22) T((br = M), £°) ) + T((by = M)fP, (by — Ma)f5°) ()
=1L + I, + 113 + 11,4.

Page 7 of 13
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Using the size condition (2) of K, Definition 2.2, and Lemma 2.2, we deduce that for any
x € Q,

T (.15°) ()|
s /m /R i (1) ()] i

m\2Q (Jx =y + |x = y2)?

1
SC/ZQM(YM‘{%;W/ lfz()’z)|dy2

ol+1 Q\ZlQ

co 2 1
= C;g |2H41Q) /21+1Qm(yi)‘dyi

= 1 Upj
= Zl_[ |2l+1Q|( Mg [f(y, ‘ wl(yl)d%)

=1 j=1

/
1

1- 1/17]-
< ([ o a)
21+1Q

1
[e%e) pTr
1 |21+1Q|p » » kip:
= CZ |2l+1Q|2 1_[ ”f”Lp/ a), 2+ Q) ’
=1

Yo 4

2 00
< CT LAl D v (21Q)*
I=1

Jj=1

Taking the above estimate together with Holder’s inequality and Lemma 2.3, we have

1/p
( Vo (QF / 7 va ) d’“)

1 1/p
o VACCRNCERBIEERY

2 [e¢]
x 1_[ Hﬁ ||Lp,-,k Z Vs (21+1 Q) (k-1)/p
=1 =1

2:(Q)" e
= @ | (v @ o ) )
x H s 316020
=1

2
<[ T1oilisaollfill s,
j=1

where the last inequality is obtained by the property of A: there is a constant § > 0 such

that
v5(Q) <C< Q )‘*
v5(241Q) — T\ 12#1Ql )

Page 8 of 13
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For II,, from the size condition (2) of K, the A3 condition, Lemma 2.2, and Lemma 2.3, it
follows that

TR, (b2 = 12)57) )]

=1
SC/;QM(%dellZ:l:—'ZlleA |(b2(y2) = 22)f5.(32)| dy

I+1 Q\ZIQ

[e¢]

1 ” Up1 - 1p}
<C») ——— ) w; )d) (/ 1) )_pld')
; |2“1Q|2< zmQVl(”l ‘ (1) dy1 g 101 Vi
1/pa
X ( l/rz()/z)|p2a)2(Y2)dy2)
21+1Q

/ , Up)
) (/11 |b2(y2) = ha| 2 en (y5) 7272 dy2>
2+

Upj ol 1p)
(v:Y P Av.
121: H 21+1Q| (/ V(YJ w/(YJ)dJ’/) (/ZMQQ),()/]) de,)
: = (k=1)/
5CHM”L”/'k(w,)zl%(zlﬂQ) .
j=1 I=1

The third inequality can be deduced by the fact that

1 1/p
—_ b(y) - bo| w(y)d 1b »
(w(?/*lQ) 2l+1Q| ) = bgo| @) )’) < Cl|\bl|Bmo(w)

Holder’s inequality and Lemma 2.3 tell us

1 1/p
(st [ o)

1 p 2
= Cv;)(Q)k/p (/| by (x M Pvg x)dx) l_[”f”LP/ Zlvw 2z+1Q (k-1)/p

2

1/p
<Cieg] [T Zlvw ("

2
< C[ T1Bilsmollfll pyx

j=1
Similarly, we get
\T(f, (by - Kz)fzoo)(x)’

o0

1/p1
= CZ |2l+1Q|2 </ lfl(yl)|p “’J(Yl)dh)

, , Upy
X (/ ibl(yl) - )»1|p1w1()’1)1_p1 dy;)
21+1Q
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lp2 , ph
X (f [o(2) | 2(y2) dyZ) (/ wa(y2) 7272 dyz)
21+1Q 2l+1Q

2 oo
<C 1_[ il ok () Z Ivs(21Q) (k-D)/p
11

j=1

and so

l/p
(Uw(Q)k / |113|p11w x)dx) < Cl—[ ||b ”BMO”f”LP/
The term /1, is estimated in a similar way and we deduce

|T((b1 = M), (b2 = M) ()|

oo 2

1 , 1/pj
= CZ |21+1Q|2 H( leQlﬁ(yj) |pla)]‘()//) dy})
I=1 j=1
b A P; *P;/Pj d 1/17/
X |B;0) = 170y (3) " dly;
2I+JQ

2
(k-1)/p
<C Tl Zﬂ (2-1Q)
j=1

So,
1/p
(Uw(Q)k/ [ 4|Pvg x)dx) <C!_1[||b jllsmollfll

Finally, we still split T (£, f5°)(x) into four terms:

T (£2°,£5°) ()
= (b1(%) = 21) (B2 (%) = 22) T(F15°) ) = (br (%) = ) T(F°, (By = A2)f5°) (%)
— (Ba(®) = 22) T (b1 = M, f5° + T((by = M), (b2 — 22)5°) (%) ()
=IVy + 1V, + V3 + 1V,

Because each term of IV is completely analogous to II}, j = 1,2, 3,4 with a small difference,
we only estimate [V7:

T2, ) )| < C/(Rn i) ()] dys dy,

2,202 ([ =yl + [x =y )"

—cy f i01)502)]

= Jomor\aop (=1l + 1% = y2[)>”

= 1 2
= 12:1: |21+1Q|2 _/(21+1Q)2 E[V}(y])| Vi

o]

2
(k-1)/p
<CITWl e, D va(27'Q)

j=1 =1

Page 10 0of 13
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Hence,

1 1/p 2
(m /Q V1P vz (x) dx> < Cl:[ ||bj||BMo|lﬁ||ij,k(wj)o
iz

Combining all estimates, we complete the proof of Theorem 1.1. O
We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2 By homogeneity, we may assume that A = ||b;|lzp0 = ||1b21lsm0 =1
and we only need to prove that

1/2

2
va{x € Q: | Tm(h )@ > 1} = Coa(Q [ [(1fl o1x,,))

j=1

To prove the above inequality, we can write

va{x € Q: | Tnn(fi,o)()| > 1}
<val{x e Q:|Tm(F2.) )| > 1/4} + valx € Q: | T (F.5°) )| > 1/4}
+vpfr e Q: |Tmp (.45)@)| > 1/4} +vafxr € Q: | Trn (£°.57°) ()| > 1/4}
=V + VI+ VIl + VIII

for any cube Q. Employing Lemma 2.9 and Lemma 2.2, we have

2 1/2
V< c]‘[( / O (|f; ()| )y () dx)
j=1 R
2
< CT Tl @ 1l o, )]
j=1

2
< Coa (@ [Tl i, ]

j=1
From Lemma 2.6 and Lemma 2.4, we deduce that
vg){x €Q: \Tm,(flo, 2°°)(x)| > 1/4}

<sup

1
up oy Ve € Q: [T (°.57) ()] > 7}
> t

v;u({ye Q: |/\/lq>(fl0, 200)()’)| > tz})

1
<C,.pSUp ———
AT

<Cup sup va({y € Q: [ Mo () )Mo (£°) )| > £2})

1
1
0 ®(3)
(jUé,b
t

(jva,b
< = [ Q Wllowy

=

172
( / @ (A" ) OMxen) ) dy / @(%@!)@)Muomxymy)
R” R2

’

]1/2
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where the last inequality holds by the (3.10) and (3.11) in [15]. Then from Lemma 2.2 and
the fact that L‘CD(%) >1, we have

VI < Coa(Q [y QM f I ok(y]

A similar statement follows:

12,

VI < Cv(Q[@y(QF Ifilpoxwp] s

1/2
VI < Coz(Q)[o(Q Il pok(a]
Thus we complete the proof of Theorem 1.2. d
4 A problem
Fix N € N. Let m € CE(RN"\{0}), for some positive integer L, satisfying the following con-
dition:
080 0N (&, E0)| < Copay (1611 4+ + [E0]) " (4)

for all || < s and & € RN\ {0}, where « = (ay,...,axn) and & = (&,...,£x). The multilinear

Fourier multiplier operator Ty is defined by

TP = s /(RNM) O (e, ERE) e dE - dey  (5)

for all fi,...,fn € S(R"), wheref =(fi,...,fn). If Flm is an integrable function, then this
can also be written as

Tm(}?)(x) = Flmx—y,...,x=yn)fn)---fOn)dys - - dyn.

(RNm)
In [18], Fyjita and Tomita obtained the following theorem.
1 _1

Theorem 4.1 Let1<p1,...,pN<oo,p—1+~~~+$ —pund% <sj<mnforl <j<N.Assume

pi>nlsjand w; € Ay for1 <j<N.Ifme L°(RN") satisfies

el o) = ( /R Ceal)” |sN|2)“2r%(s)|2ds)m <00,
then Ty is bounded from LPL(w) X --- X LPN(wy) to LP(v3), where

mi(€) =m(V&, ..., Yen)V(&,...6\),
where \V is the Schwarz function and satisfies

suppW C {& e RN":1/2 < |& <2}, Z\v(s/zk) =1 forall € e RN"\{0}.
keZ
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A natural problem is whether the Lebesgue spaces L”/ (w;) and L”(v3) can be replaced by
177*(w) and LP*(v). It should be pointed out that the method in this paper may not be
suitable to address this problem.
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