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Abstract
This paper is mainly concerned with the efficiency comparison between OLSE and
BLUE in a singular linear model. We define the efficiencies between OLSE and BLUE by
means of the matrix Euclidean norm and prove a matrix Euclidean norm version of
the Kantorovich inequality to limit upper or lower bounds of these efficiencies. It
relaxes the assumptions that the covariance matrix is positive definite and the design
matrix has full column rank.
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1 Introduction
Inequalities are studied and utilized widely in many fields such as in matrix theory, statis-
tics and so on. In statistics, they are often used to make efficiency comparisons between
two estimators. For example, Wang and Shao [] have discussed the efficiency compar-
isons between the ordinary least squares estimator (OLSE) and the best linear unbiased
estimator (BLUE) in linear models. In this paper, our goal is to make the comparison of
efficiencies between OLSE and BLUE in a singular linear model by using matrix norm
versions of the Kantorovich inequality involving a nonnegative definite matrix.
Consider the following linear regression model:

y = Xβ + ε, (.)

where y ∈ Rn is the vector of n observations, X ∈ Rn×p is the known design matrix, β ∈ RP

is the unknown vector of regression coefficients and ε ∈ Rn is the error vector with mean
vector zero and the covariance matrix �.
When X has full column rank and � is assumed to be positive definite, it is well known

that the best linear unbiased estimator (BLUE) of β can be expressed as

β̃ =
(
X ′�–X

)–X ′�–y (.)

and the ordinary least squares estimator (OLSE) of β is given by

β̂ =
(
X ′X

)–X ′y. (.)

According to the Löwner ordering, we can easily compute from (.) and (.) that cov(β̂)–
cov(β̃) ≥ , which is nonnegative definite. Since there is no unique way to measure how

© 2013 Wang and Pan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194823211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2013/1/17
mailto:wanglt80@163.com
http://creativecommons.org/licenses/by/2.0


Wang and Pan Journal of Inequalities and Applications 2013, 2013:17 Page 2 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/17

‘bad’ the OLSE can be with respect to the BLUE, various criteria have been considered
in the literature; see, e.g., [–]. Among these criteria, the frequently used measure is the
Watson efficiency [] defined as follows:

φ =
| cov(β̃)|
| cov(β̂)| =

|X ′X|
|X ′�X| · |X ′�–X| , (.)

where | · | indicates the determinant of thematrix concerned. The lower bound is provided
by the Bloomfild-Watson-Knott inequality; see, e.g., [, ]. However, Yang and Wang []
have shown that such a criterion is not always so satisfactory and provided an alternative
form defined as the ratio of the Euclidean norms (or Frobenius norms) of the correspond-
ing covariance matrices:

φ =
‖cov(β̃)‖
‖cov(β̂)‖ =

‖(X ′�–X)–‖
‖(X ′X)–X ′�X(X ′X)–‖ . (.)

Many authors assume that the covariance matrix is nonsingular in their analysis of this
classic linearmodel. But the number of characteristics that could be included in themodel
may be clearly limited by this assumption of nonsingularity. A few authors relax the con-
dition of nonsingularity and consider a singular linear model. For example, Liski et al. []
and Liu [] make efficiency comparisons between the OLSE and BLUE in a singular linear
model. In the present paper, the singular linear model is further studied.
TheWatson efficiency φ has been generalized to a weakly singular model; see, e.g., [].

For a general case of the underlying singular linear model, it is not interesting because the
denominator reduces to zero. In order to relax assumptions on the rank of X and �, we
mainly discuss its alternative form based on the Euclidean norm [, ].
We hereinafter introduce some useful notations. Let the symbols A′, A–, A+, R(A),

R(A)⊥ and rk(A) stand for the transpose, a generalized inverse, the Moore-Penrose in-
verse, the column space, the orthogonal complement of the column space and the rank
of the matrix A, respectively. Moreover, write PA = AA+ = A(A′A)+A′ and MA = I – PA, in
particular, H = PX ,M = I –H . λi(A) denotes the ith largest eigenvalue of the matrix A.

2 A new Kantorovich-type inequality
We start with some lemmas which are very useful in the following.

Lemma . Let A be an n× n complex matrix and λ, . . . ,λn be eigenvalues of A. Then we
have

n∑
i=

|λi| ≤ ‖A‖

and the equality holds if and only if A is a regular matrix.

Proof The proof is very easy, we therefore omit it here. �

Lemma . Let A be an n×n positive semidefinite Hermitianmatrix and U be an orthog-
onal projection matrix with rk(U) = k. Then we have

λn–k+i(A) ≤ λi(AU)≤ λi(A), i = , . . . ,k.
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The proof can be found in []. See also [].

Lemma . The Pólya and Szegö inequality

( n∑
i=

ai

)( n∑
i=

bi

)
≤ (MM +mm)

mmMM

( n∑
i=

aibi

)

,

where  <m ≤ ai ≤ M,  <m ≤ bi ≤ M, i = , . . . ,n.

Lemma . Let A and B be two n× n positive semidefinite Hermitian matrices, and U be
an n× k matrix, R(A) ⊂ R(B), rk(B) = q, rk(BU) = t, then

λq–t+i
(
B–A

) ≤ λi
((
U*BU

)–U*AU
) ≤ λi

(
B–A

)
, i = , . . . , t.

The proof can be found in []. See also [].

Theorem . Let A be an n × n positive semidefinite Hermitian matrix and λ ≥ · · · ≥
λs >  (s ≤ n) be the ordered eigenvalues of A, and let U be an n× p complex matrix such
that U*U = Ip. If p ≤ s, we then have

‖(U ′A+U)–‖
‖U ′AU‖ ≥ p

√
λλpλs–p+λs

(λλs–p+ + λsλp)
∑p

i=
λi

λs–p+i

.

Proof The proof is similar to Theorem  in [], we therefore omit it here. �

3 The comparison of efficiencies
The Watson efficiency [, ] and its decompositions [] are usually used to measure
the efficiency of the ordinary least squares. However, Yang and Wang [] show that
such a criterion does not always work well in some cases and propose an alternative
form

ρ =
‖cov(Xβ̃)‖
‖cov(Xβ̂)‖ =

‖X(X ′�–X)–X ′‖
‖X(X ′X)–X ′�X(X ′X)–X ′‖ . (.)

The above formula and its lower bound both require the covariance matrix � to be pos-
itive definite and the design matrix to have full column rank. This assumption limits
clearly the number of characters which may be included in the model. We here gen-
eralize this formula to the situation where the matrices X and � can be of arbitrary
rank.
In the following, we divide singular linear models into three categories in accordance

with the assumptions on X and �. These categories are as follows:
() R(X) ⊂ R(�), rk(X) = p, � is possibly singular;
() R(X) ⊂ R(�), rk(X) < p, � is possibly singular;
() � is possibly singular.
From now on, we always assume rk(�) = s (s < n). Then any given singular linear model

can be uniquely classified into i (i = , , ). Many authors have contributed to the theory
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in the literature; see, e.g., [, ]. The general representations for the BLUE of Xβ and
their covariance matrices can be given respectively by

Xβ̃ =Hy –H�M(M�M)–My = X
(
X ′W–X

)–X ′W–y, (.)

cov(Xβ̃) =H�H –H�M(M�M)–M�H = X
(
X ′W–X

)–X ′ –XUX ′, (.)

where W = � + XUX ′ and here U ≥  is an arbitrary matrix such that R(W ) = R(X : �).
In particular, �– can play the same role as �– does when � is nonsingular as long as
R(X) ⊂ R(�). That is to say,W– can be replaced by �– in this case. We then have

cov(Xβ̃) = X
(
X ′�–X

)–X ′. (.)

The covariance matrix of the well-known OLSE of Xβ is given by

cov(Xβ̂) = X
(
X ′X

)–X ′�X
(
X ′X

)–X ′ =H�H . (.)

In the following, we make efficiency comparisons between the OLSE and BLUE in a
singular model according to the above category.
Firstly, we will discuss the category (). Thematrix productX ′�–X is invariant for all the

choices of generalized inverse �– because of the column space inclusion R(X) ⊂ R(�).
Applying the rank rule of the matrix product [], we can get that

rk
(
X ′�X

)
= rk(�X) = rk(X) – dimR(X)∩ R(�)⊥ = p. (.)

Note that R(�) = R(�+), and then we can conclude that X ′�X and X ′�+X are both non-
singular. In the literature, such amodel is often regarded as a weakly singular model or the
Zyskind-Martin model []. In this model, the relative efficiency ρ becomes

ρ =
‖cov(Xβ̃)‖
‖cov(Xβ̂)‖ =

‖X(X ′�+X)–X ′‖
‖X(X ′X)–X ′�X(X ′X)–X ′‖ . (.)

It is easy to prove that ρ ≤ . The following theorem gives its lower bound.

Theorem . In the linear regression model (.), let λ ≥ · · · ≥ λs (s < n) be the ordered
eigenvalues of � and X be an n× p design matrix with rk(X) = p, R(X) ⊂ R(�). Then we
have

ρ ≥ p
√

λλpλs–p+λs

(λλs–p+ + λsλp)
∑p

i=
λi

λs–p+i

.

Proof We can firstly compute that

ρ
 =

tr[(X ′X)– 
X ′

�+X(X ′X)–X ′
�+X(X ′X)– 

 ]–

tr(X ′X)– 
X ′

�X(X ′X)–X ′
�X(X ′X)– 


.
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There exists some orthogonal matrix P such that � = P�P′, so �+ = P�+P′ , where � =
diag(λ, . . . ,λs, , . . . , ). Let U = P′X(X ′X)– 

 , and then we have that U ′U = Ip and

ρ
 =

tr(U ′�+UU ′
�+U)–

trU ′�UU ′
�U

=
‖(U ′

�+U)–‖
‖U ′

�U‖ .

Using Theorem ., the result in Theorem . can be established. �

Secondly, we will consider the category (). Let rk(X) = r (r < p). Using equation (.),
we can get that rk(X ′�X) = rk(X ′�+X) = r. Analogically, the relative efficiency ρ becomes

ρ =
‖cov(Xβ̃)‖
‖cov(Xβ̂)‖ =

‖X(X ′�+X)+X ′‖
‖X(X ′X)+X ′�X(X ′X)+X ′‖ . (.)

It is easy to prove that ρ ≤ . The following theorem gives its lower bound.

Theorem . In the linear regression model (.), let λ ≥ · · · ≥ λs (s < n) be the ordered
eigenvalues of � and X be an n×p design matrix with rk(X) = r (r < p), R(X)⊂ R(�).We
then have

ρ ≥ r
√

λλrλs–r+λs

(λλs–r+ + λsλr)
∑r

i=
λi

λs–r+i

.

Proof It is easy to prove that

X
(
X ′�X

)+X ′ =
(
H�+H

)+.
Then the proof is similar to Theorem ., therefore we omit it here. �

Finally, we take into account the category (). Owing to (.), we may write

cov(Xβ̃) = cov(Xβ̂) –H�M(M�M)–M�H .

Therefore, we define

ρ =
‖cov(Xβ̂) – cov(Xβ̃)‖

‖cov(Xβ̂)‖ =
‖H�M(M�M)–M�H‖

‖H�H‖ . (.)

Let dimR(X)∩ R(�) = g (g ≥ ) and rk(X) = r (r ≤ p). Note that

rk
(
X ′�X

)
= rk

(
X ′X

(
X ′X

)+X ′�X
(
X ′X

)+X ′X
)

≤ rk
(
X

(
X ′X

)+X ′�X
(
X ′X

)+X ′) ≤ rk
(
X ′�X

)
.

Due to equation (.), we have

rk(H�H) = rk(X) – dimR(X)∩ R(�)⊥. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/17


Wang and Pan Journal of Inequalities and Applications 2013, 2013:17 Page 6 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/17

As a result from

R(X) = R(X)∩ (
R(�)⊕ R(�)⊥

)
=

(
R(X)∩ R(�)

) ⊕ (
R(X)∩ R(�)⊥

)
,

we then have

rk(H�H) = r – (r – g) = g. (.)

Similarly, we can obtain that

rk(M�M) = rk(�M) = rk(M) – dimR(M)∩ R(�)⊥ = dimR(M)∩ R(�). (.)

In view of R(M) = R(X)⊥ and

R(�) = R(�)∩ (
R(X)⊕ R(X)⊥

)
=

(
R(�)∩ R(X)

) ⊕ (
R(�)∩ R(X)⊥

)
,

we can get that

rk(M�M) = rk(�M) = s – g. (.)

Theorem . In the linear regression model (.), let λ ≥ · · · ≥ λs (s < n) be the ordered
eigenvalues of� andX be an n×p designmatrix with rk(X) = r (r ≤ p), dimR(X)∩R(�) =
g , rk(H�M(M�M)–M�H) = h, we then have

ρ ≤
⎧⎨⎩


(s+r–n) (

√
λλn–r+
λsλs+r–n

+
√

λsλs+r–n
λλn–r+

)(
∑s+r–n

i=
λi

λn–r+i
), if h≤ s + r – n,


(s+r–n) (

√
λλs–h+

λsλh
+

√
λsλh

λλs–h+
)(
∑h

i=
λi

λs–h+i
), if h > s + r – n.

Proof For convenience, let a = ‖H�M(M�M)–M�H‖ and b = ‖H�H‖. Then H�M ×
(M�M)–M�H is invariant for all the choices of generalized inverses (M�M)–. From
Lemma ., we can easily get that

a =
h∑
i=

λ
i
(
H�M(M�M)–M�H

)
=

h∑
i=

λ
i
(
(M�M)–M�H�M

)
.

Obviously, h = rk(H�M(M�M)–M�H) ≤ rk(�H) = g and h ≤ rk(�M) = s – g . Since �

and �H� are positive semidefinite matrices and R(�H�) ⊂ R(�), we can derive from
Lemma . that

a ≤
h∑
i=

λ
i
(
�–�H�

)
=

h∑
i=

λ
i
(
��–�H

)
=

h∑
i=

λ
i (�H).

Here H is an orthogonal projection matrix, and then we obtain from Lemma . that

a ≤
h∑
i=

λ
i (�) ≤

h∑
i=

λ
i .
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Furthermore, since H�H is a Hermitian matrix, by Lemma ., we can get that

b =
g∑
i=

λ
i (H�H) =

g∑
i=

λ
i (�H).

The Sylvester theorem (see, e.g., []) shows that n– r + g > s. Analogically, we can get that

b ≥
s+r–n∑
i=

λ
n–r+i.

Applying the well-known arithmetic-harmonic mean inequality, we have


b

≤ 
(s + r – n)

s+r–n∑
i=

λ–
n–r+i.

Firstly, we suppose that h≤ s + r – n. We can then compute that

ρ
 =

a

b
≤ 

(s + r – n)

s+r–n∑
i=

λ
i

s+r–n∑
i=

λ–
n–r+i.

By the Pólya and Szegö inequality and a nontrivial but elementary combinational argu-
ment, we can establish the first inequality. In fact, the second inequality is similar. �

4 Conclusions
In this article, we use several new matrix norm versions of the Kantorovich inequality
involving a nonnegative definite matrix to make the comparison of efficiencies between
OLSE and BLUE in a singular linear model. The singular linear model is divided into three
categories in accordance with the assumptions on the ranks of X and �. We introduce
some new relative efficiency criteria and their lower or upper bounds are given based on
matrix norm inequalities in Theorem ., Theorem . and Theorem ..
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