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1 Introduction

In previous studies of invariants derived from the Homfly polynomial, or equiv-
alently from the unitary quantum groups, it was noted that no invariant given
by a module over SU(3)q was known to distinguish a mutant pair of knots.
Indeed, any quantum group module whose tensor square has no repeated sum-
mands determines a knot invariant which fails to distinguish mutants [3]. A
table of invariants which fail to distinguish mutants was drawn up in [3], using
this and other evidence. Direct Homfly polynomial calculations showed that
a certain irreducible SU(N)q invariant, coming from the module with Young
diagram , could distinguish between some mutant pairs for N ≥ 4, although
not for N = 3. These calculations also exhibited a Vassiliev invariant of finite
type 11 which distinguishes some mutant pairs. The calculations left open the
possibility that SU(3)q invariants might never distinguish mutant pairs.

In this paper we give details of calculations with a specific SU(3)q –module
which result in different invariants for the Conway and Kinoshita–Teresaka pair
of mutant knots. We also consider some features of Kuperberg’s skein-theoretic
techniques for SU(3)q invariants in the context of mutant knots.

Much of this work was carried out in 1994–95, while the second author was
supported by EPSRC grant GR/J72332.
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366 Morton and Ryder

1.1 Background

The term mutant was coined by Conway, and refers to the following general
construction.

Suppose that a knot K can be decomposed into two oriented 2–tangles F and
G as shown in figure 1.

      

      

K = F G K ′ = F ′ G

F ′ = F or F or F

Figure 1

A new knot K ′ can be formed by replacing the tangle F with the tangle
F ′ given by rotating F through π in one of three ways, reversing its string
orientations if necessary. Any of these three knots K ′ is called a mutant of K .

The two 11–crossing knots with trivial Alexander polynomial found by Conway
and Kinoshita–Teresaka are the best-known example of mutant knots. They are
shown in figure 2.

C = , KT = .

Figure 2

It is clear from figure 2 that the knots C and KT are mutants, and the con-
situent tangles F and G are both given from a 3–string braid by closing off
one of the strings.

The simplest SU(3)q invariant not previously known to agree on mutant pairs
is given by the 15–dimensional irreducible module with Young diagram .
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The Homfly polynomial of the 4–parallel with z = s − s−1 and v = sN is a
sum of 4–cell invariants for SU(N)q . When N = 3 it is known that all 4–cell
invariants except that for agree on mutants. Thus the Homfly polynomial
of the 4–parallel, with the substitution z = s − s−1 and v = s3 , agrees on
mutants if and only if the SU(3)q invariant for agrees on mutants.

Equally, the same substitution in the Homfly polynomial of the satellite consist-
ing of the parallel with 3 strings, two oriented in one direction and one in the
reverse direction, gives the sum of certain 4–cell invariants for SU(3)q , because
the dual of the fundamental module, used to colour the reverse string, is given
by using the Young diagram with a single column of two cells. Then the Hom-
fly polynomial of the 3–parallel with one reverse string, after the substitution
z = s − s−1, v = s3 agrees on mutants if and only if the SU(3)q invariant for

agrees on mutants.

Kuperberg’s combinatorial methods for handling SU(3)q invariants seemed to
us for a while to offer a chance that the behaviour of SU(3)q would follow
that of SU(2)q . We explored the SU(3)q skein of the pair of pants, based on
Kuperberg’s combinatorial techniques, in the hope of proving this. An analysis
of this skein is given later, as it has a geometrically appealing basis, whose first
lack of symmetry again pointed the finger at the reversed 3–parallel as the first
potential candidate for distinguishing some mutant pairs.

1.2 Choice of calculational method

We did not pursue the Kuperberg skein calculations for these parallels of Con-
way and Kinoshita–Teresaka. Although we contemplated briefly such an ap-
proach it seemed difficult to use computational aids in dealing with combina-
torial skein diagrams once the number of crossings to be resolved grew beyond
easy blackboard calculations, as no computer implementation of the graphical
calculations in this skein was available to us.

While we could, in principle, have calculated the Homfly polynomial of the
3–parallel of Conway’s knot with one string reversed there is a considerable
problem in computation of Homfly polynomials of links with a large number of
crossings. A number of computer programs will calculate the Homfly polynomi-
als of general links. Mostly these rely on implementation of the skein relation,
and the time required grows exponentially with the number of crossings. Such
programs include those by Ochiai, Millett and Hoste. They will work up to the
order of maybe 40 or even 50 crossings but slow down rapidly after that. In
the application needed for this paper we have to deal with the 3–string parallel
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to Conway’s knot with two strings in one direction and one in the other, which
gives a link with 99 crossings. Even if the calculation is restricted to dealing
with terms up to z13 only, or some similar bound, these programs are unlikely
to make any impact on the calculations.

There does exist a program, developed by Morton and Short [4], which can
handle links with a large numbers of crossings, under some circumstances. This
is based on the Hecke algebras, but it requires a braid presentation of the link on
a restricted number of strings; in practice 9 strings is a working limit, although
in favourable circumstances it can be enough to break the link into pieces which
meet this bound more locally. Unfortunately the reverse orientation of one
string which is needed in the present case means that any braid presentation
for the resulting link falls well outside the limitations of this program.

In [3] the Hecke algebra calculations on 3–string parallels with all strings in
the same direction could be carried out in terms of 9–string braids, and lent
themselves well to an effective truncation to restrict the degree of Vassiliev
invariants which had to be calculated. The alternative possibility here of using
4 parallel strings, all with the same orientation, faces the uncomfortable growth
of these calculations from 9–string to 12–string braids, entailing a growth in
storage from 9! to 12! for a calculation which was already nearing its limit.
There are also almost twice as many crossings (11 × 16), as well as a similar
factorial growth in overheads for the calculations.

We consequently did not pursue Homfly calculations any further. Instead we
returned to the SU(3)q –module calculations and made explicit computations
for the invariants of the knots C and KT when coloured by the 15–dimensional
module V , using the following scheme. This approach has the merit of

focussing directly on the key part of the SU(3)q specialisation, rather than
using the full Homfly polynomial on some parallel link. We give further details
of the method later.

When each of the knots C and KT is coloured by the SU(3)q–module V

the two constituent tangles F and G will be represented by an endomorphism
of the module V ⊗ V . To calculate the invariant of the knot, presented

as the closure of the composite of the two 2–tangles, we may compose the endo-
morphisms for the two 2–tangles, and then calculate the invariant of the closure
of the composite tangle in terms of the resulting endomorphism. Let us suppose
that V ⊗ V decomposes as a sum

⊕

aνVν of irreducible modules, where

aν ∈ N and aνVν denotes the sum of all submodules which are isomorphic
to Vν . Any endomorphism then maps each isotypic piece aνVν to itself. It is
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convenient to regard each isotypic piece as a vector space of the form Wν ⊗Vν ,
where Wν has dimension aν , and can be explicitly identified with the space of
highest weight vectors for the irreducible module Vν in V ⊗ V . Any en-

domorphism α of V ⊗V maps each space Wν to itself, and is determined

by the resulting linear maps αν : Wν → Wν .

Where two endomorphisms α and β of
⊕

(Wν ⊗ Vν) are composed, the cor-
responding restrictions to each weight space Wν compose, to give (α ◦ β)ν =
αν ◦ βν . Now the invariant of the closure of a tangle represented by an endo-
morphism γ of

⊕

(Wν ⊗Vν) is known to be
∑

(tr(γν)× δν), where δν = JO(Vν)
is the quantum dimension of the module Vν . The difference of the invariants
for two knots represented respectively by γ and γ′ is then given in the same
way using γ − γ′ in place of γ .

The invariants for Conway and Kinoshita–Teresaka arise in this way from en-
domorphisms γ = α ◦ β and γ′ = α′ ◦ β , in which α and α′ represent one
of the 2–tangles for Conway, and the same tangle turned over for Kinoshita–
Teresaka, while the other tangle gives the same β in each case. We can write
α′ = R−1◦α◦R as module endomorphisms, where R is the R–matrix for V .

Clearly, for those ν with dim Wν = 1 we will have α′
ν = αν , and so γ′ν−γν = 0.

(As noted in [3], if this happens for all ν then the invariant cannot distinguish
any mutant pair). The final difference of invariants will thus depend only on
those ν where the summand Vν has multiplicity greater than 1. In the case
here there are just two such ν and in each case the space Wν has dimension
2. The calculation then reduces to the determination of the 2 × 2 matrices
representing αν , α

′
ν and βν .

1.3 Result of the explicit calculation

The difference between the values of the invariant on Conway’s knot and on the
Kinoshita–Teresaka knot is

s−80(s8 + 1)2(s4 + 1)4(s+ 1)13(s− 1)13(s2 − s+ 1)3(s2 + s+ 1)3

(s6 − s5 + s4 − s3 + s2 − s+ 1)(s6 + s5 + s4 + s3 + s2 + s+ 1)
(s4 − s3 + s2 − s+ 1)(s4 + s3 + s2 + s+ 1)(s4 − s2 + 1)(s2 + 1)6

(s46 − s44 + 2 s40 − 4 s38 + 2 s36 + 3 s34 − 4 s32 + 6 s30 − s28 − 3 s26 + 6 s24

−4 s22 + 4 s20 + 2 s18 − 5 s16 + 5 s14 − 2 s12 − 2 s10 + 4 s8 − 2 s6 + s2 − 1)

up to a power of the variable s.

This may be rewritten to indicate more clearly the appearance of roots of unity
as the product of (s46−s44+2 s40−4 s38+2 s36+3 s34−4 s32+6 s30−s28−3 s26+
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6 s24−4 s22+4 s20+2 s18−5 s16+5 s14−2 s12−2 s10+4 s8−2 s6+s2−1) with
the factors (s8 − s−8)2(s7 − s−7)(s6 − s−6)(s5 − s−5)(s4 − s−4)2(s3 − s−3)2(s2−
s−2)(s− s−1)3 , and a power of s.

When this is written as a power series in h with s = eh/2 the first term becomes
7 +O(h) and the other factors contribute ch13 +O(h14), where the coefficient
c is c = 82.7.6.5.42 .32.2. The coefficient of h13 in the power series expansion
of the SU(3)q invariant for the 15–dimensional irreducible module is thus a
Vassiliev invariant of type at most 13 which differs on the two mutant knots.

1.4 Some background to the calculational method

In the following section we give details of the methods used in our calculations.
We feel it is important that others can in principle check the calculations, as
we were very much aware in setting up our initial data just how much scope
there is for error. It can easily cause problems, for example, if some of the data
is taken from one source and some from another which has been normalised in
a slightly different way. When the goal is to show that some polynomial arising
from the calculations is non-zero any mistake is almost bound to result in a
non-zero polynomial even if the true polynomial is zero.

In our work here we have been reassured to find that the non-zero difference
polynomial above at least has some roots which could be anticipated, since the
difference must vanish at certain roots of unity. An error in the calculations
would have been likely to give a difference which did not have these roots.

The computations were done in Maple, using its polynomial handling and linear
algebra routines. In this way we avoided the need to write explicit Pascal or
C programs for matrices and polynomials, although the computations were
probably not as fast as with a compiled program. For comparison, a Maple
version of the Hecke algebra program in [4] took roughly 50 times as long as
the compiled Pascal program to calculate the Homfly polynomial of a variety
of links when tested some time ago on the same machine.

1.5 The quantum group SU(3)q

We start from a presentation of the quantum group SU(3)q as an algebra with
six generators, X±

1 , X±

2 , H1, H2 , and a description of the comultiplication and
antipode. Let M be any finite-dimensional left module over SU(3)q . The action
of any one of these six generators Y will determine a linear endomorphism YM
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of M . We build up explicit matrices for these endomorphisms on a selection
of low-dimensional modules, using the comultiplication to deal with the tensor
product of two known modules, and the antipode to construct the action on
the linear dual of a known module. We must eventually determine the matrices
YM for the 15–dimensional module M = V above, and find the 225 × 225

R–matrix, RMM which represents the endomorphism of M ⊗ M needed for
crossings.

Knowing YM we can find the generators YMM for the module M ⊗ M , and
thus identify the highest-weight vectors for this module. We can follow the
effect of each 2–tangle F and G on the highest-weight vectors when we know
how to take account of the closure of one of the strings in forming the 2–tangle
from the 3–braid. To do this we need the fixed element T of the quantum
group, corresponding to Turaev’s ‘enhancement’ [6], which is used in forming
the ‘quantum trace’.

For the quantum groups coming from the classical Lie algebras there is a simple
prescription for T = exp(hρ) in terms of a linear form ρ =

∑

µiHi , with
coefficients determined by the Cartan matrix for the Lie algebra, [1]. In the
case of SU(3)q we have ρ = H1 +H2 . The quantum dimension of any module
M is the trace of the matrix TM representing the action of T on M . More
generally, the effect of closing a string which is coloured by M , to convert
an endomorphism of V ⊗ M into an endomorphism of V , can be realised by
acting on M by T and then taking the partial trace of the composite linear
endomorphism of V ⊗ M . The element T is variously written as u±1v or
u−1θ where v is Turaev’s ‘ribbon element’ representing the full twist and u is
constructed directly from the universal R–matrix, [7], [1].

We follow Kassel in the basic description of the quantum group from [1], chapter
17, using generators H1 and H2 for the Cartan sub-algebra, but with generators
X±

i in place of Xi and Yi . We use the notation Ki = exp(hHi/4), and set
a = exp(h/4), s = exp(h/2) = a2 and q = exp(h) = s2 , unlike Kassel. The
elements satisfy the commutation relations [Hi,Hj ] = 0, [Hi,X

±

j ] = ±aijX
±

j ,

[X+
i ,X−

i ] = (K2
i − K−2

i )/(s − s−1), where (aij) =

(

2 −1
−1 2

)

is the Cartan

matrix for SU(3), and also the Serre relations of degree 3 between X±

1 and
X±

2 .

Comultiplication is given by

∆(Hi) = Hi ⊗ I + I ⊗Hi,
(so ∆(Ki) = Ki ⊗Ki, )

∆(X±

i ) = X±

i ⊗Ki +K−1
i ⊗X±

i ,
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and the antipode S by S(X±

i ) = −s±1X±

i , S(Hi) = −Hi , S(Ki) = K−1
i .

The fundamental 3–dimensional module, which we denote by E , has a basis
in which the quantum group generators are represented by the matrices YE as
listed here.

X+
1 =





0 1 0
0 0 0
0 0 0



 , X+
2 =





0 0 0
0 0 1
0 0 0





X−

1 =





0 0 0
1 0 0
0 0 0



 , X−

2 =





0 0 0
0 0 0
0 1 0





H1 =





1 0 0
0 −1 0
0 0 0



 , H2 =





0 0 0
0 1 0
0 0 −1



 .

For calculations we keep track of the elements Ki rather than Hi , represented
by

K1 =





a 0 0
0 a−1 0
0 0 1



 , K2 =





1 0 0
0 a 0
0 0 a−1





for the module E .

We can then write down the elements YEE for the actions of the generators Y
on the module E⊗E , from the comultiplication formulae. The R–matrix REE

representing the endomorphism of E ⊗E which is used for the crossing of two
strings coloured by E can be given, up to a scalar, by the prescription

REE(ei ⊗ ej) = ej ⊗ ei, if i > j,
= s ei ⊗ ei, if i = j,
= ej ⊗ ei + (s− s−1)ei ⊗ ej , if i < j,

for basis elements {ei} of E .

We made a quick check with Maple to confirm that the matrices YEE all com-
mute with REE , as they should. It can also be checked that REE has eigen-
values s with multiplicity 6 and −s−1 with multiplicity 3, and satisfies the
equation R−R−1 = (s− s−1)Id.

The linear dual M∗ of a module M becomes a module when the action of a
generator Y on f ∈ M∗ is defined by < YM∗f, v >=< f, S(YM )v >, for v ∈ M .
For the dual module F = E∗ we then have matrices for YF , relative to the dual
basis, as follows.
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X+
1 =





0 0 0
−s 0 0
0 0 0



 , X+
2 =





0 0 0
0 0 0
0 −s 0





X−

1 =





0 −s−1 0
0 0 0
0 0 0



 , X−

2 =





0 0 0
0 0 −s−1

0 0 0





K1 =





a−1 0 0
0 a 0
0 0 1



 , K2 =





1 0 0
0 a−1 0
0 0 a



 .

The most reliable way to work out the R–matrices REF , RFE and RFF is to
combine REE with module homomorphisms cupEF , cupFE , capEF and capFE

between the modules E ⊗ F , F ⊗ E and the trivial 1–dimensional module, I ,
on which X±

i acts as zero and Ki as the identity. For example, to repre-
sent a homomorphism from I to E ⊗ F the matrix for cupEF must satisfy
YEF cupEF = cupEF YI , which identifies cupEF as a common eigenvector of
the matrices YEF , with eigenvalue 0 or 1 depending on Y . The matrices are
determined up to a scalar by such considerations; when one has been chosen
the scalar for the others is dictated by diagrammatic considerations. They are
quite easy to write down theoretically, although to be careful about compatibil-
ity and possible miscopying it is as well to get Maple to find them in this way
for itself. Once these matrices have been found they can be combined with the
matrix R−1

EE to construct the R–matrices REF , RFE, RFF , using the diagram
shown in figure 3, for example, to determine REF . This gives

REF = 1F ⊗ 1E ⊗ capEF ◦ 1F ⊗R−1

EE ⊗ 1F ◦ cupFE ⊗ 1E ⊗ 1F .

  

  

    

    

  

  

 

F E

E F

F E

F E E F

F E E F

E F

=

Figure 3

The module structure of M = V can be found by identifying M as a 15–

dimensional submodule of E⊗E⊗F . We know that there will be a direct sum
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decomposition of E ⊗ E ⊗ F as M ⊕ N , and indeed that N will decompose
further into the sum of two copies of a 3–dimensional module isomorphic to E
and one 6–dimensional module with Young diagram . The full twist element
on the three strings coloured by E,E and F acts by a scalar on each of the
irreducible submodules of E ⊗E ⊗ F . It can be expressed as a 27× 27 matrix
in terms of the R–matrices above. Maple can then produce a basis for each of
the eigenspaces, one of dimension 15 and the other two each of dimension 6.
Write P and Q for the 27×15 and 27×12 matrices whose columns are made of
these basis vectors. Then P and Q give bases for M and N respectively. The
partitioned matrix (P |Q) is invertible. When its inverse, found by Maple, is

written in the form

(

R

S

)

we have a 15×27 matrix R which satisfies RP = I15

and RQ = 0. Regard P as the matrix representing the inclusion of the module
M into E ⊗E ⊗F . Then R is the matrix, in the same basis, of the projection
from E ⊗ E ⊗ F to M . The module generators YM satisfy YM = RYEEF P ,
giving the explicit action of the quantum group on M .

We use the injection and projection further to find the 152 × 152 R–matrix
RMM . First include M ⊗M in (E ⊗ E ⊗ F ) ⊗ (E ⊗ E ⊗ F ), then construct
the R–matrix for E ⊗ E ⊗ F from the crossing of three strings each coloured
with E or F over three others using the various matrices REF from above, and
finally project to M ⊗M .

The calculations can be completed in principle from here. Represent the 3–
braid in the 2–tangle F by an endomorphism of M ⊗ M ⊗ M , using RMM

and its inverse. Then use TM and the partial trace to close off one string,
hence giving the endomorphism FMM of M ⊗M determined by F . A similar
calculation gives the endomorphism GMM . The invariant for one of the knots
is given by the trace of TMMFMMGMM . The other is given by replacing GMM

with the conjugate R−1

MMGMMRMM . Some calculation can be avoided by using
GMM−R−1

MMGMMRMM in place of GMM , to get the difference of the invariants
directly.

A considerable shortcut can be made at this point by concentrating on the effect
of FMM and GMM on certain highest weight vectors in M ⊗M , rather than
considering the whole of the module. A highest weight vector v of a module V
is a common eigenvector of H1 and H2 (or equally K1 and K2 ) which satisfies
X+

1 (v) = X+
2 (v) = 0. The submodule of V generated by a highest weight vector

is irreducible. Its isomorphism type is determined by the eigenvalues of H1 and
H2 , which are non-negative integers. It follows easily from the relations in the
quantum group that any module homomorphism f : V → W carries highest
weight vectors to highest weight vectors of the same type.
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Calculation in Maple determines the linear subspace of M ⊗ M which is the
common null-space of X+

1 and X+
2 . This turns out to have dimension 10,

spanned by two highest weight vectors of type (3, 1), two of type (1, 2) and six
further highest weight vectors each of a different type. Then the endomorphism
F restricts to a linear endomorphism Fν of the space of highest weight vectors
of type ν , for each ν . We remarked earlier that weight spaces of dimension 1
will not contribute to the difference of the invariants on two mutant knots, so
we need only calculate the maps Fν and Gν for the two 2–dimensional weight
spaces ν = (3, 1) and ν = (1, 2). We thus choose two spanning vectors for one
of these spaces and follow each of these through the 2–tangle F , taking the
tensor product with M and mapping to M ⊗M ⊗M as above (using repeated
operations of the 225 × 225 R–matrix on a vector of length 225 × 15) before
applying the matrix TM and taking a partial trace to finish in M ⊗M . Since
the result in each case must be a linear combination of the two chosen weight
vectors it is not difficult to find the exact combination. This determines a 2×2
matrix representing Fν for the weight space of type ν . Similar calculations
for the other weight space and for G, along with a quick calculation of the
2 × 2 matrix representing RMM on each weight type gives enough to find the
contribution of each of these weight types to the difference. The final difference
comes from multiplying the trace of the 2× 2 difference matrix for each type ν
by the quantum dimension of the irreducible module of type ν for each of the
two types and then adding the results.

Up to the same power of s in each case the contribution from the weight space
of type (3, 1) was found to be

t31 = (s8 + 1)2(s2 + 1)4(s4 + 1)3(s+ 1)13(s− 1)13s6(s2 − s+ 1)(s2 + s+ 1)
(s4 − s3 + s2 − s+ 1)(s4 + s3 + s2 + s+ 1)
(s6 − s5 + s4 − s3 + s2 − s+ 1)(s6 + s5 + s4 + s3 + s2 + s+ 1)
(2 s20 + s18 + s14 − s12 + 2 s8 − s6 − 1)
(s22 − s20 + s16 − 2 s14 + 3 s12 + 2 s10 − s8 + 2 s6 + 2)

= (2 s20 + s18 + s14 − s12 + 2 s8 − s6 − 1)
(s22 − s20 + s16 − 2 s14 + 3 s12 + 2 s10 − s8 + 2 s6 + 2)
×(s8 − s−8)2(s7 − s−7)(s5 − s−5)(s4 − s−4)
(s3 − s−3)(s2 − s−2)(s− s−1)6s49,

and the contribution from type (1, 2) to be
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t12 = (s6 − s5 + s4 − s3 + s2 − s+ 1)2(s6 + s5 + s4 + s3 + s2 + s+ 1)2

(s4 − s2 + 1)(s8 + 1)2(s4 + 1)5(s2 + 1)8

(s2 + s+ 1)(s2 − s+ 1)(s − 1)14(s+ 1)14(s10 − s8 + s4 − s2 + 1)
(s18 − s16 − s14 + 2 s12 − 2 s10 + 2 s6 − 2 s4 − s2 + 1)

= (s18 − s16 − s14 + 2 s12 − 2 s10 + 2 s6 − 2 s4 − s2 + 1)
(s10 − s8 + s4 − s2 + 1)
×(s8 − s−8)2(s7 − s−7)2(s6 − s−6)(s4 − s−4)3

×(s2 − s−2)2(s− s−1)4s56.

The quantum dimension for the irreducible module of type (3, 1), which has
Young diagram , is a product of quantum integers [6][4] = (s6 − s−6)(s4 −
s−4)/(s− s−1)2 . For the module of type (1, 2), with Young diagram , it is
[5][3] = (s5 − s−5)(s3 − s−3)/(s − s−1)2 .

The difference between the SU(3)q invariants with the module V for the

Conway and Kinoshita–Teresaka knots is then given, up to a power of s = eh/2 ,
by [5][3]t12 + [6][4]t31 . This yields the polynomial quoted earlier.

2 The Kuperberg skein for mutants

Let K and K ′ be the mutants shown schematically in figure 1. As K and K ′

are knots, precisely one of F or G must induce the identity permutation on the
endpoints by following the strings through the tangle, while the other induces
the transposition. We will consider these two cases separately.

In [2] Kuperberg gives a skein-theoretic method for handling the SU(3)q in-
variant of a link when coloured by the fundamental module, which he denotes
by <>A2

. Knot diagrams are extended to allow 3–valent oriented graphs in
which any vertex is either a sink or a source. Crossings can be replaced locally
in this skein by a linear combination of planar graphs, and any planar circles,
2–gons or 4–gons can be replaced by linear combinations of simpler pieces.

In using skein-based calculations it is helpful when dealing, for example, with
satellites to regard the pattern as a diagram in an annulus, and note that it can
be replaced by any equivalent linear combination of diagrams in the skein of the
annulus. Thus we should consider the Kuperberg skein of the annulus, namely
linear combinations of admissibly oriented 3–valent graph diagrams subject to
local relations as before. A similar definition can be made for the skein of other
surfaces. Notice that the relations ensure that the skein is spanned by oriented
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graphs lying entirely in the surface, without simple closed curves, 2–gons or
4–gons which bound discs in the surface.

In the case of the annulus this shows that the skein is spanned by unions of
oriented simple closed curves parallel to the boundary of the annulus, with
orientations in either direction.

When a mutant knot K is made up from two 2–tangles F and G as above
then one of F and G, let us suppose G, must be a pure tangle, in the sense
that the arcs of G connect the entry point at top left with the exit at bottom
left, and top right with bottom right. Then K can be viewed as made from
the diagram in the disc P with two holes, shown in figure 4, by embedding the
planar surface P so that the two ‘ears’ are tied around the arcs of G. Turning
the diagram in P over along the axis indicated before embedding it in the same
way, and reversing all string orientations, will give one of the mutants K ′ of
K . Any satellites of K and K ′ are related in a similar way, for we can view a
satellite of K as constructed by decorating the diagram in P with the required
pattern, and then tying the ears of P around G as before. The corresponding
satellite of K ′ is given by turning P over, with the decorated diagram, reversing
all strings, and then using the same embedding of P .

P = 1 2

3

 F

Figure 4

If we could show that the Kuperberg skein of P is spanned by elements which
are invariant under turning over and reversing orientation then we could deduce
that satellites of mutants such as K and K ′ would have the same SU(3)q
invariants, by considering the decorated diagram in this skein. A proof for all
mutants would need a similar analysis for the skein of the once-punctured torus,
to deal with one of the other mutation operations, and the third case would then
follow, using a similar argument to [5], where the truth of the corresponding
results in the Kauffman bracket skein showed that satellites of mutants have
the same SU(2)q invariants.

We shall now describe a basis for the Kuperberg skein of P , which has some
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nice symmetry properties, but not enough to give the invariance above. Indeed
a diagram coming from a 3–fold parallel with one reversed string will give a
linear combination of basis elements in the skein in which all but at most one
pair are invariant. (Diagrams from 2–fold parallels of any orientation determine
elements of the invariant subspace.)

Theorem 2.1 The Kuperberg skein of a disc with two holes has a basis of

diagrams consisting of the union of simple closed curves parallel to each bound-

ary component and a trivalent graph with a 2–gon nearest to each of the three

boundary components and 6–gons elsewhere.

Proof Use the skein relations to write any diagram as a linear combination of
admissibly oriented trivalent graphs in the surface. We can assume that there
are no simple closed curves or 2–gons or 4–gons with null-homotopic boundary.
There may be a number of simple closed curves parallel to each of the boundary
components. The remaining graph must be connected, otherwise one of its
components lies in an annulus inside the surface, and can be reduced further
to a linear combination of unions of parallel simple closed curves. Consider
the graph as lying in S2 , by filling in the three boundary components of the
surface. It dissects S2 into a number of n–gons, with n even, and n ≥ 6 except
possibly for the three n–gons containing the added discs. Now calculate the
Euler characteristic of the resulting sphere S from the dissection by the graph.
As vertices are trivalent and each edge now bounds two faces, we can count the
Euler characteristic as a sum over the n–gons, in which each vertex contributes
1/3 and each edge −1/2. Therefore each n–gon will contribute 1−n/6, so the
only positive contribution to χ(S) can come from 2–gons or 4–gons. These can
only arise from the original three boundary components, where the maximum
possible total positive contribution is 2 when each boundary component gives a
2–gon. Since the total must be 2 and the only other contributions are negative
or zero, we must have three 2–gons forming the original boundary components
and 6–gons elsewhere.

If we start with a 3–parallel of a tangle F inside the planar surface P , with
two strands in one direction and one in the other, and write it in the Kuperberg
skein we will get a linear combination of graphs as above, each having at most 3
strings around each ‘ear’. Some of these will be the union of some simple closed
curves around the punctures and trivalent graphs. In figure 5 we show one
such trivalent graph which fails to be symmetric under the order 2 operation of
turning the surface over (and reversing edge orientations).
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1

3

2

Figure 5

Note however that this graph is symmetric under the operation of order 3 in
which the three boundary components are cycled. This is a general feature of
the connected trivalent graphs which arise in our construction, as appears from
the following description, where we replace P by a 3–punctured sphere.

We call a trivalent graph in the 3–punctured sphere admissible if it is oriented
so that each vertex is either a sink or a source, and every region not containing
a puncture is a hexagon.

Theorem 2.2 Every admissible graph in the 3–punctured sphere is symmet-

ric, up to isotopy avoiding the punctures, under a rotation which cycles the

punctures. It can be constructed from the hexagonal tesselation of the plane

by choosing an equilateral triangle lattice whose vertices lie at the centres of

some of the hexagons and factoring out the translations of the lattice and the

rotations of order 3 which preserve the lattice.

Proof Let Γ be the admissible graph. By our Euler characteristic calcula-
tions we know that each puncture is contained in a 2–gon. There is a 3–fold
branched cover of S2 by the torus T 2 with three branch points, each cyclic of
order 3. The inverse image of Γ in T 2 then consists of hexagonal regions, with
three distinguished regions containing the branch points. This inverse image
is invariant under the deck transformation of order 3 which leaves each distin-
guished region invariant. The further inverse image under the regular covering
of T 2 by the plane is a tesselation of the plane by hexagons, and the inverse
image of the centre of one of the distinguished regions determines a lattice in
the plane. We want to show that this is an equilateral triangle lattice, when
the hexagonal tesselation is drawn in the usual way. We need only lift the deck
transformation to a transformation of the plane keeping the tesselation invari-
ant and fixing one of the lattice points to see that it must lift to a rotation of
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the tesselation about the centre of a distinguished hexagon. Since the lattice is
invariant under this transformation it follows that the lattice must be equilat-
eral. The inverse image of each of the other two branch points will also form
an equilateral lattice, invariant under the first rotation, and so their vertices
lie in the centres of the triangles; by construction they also lie in the middle
of hexagons. Although the equilateral lattice need not lie symmetrically with
respect to reflections of the tesselation, as in the example shown below, it does
follow that the rotation which permutes the three lattices will also preserve the
tesselation. This rotation induces the symmetry of the sphere which cycles the
branch points and preserves Γ.

1
2

3

3

2

1

Figure 6

Figure 6 shows such an equilateral triangle lattice superimposed on a hexagon
tesselation. The resulting graph in the 3–punctured sphere, whose fundamental
domain is indicated, is the graph shown in figure 5 as a non-symmetric skein
element in the disk with two holes. The labelling of the puncture points as 1, 2
and 3 corresponds to that of the boundary components. The 3–fold symmetry
of the graph in the surface when the boundary components are cycled is evident
from this viewpoint.

The Kuperberg skein of the punctured torus does not appear to have such a
simple basis. The region around the puncture may be a 2–gon or a 4–gon,
giving the following possible combinations: (i) a 2–gon, two 8–gons and 6–
gons elsewhere, (ii) a 2–gon, one 10–gon and 6–gons elsewhere, (iii) a 4–gon,
one 8–gon and 6–gons elsewhere, (iv) 6–gons only. We did not try to analyse
the configurations further, in view of the results of our quantum calculations.
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