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Abstract
Background/Aims: The main purpose of this study was to investigate the effects of celecoxib 
and ibuprofen, both non-steroidal anti-inflammatory drugs (NSAIDs), on the decreased 
gluconeogenesis observed in liver of Walker-256 tumor-bearing rats. Methods: Celecoxib 
and ibuprofen (both at 25 mg/Kg) were orally administered for 12 days, beginning on the 
same day when the rats were inoculated with Walker-256 tumor cells. Results: Celecoxib 
and ibuprofen treatment reversed the reduced production of glucose, pyruvate, lactate and 
urea from alanine as well as the reduced production of glucose from pyruvate and lactate in 
perfused liver from tumor-bearing rats. Besides, celecoxib and ibuprofen treatment restored 
the decreased ATP content, increased triacylglycerol levels and reduced mRNA expression 
of carnitine palmitoyl transferase 1 (CPT1), while ibuprofen treatment restored the reduced 
mRNA expression of peroxisome proliferator-activated receptor alpha (PPARα) in the liver 
of tumor-bearing rats. Both treatments tended to decrease TNFα, IL6 and IL10 in the liver of 
tumor-bearing rats. Finally, the treatment with celecoxib, but not with ibuprofen, reduced the 
growth of Walker-256 tumor. Conclusion: Celecoxib and ibuprofen restored the decreased 
gluconeogenesis in the liver of Walker-256 tumor-bearing rats. These effects did not involve 
changes in tumor growth and probably occurred by anti-inflammatory properties of these 
NSAIDs, which increased expression of genes associated with fatty acid oxidation (PPARα 
and CPT1) and consequently the ATP production, normalizing the energy status in the liver of 
tumor-bearing rats.
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Introduction

Walker-256 tumor-bearing rats, an animal model widely used to study metabolic 
alterations induced by cancer, exhibit cachexia, anorexia and several disturbances in the 
metabolism of protein, carbohydrates and lipids [1]. Liver perfusion studies revealed several 
changes in hepatic metabolism of Walker-256 tumor-bearing rats. For example, glycolytic 
flux is diminished in the liver of Walker-256 tumor-bearing rats and this seems to be caused, 
at least in part, by an impaired glucokinase activity [2]. These animals also showed decreased 
hepatic capacity for oxidizing fatty acids [3, 4], a phenomenon which seems to be caused by 
reduction in the activity of the mitochondrial carnitine palmitoyl transferase-1 (CPT1) [3] 
and -2 (CPT2) [5]. In addition, liver gluconeogenesis from alanine, pyruvate and lactate was 
decreased in this cancer-cachexia experimental model in our [6] and others [4, 7, 8] studies. 
However, the mechanism involved in this inhibition is still unknown.

Tumor necrosis factor-α (TNFα) and interleukin-1 (IL1), which are pro-inflammatory 
cytokines increased by cancer [9-11], have been associated with the gluconeogenesis 
inhibition. It was observed that intravenous administration of TNFα [12, 13] or IL1β 
[12] reduced the gluconeogenesis from alanine, pyruvate and lactate in liver perfusion. 
Nevertheless, we observed that treatment with infliximab, an antibody that neutralizes 
TNFα, did not affect the gluconeogenesis inhibition from alanine in Walker-256 tumor-
bearing rats [14]. 

Further the cytokines, the prostaglandins (PGs), especially prostaglandin E2 (PGE2), 
which is involved in inflammation caused by the Walker-256 tumor [15], seem to be 
associated to the inhibition of gluconeogenesis. However, few studies have assessed the 
effects of non-steroidal anti-inflammatory drugs (NSAIDs), which decrease PGs synthesis by 
inhibiting cyclooxygenase-1 (COX-1) and/or cyclooxygenase-2 (COX-2), on gluconeogenesis 
in pathological states. 

The treatment with indomethacin (NSAID, COX-1 and COX-2 inhibitor) reduced the 
inhibition of gluconeogenesis from alanine in liver of arthritic rats [16]. In addition, treatment 
with celecoxib (NSAID, COX-2 inhibitor) abolished the inhibition of gluconeogenesis from 
alanine in liver perfusion of Walker-256 tumor-bearing rats [8], which shows high levels of 
PGE2 in plasma [15]. However, in this latter study the celecoxib treatment also reduced tumor 
growth [8] and so the production of factors with gluconeogenesis inhibitory properties, 
such as the cytokines TNFα and IL1. Therefore, the contribution of PGs to inhibition of 
gluconeogenesis in Walker-256 tumor-bearing rats still remains inconclusive. 

Given that ibuprofen (NSAID, COX-1 and COX-2 inhibitor), as opposed to celecoxib, did 
not reduce Walker-256 tumor growth in our previous investigation, the aim of this study 
was to compare the effects of these two NSAIDs (celecoxib or ibuprofen) on the inhibition of 
gluconeogenesis from alanine, pyruvate and lactate caused by Walker-256 tumor in rats. The 
effects of celecoxib or ibuprofen on the ATP content, triacylglycerol level, mRNA expression 
of carnitine palmitoyl transferase 1 (CPT1) and peroxisome proliferator-activated receptor 
alpha (PPARα), as well as on the levels of TNFα, IL6 and IL10 in the liver were also assessed. 
Besides, the effects of the NSAIDs on the tumor growth were examined.

Materials and Methods

Drugs and chemicals
Celecoxib (Celebra®) was purchased from Pfizer (Guarulhos, Brazil) and ibuprofen from Medley 

(Campinas, Brazil). The perfusion fluid salts and other chemicals (98-99.8% purity) were obtained from 
Sigma Chemical Co. (St Louis, USA), Merck (Darmstad, Germany) and Reagen (Rio de Janeiro, Brazil). The 
high-capacity cDNA Reverse Transcription Kit was acquired from Applied Biosystems (USA). Protease 
inhibitor cocktail was purchased from Sigma-Aldrich (St. Louis, USA) and Kits for determination of TNFα, 
IL6 and IL10 (DuoSet ELISA®) from R&D Systems (Minneapolis, USA).
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Animals and Walker-256 tumor inoculation
Male Wistar rats (220-230 g) fed with a standard rodent chow (Nuvilab CR-1 Nuvital®, Colombo, 

Brazil) were used in all experiments. All protocols were approved by the Ethics Committee for Animal 
Experimentation of the State University of Londrina. 

Walker-256 carcinosarcoma cells were injected in tumor-bearing rats as previously described [1, 17]. 
The Walker-256 cells were suspended in phosphate buffered saline (PBS: 16.5 mM phosphate, 137 mM 
NaCl, 2.7 mM KCl, pH 7.4) and each rat was subcutaneously inoculated with 8.0X107 viable cells on the right 
flank. Control (healthy) rats were inoculated with PBS in the same place. 

Treatment protocol 
Walker-256 tumor-bearing rats were treated with celecoxib (25 mg/Kg) or ibuprofen (25 mg/Kg), by 

gavage, once a day (9:00 a.m.), for 12 days, starting on the day the rats were inoculated with Walker-256 
tumor cells. Celecoxib and ibuprofen were daily diluted in water and doses and treatment protocols were 
based on previous studies [8, 18, 19]. Drug-free control rats (Walker-256 tumor bearing or healthy) received 
water, by gavage, instead of celecoxib or ibuprofen. 

The rats were fasted for 24 hours before all tests to prevent the glucose arising from glycogenolysis 
to influence the measurement of gluconeogenesis activity and also to prevent the influence of anorexia of 
tumor-bearing rats on the other parameters evaluated. Since the Walker-256 tumor-bearing rats survived 
for an average of 14 days after tumor inoculation, all assessments were carried out 12 days after of the 
treatments with celecoxib, ibuprofen or water (control rats).

Assessment of liver gluconeogenesis 
To assess the gluconeogenesis, Walker-256 tumor-bearing rats were weighed, anesthetized with 

sodium pentobarbital (40 mg/kg) and subjected to in situ liver perfusion as previously described [6, 20, 
21]. The perfusion fluid, Krebs-Henseleit buffer (KHB: 115 mM NaCl, 26 mM NaHCO3, 5.8 mM KCl, 1.2 mM 
Na2SO4, 1.18 mM MgCl2, 1.2 mM NaH2PO4 and 2.5 mM CaCl2, pH 7.4), at 37ºC, and saturated with a 95%:5% 
O2:CO2 mixture, was introduced into the liver (4 mL/min per gram of liver) through a cannula inserted into 
the portal vein, while a second cannula in the inferior vena cava was used to collect the effluent perfusate 
at 2 min intervals, to assess the production of glucose [22], lactate [23], pyruvate [24] and urea [25]. The 
livers were perfused with KHB for 10 min and then with KHB plus alanine (2.5 mM), or pyruvate (5.0 mM), 
or lactate (2.0 mM) for 30 min. To calculate the areas under the curve (AUC), the differences in production 
of glucose, lactate, pyruvate and urea, before and during the infusion of gluconeogenesis precursors, were 
used. At the end of the experiments, the tumors were carefully dissected and weighed to measure tumor 
growth.

Assessment of ATP, triacylglycerol, CPT1, PPARα and cytokines in the liver 
In order to quantify these parameters, livers of rats anesthetized with sodium pentobarbital (40 mg/

kg) were removed by the freeze-clamp technique, immediately frozen by immersion in liquid nitrogen and 
stored at -80oC for later evaluation of the parameters. Thereafter, the tumors were dissected and weighed 
to measure tumor growth.

To assess the ATP content, frozen samples were crushed in liquid nitrogen, deproteinized in cold 
percloric acid and subjected to differential centrifugation. The collected supernatant was precipitated with 
potassium carbonate (pH 7.4) and used for the enzymatic determination of the ATP in the liver [26]. 

To evaluate the triacylglycerol level, the lipids were extracted from liver samples with chloroform-
methanol, as described by Folch [27]. The triacylglycerol in the lipid extract were determined by enzymatic 
assay based on the Trinder reaction [28]. 

To assess the expression of CPT1 and PPARα, which was evaluated by real-time PCR (qRT-PCR), total 
mRNA was extracted from liver samples with Trizol® reagent and used for cDNA synthesis, with the high-
capacity cDNA reverse transcription Kit. CPT1 and PPARα gene expression was normalized by the expression 
of ribosomal protein L19 (RPL-19) using the CT (threshold cycle) comparative method [29]. 

To measure the cytokines, liver samples were homogenized in RIPA buffer (0.625 % Nonidet P-40, 
0.625 % sodium deoxycholate, 6.25 mM sodium phosphate and 1 mM EDTA, at pH 7.4), containing 10 μg/
mL protease inhibitor cocktail. The homogenates were centrifuged and the supernatant was utilized to 
determinate the total protein concentration by Bradford assays and the levels of TNFα, IL10 and IL6 by 
ELISA. 
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Statistical analysis
Normal distribution and variance homogeneity were tested and the one-way ANOVA test was employed 

to analyze the results. Statistical analysis was carried out using the Statistica 6.0 or GraphPad Prism 5.0 
programs, being accepted as different for p<0.05. Results are expressed as mean ± standard error of the 
mean (SEM).

Results

Compared to healthy rats, Walker-256 tumor-bearing rats showed a reduction of 
approximately 50% in the glucose production from alanine (Fig. 1A), which was almost 
completely abolished (p<0.05) by celecoxib or ibuprofen treatment, as demonstrated by the 
AUCs (Fig. 1B). Tumor-bearing rats also showed a reduction of almost 50% in the pyruvate 
production (Fig. 2A), 45% in the lactate production (Fig. 2B) and 75% in the urea production 

Fig. 1. (A) Production of glucose and (B) 
the respective areas under the curves 
(AUCs) in livers of healthy rats and Walk-
er-256 tumor-bearing rats treated with 
celecoxib (WK+celecoxib) or ibuprofen 
(WK+ibuprofen) for 12 days or untreat-
ed (WK). Livers of 24h-fasted rats were 
perfused as described in Materials and 
Methods. L-Alanine (2.5 mM) was infused 
between 10 and 40 min. Data are pre-
sented as mean ± SEM of 7-9 experiments. 
**p<0.01 vs. healthy; #p<0.05 vs. WK (one-
way ANOVA followed by Newman-Keuls).

Fig. 2. Production of (A) 
pyruvate, (B) lactate, 
(C) urea and (D) the re-
spective areas under the 
curves (AUCs) in livers 
of healthy rats and Walk-
er-256 tumor-bearing 
rats treated with celecox-
ib (WK+celecoxib) or ibu-
profen (WK+ibuprofen) 
for 12 days or untreated 
(WK). Livers of 24h-fast-
ed rats were perfused as 
described in Materials 
and Methods. L-Alanine 
(2.5 mM) was infused 
between 10 and 40 min. 
Data are presented as 
mean ± SEM of 7-9 ex-
periments. **p<0.01 vs. 
healthy, #p<0.05 and 
##p<0.01 vs. WK (One-
way ANOVA followed by 
Newman-Keuls). 
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Fig. 3. (A) Production of glucose and (B) 
the respective areas under the curves 
(AUCs) in livers of healthy rats and Walk-
er-256 tumor-bearing rats treated with 
celecoxib (WK+celecoxib) or ibuprofen 
(WK+ibuprofen) for 12 days or untreated 
(WK). Livers of 24h-fasted rats were per-
fused as described in Materials and Meth-
ods. Pyruvate (5 mM) was infused between 
10 and 40 min. Data are presented as mean 
± SEM of 4-6 experiments. *p<0.05 vs. 
healthy; #p<0.05 and ##p<0.01 vs. WK (One-
way ANOVA followed by Newman-Keuls).

Fig. 4. (A) Production of glucose and (B) 
the respective areas under the curves 
(AUCs) in livers of healthy rats and Walk-
er-256 tumor-bearing rats treated with 
celecoxib (WK+celecoxib) or ibuprofen 
(WK+ibuprofen) for 12 days or untreated 
(WK). Livers of 24h-fasted rats were per-
fused as described in Materials and Meth-
ods. Lactate (2 mM) was infused between 
10 and 40 min. Data are presented as mean 
± SEM of 7-21 experiments. *p<0.05 vs. 
healthy; #p<0.05 vs. WK (One-way ANOVA 
followed by Newman-Keuls).

Fig. 5. Contents of (A) adenos-
ine triphosphate (ATP) and (B) 
triacylglycerol in livers of healthy 
rats and Walker-256 tumor-bear-
ing rats treated with celecoxib 
(WK+celecoxib) or ibuprofen 
(WK+ibuprofen) for 12 days or 
untreated (WK). Rats fasted for 
24 hours. Data are presented as 
mean ± SEM of 6-8 experiments. 
*p<0.05 vs. healthy; #p<0.05 and 
##p<0.01 vs. WK (One-way ANO-
VA followed by Newman-Keuls).

(Fig. 2C) from alanine, compared to healthy rats, and the treatments with celecoxib or 
ibuprofen completely reversed the decrease in pyruvate (p<0.01), lactate (p<0.01) and urea 
(p<0.05) production, as indicated by the AUCs (Fig. 2D).

Hepatic glucose production was about 50% lower from pyruvate (Fig. 3A) and 30% 
lower from lactate (Fig. 4A) in tumor-bearing rats as compared with healthy rats, and the 
treatments with celecoxib or ibuprofen reversed the decreased gluconeogenesis from 
pyruvate (p<0.05) and lactate (p<0.01) , as demonstrated by the AUCs (Figs. 3B and 4B). 

The ATP content in tumor-bearing rats livers was almost 60% lower than in healthy rats 
livers and the treatment with celecoxib (p<0.05) or ibuprofen (p<0.01) restored the hepatic 
ATP content (Fig. 5A). Tumor-bearing rats also showed an increase of 130% (p<0.05) in 
the triacylglycerol level in the liver, as compared to healthy rats. The celecoxib or ibuprofen 
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treatment reduced (p<0.05) the triacylglycerol level in the liver of tumor-bearing rats to 
near the level found in healthy animals (Fig. 5B).

CPT1 expression was decreased (p<0.05) and PPARα expression tended to be lower 
in the livers of tumor-bearing rats as compared to healthy rats. The celecoxib treatment 
increased CPT1 expression (p<0.05) and tended to increase PPARα expression in the liver, 
whereas the ibuprofen treatment increased both CPT1 (p<0.001) and PPARα (p<0.05) 
expression (Fig. 6).

When compared to healthy rats livers the levels of TNFα was higher (p<0.05) (Fig. 7A), 
of IL6 tended to be higher (Fig. 7B) and of IL10 tended to be lower (Fig. 7C) in tumor-bearing 

Fig. 6. Relative gene expression of CPT1 and PPARα 
in livers of healthy rats and Walker-256 tumor-bear-
ing rats treated with celecoxib (WK+celecoxib) or 
ibuprofen (WK+ibuprofen) for 12 days or untreated 
(WK). Rats fasted for 24 hours. Data are presented as 
mean ± SEM of 5-8 experiments. *p<0.05 vs. healthy; 
#p<0.05 and ###p<0.001 vs. WK (One-way ANOVA fol-
lowed by Newman-Keuls).

Fig. 7. Contents of (A) tumor necrosis factor alpha 
(TNFα), (B) interleukin 6 (IL6) and (C) interleu-
kin 10 (IL10) in livers of healthy rats and Walk-
er-256 tumor-bearing rats treated with celecoxib 
(WK+celecoxib) or ibuprofen (WK+ibuprofen) 
for 12 days or untreated (WK). Rats fasted for 24 
hours. Data are presented as mean ± SEM of 5-8 ex-
periments. *p<0.05 vs. healthy (One-way ANOVA fol-
lowed by Dunnet's).

Table 1. Tumor mass from Walker-256 tumor-bear-
ing rats treated with celecoxib (WK+celecoxib) or 
ibuprofen (WK+ibuprofen) during 12 days or un-
treated (WK). Data are as mean ± SEM. # # #p<0.01 vs. 
WK (ANOVA One-Way followed by Newman-Keuls)
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rat livers, and treatments with celecoxib or ibuprofen tended to decrease the levels of TNFα, 
IL6 and IL10 in tumor-bearing rats livers. 

Finally, celecoxib treatment reduced (p<0.01) the Walker-256 tumor mass by 
approximately 40%, while the ibuprofen treatment did not affect tumor growth (Table 1).

Discussion

Treatment with either celecoxib or ibuprofen, drugs that inhibit PGs synthesis, 
completely reversed the decreased activity of gluconeogenesis from alanine, pyruvate or 
lactate in perfused livers from Walker-256 tumor-bearing rats.

The doses of celecoxib and ibuprofen used were based on previous studies [8, 18-19], 
being almost the double of the maximum recommended daily dose for humans. Although the 
PGs levels were not assessed in our study, it is well established that the anti-inflammatory 
properties of celecoxib and ibuprofen are achieved by blocking PGs production, since 
celecoxib and ibuprofen reduced PGE2 production by about 90% [30]. 

The restoration of the decreased gluconeogenesis from alanine, by treatments with 
celecoxib or ibuprofen (Fig. 1), involved an improvement in conversion of alanine to pyruvate, 
as indicated by the full reversion of the inhibition of hepatic production of pyruvate, lactate 
and urea in tumor-bearing rats (Fig. 2). The reduced hepatic production of pyruvate, lactate 
and urea from alanine observed in tumor-bearing rats (Fig. 2) confirms our previous findings 
[6] and can be due to an inhibition of alanine aminotransferase, as suggested by others [31, 
32]. 

The observation that the treatment with celecoxib or ibuprofen reversed the reduced 
glucose production from pyruvate (Fig. 3) and lactate (Fig. 4) in the liver of tumor-bearing 
rats shows that these NSAIDs improve other steps of the gluconeogenesis pathway besides 
that catalyzed by alanine aminotransferase. The inhibition of glucose production from 
pyruvate and lactate, but not from glutamine [7] and glycerol [6], in tumor-bearing rats shows 
that this inhibition occurs at steps preceding the entry of glutamine and glycerol into the 
gluconeogenic pathway, such as the conversion of pyruvate to oxalacetate, a mitochondrial 
step catalyzed by pyruvate carboxylase, which is ATP dependent. In fact, a reduction in ATP 
content decreases the rate of gluconeogenesis by inhibiting pyruvate carboxylase [33].

In parallel with the inhibition of gluconeogenesis, Walker-256 tumor-bearing rats livers 
showed lower ATP content than in healthy rats livers (Fig. 5A), as also shown by others [7], 
and the treatments with celecoxib or ibuprofen restored the lowered ATP levels in the livers 
(Fig. 5A). These results indicate that the reversion of gluconeogenesis inhibition by these 
NSAIDs involved a normalization of the hepatic energy state of tumor-bearing rats. 

Given that the rats were fasted for 24 hours, a condition that leads to depletion of the 
hepatic glycogen stores, reducing the endogenous glucose source for ATP production, and 
that the exogenous glucose source for ATP production is reduced in Walker-256 tumor-
bearing rats due the decreased activity of glucokinase [2], it is likely that most of ATP in 
the liver of tumor-bearing rats originated from mitochondrial β-oxidation of fatty acids and 
not from glycolysis. Thereby, the lower ATP level in the liver of tumor-bearing rats could 
be due to reduction in mitochondrial β-oxidation of fatty acids. Really, it was shown that 
the hepatic capacity of fatty acids oxidation is decreased in Walker-256 tumor-bearing rats 
[3], a phenomena that seem to be caused by reduction of CPT1 and CPT2 activity, enzymes 
involved in the transport of fatty acids from cytosol to mitochondria [3, 5, 34]. 

A reduction of CPT1 and CPT2 activities could divert the fatty acids to esterification 
and so triacylglycerol synthesis, instead of oxidation. In fact, liver of tumor-bearing rats 
showed high levels of triacylglycerol (Fig. 5B) and lower mRNA expression of CPT1 (Fig. 
6). These results are consistent with the reduction of hepatic fatty acid oxidation [3] and 
to the increase of free fatty acids and triacylglycerol levels in the liver [15] and blood [1] of 
Walker-256 tumor-bearing rats. 
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Celecoxib and ibuprofen treatments completely abolished the rise in the levels of 
triacylglycerol (Fig. 5B) and the decreased CPT1 expression in the liver of tumor-bearing 
rats (Fig. 6), suggesting a role of PGE2, which is increased in the liver [34] and blood [15, 34] 
of Walker-256 tumor-bearing rats, in the inhibition of CPT1. Corroborating our suggestion, 
PGE2 decreased CPT1 expression in isolated hepatocytes and the PGE2-dependent 
repression of CPT1 resulted in inhibition of mitochondrial β-oxidation and triacylglycerol 
accumulation in hepatocytes [35]. In addition, the exercise training normalized the increased 
level of PGE2 in the liver of Walker-256 tumor-bearing rats, restored the decreased activity 
of CPT1 and CPT2 and prevented hepatic steatosis [34]. Moreover, treatment with PGE2 or 
PGE2 receptor agonist increased the triacylglycerol in the liver [36]. It was also shown that 
treatment with indomethacin, which reduces PGE2 synthesis, increased CPT2 activity in the 
liver of Walker-256 tumor-bearing rats [5]. 

The CPT1 and CPT2 expression [37] and the β-oxidative degradation of fatty acids 
[38] in liver is stimulated by PPARα. Interestingly, PPARα expression tended to be lower in 
the liver of Walker-256 tumor-bearing rats and celecoxib treatment tended to increase the 
PPARα expression, while ibuprofen treatment significantly increased the PPARα expression 
in liver. These results indicate that celecoxib and ibuprofen have a promoting effect on 
expression of genes associated with fatty acid oxidation. In agreement with our results, it 
was shown that several NSAIDs, including ibuprofen, are efficacious activators of PPARα [39]. 
Therefore, a higher expression of PPARα and consequently of CPT1 and/or CPT2 caused by 
celecoxib and ibuprofen may have increased mitochondrial fatty acid oxidation and, thereby, 
the production of factors that stimulate gluconeogenesis such as acetyl-CoA, NADH and ATP, 
reversing the inhibition of gluconeogenesis of tumor-bearing rats.

In addition, PPARα was shown to suppress the expression of pro-inflammatory genes, 
by inactivating the transcription factor NFκB, and thus reducing the production of pro-
inflammatory cytokines [40, 41, 42]. Walker-256 tumor-bearing rats showed elevated TNFα 
levels in liver (Fig. 7) and we showed that TNFα inhibits hepatic gluconeogenesis from 
alanine and lactate probably by affecting the conversion of pyruvate to oxaloacetate, a step 
ATP-dependent [13]. Furthermore, TNFα induced the uncoupling of respiration in isolated 
mitochondria [43], an effect that reduces the ATP synthesis. Thus, a reduction of TNFα by 
treatment with celecoxib or ibuprofen, although not significant (Fig. 7), may have been 
mediated by increased expression of PPARα and may have contributed to the improvement 
of hepatic gluconeogenesis in Walker-256 tumor-bearing rats.

The effects of celecoxib and ibuprofen in normalizing gluconeogenesis in the liver of 
tumor-bearing rats were independent of their influence on tumor growth, since ibuprofen, 
unlike celecoxib, did not reduce the Walker-256 tumor growth (Table 1). The celecoxib 
antitumor effect is well established [44-49]. It was shown that treatment with celecoxib 
reduces Walker-256 tumor growth by mechanisms independent of inhibition in the COX-2/
PGE2 pathway, which involve reduction in the expression of Bcl-xl anti-apoptotic protein, 
that is, by specific pro-apoptotic actions [19]. 

In conclusion, celecoxib and ibuprofen restored the gluconeogenesis activity from 
alanine, pyruvate and lactate that is decreased in the liver of Walker-256 tumor-bearing 
rats. These effects did not involve changes in tumor growth and were probably mediated 

Fig. 8. Schematic representation of ibuprofen and 
celecoxib effects in the liver of Walker-256 tumor-
bearing rats. Celecoxib and ibuprofen (both at 25 
mg/Kg) were orally administered for 12 days, begin-
ning on the same day when the rats were inoculated 
with tumor cells. FFA- free fatty acids; CPT1- car-
nitine palmitoyl transferase 1; PPARα- peroxisome 
proliferator-activated receptor alpha; TG- triacylg-
lycerol;  - increased;  - decreased. 
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by anti-inflammatory properties of these NSAIDs, which increased the expression of genes 
associated with fatty acid oxidation (PPARα and CPT1) and consequently the ATP production 
in the liver of tumor-bearing rats (Fig. 8).

In contrast to the beneficial effects of celecoxib and ibuprofen in gluconeogenesis, we 
showed recently that treatment with celecoxib, but not with ibuprofen, prevented the loss 
of body, adipose and muscle mass, hypertriacyglycerolemia and inhibition of peripheral 
response to insulin in Walker 256 tumor-bearing rats, effects that were attributed to anti-
tumor action and not to anti-inflammatory property of celecoxib [50]. So, it is possible that 
celecoxib by presenting both anti-tumor and anti-inflammatory properties may provide 
better clinical improvement that ibuprofen in the treatment of metabolic disorders induced 
by cancer.
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