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1. INTRODUCTION AND PRELIMINARIES

Recently, a number of fixed point theorems for single-valued and multi-valued mappings in
probabilistic metric spaces have been proved by many authors ([1]-[3], [5]-[12], [14]-[20], [22], [25])
Since every metric space is a probabilistic metric space, we can use many results in probabilistic metric
spaces to prove some fixed point theorems in metric spaces

In this paper, first, we prove some common fixed point theorems in metric spaces and probabilistic
metric spaces Secondly, we give some convergence theorems for sequences of self-mappings on a
metric space Finally, we extend Caristi's fixed point theorem and Ekeland's variational principle in metric
spaces to probabilistic metric spaces

For notations and properties of probabilistic metric spaces, refer to [6], [9], [18] and [19]

Let R denote the set of real numbers and R* the set of non-negative real numbers A mapping
F:R — R" is called a distribution function if it is a nondecreasing and left continuous function with
inf F =0andsupF =1 We will denote D by the set of all distribution functions

DEFINITION 1.1. A probabilistic metric space (briefly, a PM-space) is a pair (X, F'), where X is a
nonempty set and F' is a mapping from X x X to D. For (u,v) € X x X, the distribution function
F(u,v) is denoted by F,,,, The functions F, , are assumed to satisfy the following conditions

(P1) F,,(z)=1foreveryz > 0ifand only ifu = v,

(P2) F,,(0) =0foreveryu,v € X,

(P3) F,,(z) = F,.(z) foreveryu,v € X,

(P4) If F, ,(z) =1and F,,(y) =1, then F,, ,(x +y) = 1 forevery u,v,w € X

DEFINITION 1.2. A t-norm is a function A : [0,1] — [0, 1] which is associative, commutative,
nondecreasing in each coordinate and A (a,1) = a for every a € [0, 1]
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DEFINITION 1.3. A Menger PM-space is a triple (X, F, A ), where (X, F) is a PM-space and
A is a t-norm with the following condition

(PS) Fou(z+y) > OA(Fu(z), Fyu(y)) foreveryu,v,w € X and z,y € R*

DEFINITION 1.4. A non-Archimedean Menger PM-space (an N A Menger PM-space) is a
triple (X, F, AA), where A is a t-norm and the space (X, F) satisfies the conditions (P1) ~ (P3) and (P6)

(P6) F,,(max{t|, t1}) > A(Fu(t1), Fyu(t)) forallu,v,w € X and ¢;,t; > 0

The concept of neighborhoods in PM-spaces was introduced by Schweizer and Sklar [18] If
ue€ X,e>0 and A € (0,1), then the (e, A)-neighborhood of u, denoted by U, (e, ), is defined by
UyJe,\) ={ve X:F,,(e) >1-)}

If (X,F,A) is a Menger PM-space with the continuous t-norm A, then the family
{U.(e,A):u e X,e >0, € (0,1)} of neighborhoods induces a Hausdorff topology on X, which is
denoted by the (¢, A)-topology T

DEFINITION 1.5. A PM-space (X, F) is said to be of type (C), if there exists an element g € Q
such that

9(Fry(t)) < 9(Fro(t)) + g(F,4(¢)) forall z,y,2€ X and t>0,

where Q = {g: g : [0,1] — [0, 00] is continuous, strictly decreasing, g(1) = 0 and g(0) < oo}
DEFINITION 1.6. An N A Menger PM-space (X, F, /) is said to be of type (D), if there exists
an element g €  such that

g(A(s,t)) < g(s) +g(t) forall s,te(0,1]

REMARK 1. ([9]) (1) Ifan N A Menger PM-space (X, F,A) is of type (D),, then (X, F, )
is of type (C),4

) If (X,F,A) is an N A Menger PM-space and A > A, where A,(s,t) =
max{s +t — 1,0}, then (X, F, A) is of type (D), for g € Q defined by g(t) =1 —¢

(3) Ifa PM-space (X, F) is of type (C)g, then it is metrizable, if the metric d on X is defined by

(%) d(z,y) = /1 g(Fry(t))dt forall z,yeX
0

(4) Ifan N A. Menger PM-space (X, F, A) is of type (D),, then it is metrizable, where the metric
d on X is defined by (¥) On the other hand, the (e, A)-topology 7 coincides with the topology induced
by the metric d defined by ().

5) If (X,F,A) is an N A. Menger PM-space with the t-norm A such that A(s,t) >
ADp(s,t) = max{s + ¢ — 1,0} for s,¢ € [0, 1], then (4) is also true
2. FIXED POINT THEOREMS IN METRIC SPACES

In this section, we give several fixed point theorems for compatible mappings of type (A) in a metric
space (X,d). The following definitions and properties of compatible mappings and compatible mappings
of type (A) are given in [17]

DEFINITION 2.1. Let S, T : (X,d) — (X, d) be mappings S and T are said to be compatible if

lim d(ST(za), TS (zn)) = 0

whenever {z,} is a sequence in X such that lim S(z,) = lim T'(z,) = t for some ¢ in X
DEFINITION 2.2. Let S,T: (X,d) — (X,d) be mappings. S and T are said to be compatible
type (A) if
lim d(TS(z,),SS(z,)) =0 and lim d(ST(z,),TT(z,)) =0
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whenever {z,} is a sequence in X such that lim S(z,) = lim T(z,) = t for some ¢ in X
n ox n X

The following propositions show that Definitions 2 1 and 2 2 are equivalent under some conditions

PROPOSITION 2.1. Let S,T:(X,d) — (X,d) be continuous mappings If S and T are
compatible, then they are compatible of type (A)

PROPOSITION 2.2. Let S,T - (X,d) — (X, d) be compatible mappings of type (A) If one of S
and T is continuous, then S and T are compatible

The following 1s a direct consequence of Propositions 2 1 and 2 2

PROPOSITION 2.3. Let S,T.(X,d) — (X,d) be continuous mappings Then S and T are
compatible if and only if they are compatible of type (A)

REMARK 2. In [17], we can find two examples that Proposition 2 3 is not true if S and T are not
continuous on X

Next, we give some properties of compatible mappings of type (A) for our main theorems

PROPOSITION 2.4. Let S,T:(X,d) — (X,d) be mappings If S and T are compatible
mappings of type (A) and S(t) = T'(t) for some t € X, then ST(t) = TT(t) = TS(t) = SS(t)

PROPOSITION 2.5. Let S,T:(X,d) — (X,d) be mappings Let S and T be compatible
mappings of type (A) and let S(z,), T(z,) 1t as n — oo for some t € X Then we have the
following

m "“,"20 TS(z,)=S(t) if S is continuous at t,

(2) ST(t) =TS(t)and S(t) = T(¢) if S and T are continuous at ¢

Let & be the family of all mappings ¢ : (R*)> — R* such that ¢ is upper semicontinuous, non-
decreasing in each coordinate variable, and for any ¢ > 0,

$(4,1,0,at,t) < Bt and  4(t,t,0,0,at) < Bt,

where 8 =1fora=2and § < 1fora < 2, and
(@) = ¢(t,t, art, ast, ast) < t,

where v : R* — R is a mapping and a; + a3 + a3 = 4
For convenience, we shall write Sz for S(z)
LEMMA 2.1 ([21]) Foranyt > 0, v(t) < 1 if and only if lim v*(¢) = 0, where 4" denotes the n-
n—oo
times composition of -y
Let A, B, S, T be mappings from a metric space (X, d) into itself such that

A(X) CT(X) and B(X)cC S(X), @1

there exists ¢ € ® such that 22)
d(Az, By) < ¢(d(Az, Sz),d(By, Ty),d(Az, Ty),d(By, Sz),d(Sz,Ty)) forall z,ye€ X

Then, by (2 1), since A(X) C T(X), for any point z; € X, there exists a point z; € X such that
Azg =Tz; Since B(X) C S(X), for this point z;, we can choose a point 3 € X such that
Bz, = Sz, and so on Inductively, we can define a sequence {y,} in X such that

Yon = T'zony1 = Azg, and yony1 = STonie = Bro,yy for n=0,1,2,.... 23)

LEMMA 2.2. nli_rgo d(Yn,yns1) = 0, where {y,} is the sequence in X defined by (2 3)

PROOF. Let d, = d(yn,yn+1), n =0,1,2,... Now, we shall prove that the sequence {d,} is
non-decreasing in R*, that is, d,, < d,_ forn =0,1,2,... By (22), we have
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don = d(Y2n, Y2n 1)
= d(A.‘EQ,-,, BIQ,,. 1)
< ¢(d(Ax2ny S-T?n)rd(BI2n+l»Tr2n i)
d(Azyn, Txon11), d(BZoni1, ST2n), d(STan, TZoni1))
= ¢(d(Y2n, Y2n-1), A(Y2n+1, Y2n)s A(Y2n, Y20 ), A(Y2n 11, Y2n 1), (Yo 1,72n))
< ¢(dan-1,don,0,don-1 + d2n,don 1)

249

Suppose that d,_; < d,, for some n  Then, for some a < 2,d,., +d, = ad, Since ¢ is non-
decreasing in each coordinate variable and § < 1 for some a < 2, by (2 4), we have

d2n S ¢(d2nr d?ny O)Qd‘Zny d?n) S ,Bd2n < d2n .

Similarly,

doni1 < d(dant1, donys1,0,0dony1, dong1) < Bdonst < donyr -
Hence, for every n =0, 1,2, ...,d, < Bd, < d,, which is a contradiction Therefore, {d>,} is a non-
increasing sequence in Rt Now, again by (2 2),

dy = d(y1,¥2)
= d(AIl,B:):Q)
S ¢(d(AIz, SIQ), d(Bl‘l,T:L‘l), d(AIQ, Ta:l), d(BI] y S.T.‘g), d(S.‘L‘Q, TI]))
= ¢(d(y2, 1), d(y1,%0), 4(¥2, %0), d(y1, ¥1), A (1, %0))
< ¢(dy, do, dp +dy,0, dy)
< ¢(do, do, 2dy, do, do)
=7(do) .

In general, d,, < v*(dp) forn = 0,1, 2, ..., which implies that, if dy > 0, then, by Lemma 2 1, we have
lim d, <lim v"(dy) = 0.
n—oo0 n-—00
Therefore, it follows that
lim d, = lim d(y,,yns1) =0.
For dy = 0, since {d,,} is non-increasing, we have clearly lim d, = 0 This completes the proof

LEMMA 2.3. The sequence {y,} defined by (2.3) is a Cauchy sequence in X

PROOF. By Lemma 2.2, it is sufficient to prove that {ys,} is a Cauchy sequence in X. Suppose
that {y2,} is not a Cauchy sequence in X Then there is an € > O such that for each even integer 2k,
there exist even integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k such that

d(Yam(k)> Yon(k)) > €. 25)
For each even integer 2k, let 2m(k) be the least even integer exceeding 2n(k) satisfying (2.5), that is,
d(Yon(k), Yomk)—2) < € and  d(Yon(k), Yom(k)) > €. (26)
Then for each even integer 2k, we have
€ < d(Yan(k)> Yomk)) < A(Yan(h)s Yom(k)-2) + A(Yom(k)—2» Yom(k)—1) + A(Y2m(k)-1, Yam(k)) -
It follows from Lemma 2 2 and (2.6) that
Jim d(yan(), yom(s) = € @27

By the triangle inequality, we obtain
|2 (Y2n(k)s Yomk)-1) — AWantk) Yomx))| < dWamk)-1, Yam(k))



FIXED POINT THEOREMS IN METRIC SPACES 247
[d(Yantk) s 1y Yomik: 1) = A(@2ntk;s Yomk )| < A@2mik; 1 Y2mik)) + A(Yon(r Yanky o 1)

From Lemma 2 2 and (2 7), as k — oo, it follows that

d(Yantk)+ 1, Yomky 1) — € and  d(Yon(k) 11, Yomik) 1) — €. 28)

Therefore, by (2 2) and (2 3), we have

d(Yan(k Yamk)) < AYanth)s Yonky+1) + A(Y2niky+1, Yamk))
= d(Yon(k)» Yon(k)+1) + A(AZomk), BTonk)+1)
< d(Yan(k)s Yan(k)+1) + S(A(ATom(k)» STam(k))s A(BLon(ky+ 1, TZon(k)+1),
d(ATomik), TZonk)+1), A(BZonk) 1, STam(k)), A(STom(k), TTon(k)+1))
= d(Yan(k), Yon(k)+1) + P(AYomik), Yomk)-1)r EYonik) +1, Yon(k) )
d(Yam(k)» Y2n(k) ) EYan(k)+1, Yomk)-1)s EY2mk)-1, Yon(k))) -

(29)

Since ¢ is upper semicontinuous, as £k — oo in (3 9), by Lemma 2 2, (2 7) and (2 8), we have

€ < ¢(0,0,¢,¢,€) < v(e) <€,

which is a contradiction Therefore, the sequence {y2,} is a Cauchy sequence in X and so is {y,} This
completes the proof

Now, we are ready to prove a main theorem in this section

THEOREM 2.4. Let A, B, S, and T be mappings from a complete metric space (X, d) into itself
satisfying the conditions (2 1), (2 2), (2 10) and (2 11)

oneof A, B, S, and T is continuous, (2 10)

the pairs A, S and B, T are compatible of type (A) 211

PROOF. By Lemma 2 3, the sequence {y,} defined by (2 3) is a Cauchy sequence in X and so,
since (X, d) is complete, it converges to a point z in X On the other hand, the subsequences { Azs,.},
{Bzoni1}, {Szen} and {Tzon41} of {yn} also converges to the point z

Now, suppose that T is continuous. Since B and T are compatible of type (A), by Proposition 2.5,
BTz9n41, TTT2,41 — Tzasn — oo Putting z = 9, and y = T'zo,; in (2 2), we have

d(Ax2ny BT$211+]) < ¢(d(AI2ny Sx?n)» d(BT$2n+1, TT22n+1 )»

212
d(Azan, TTzans1), d(BToms1, Sz00), d(Szam TT2oms1)). & 12

Taking n — oo in (3 12), since ¢ € $, we have
d(z,Tz) < ¢(0,0,d(2,Tz2),d(2,Tz),d(2,Tz)) < v(d(2,T2)) < d(2,Tz),

which is a contradiction Thus, we have Tz = z Similarly, if we replace = by 5, and y by z in (2 2),
respectively, and take n — oo, then we have Bz = 2z Since B(X) C S(X), there exists a point u in X
such that Bz = Su = z By using (2 2) again, we have
d(Au, z) = d(Au, B2) < ¢(d(Au, Su),d(Bz,Tz),d(Au,Tz),d(Bz, Su), d(Su, Tz))
= ¢(d(Au, 2),0,d(Au, 2),0,0) < v(d(Au, 2)) < d(Au, 2),

which is a contradiction and so Au =2 Since A and S are compatible mappings of type (A) and
Au = Su = 2, by Proposition 2 4, d(ASu, SSu) = 0 and hence Az = ASu = SSu = Sz Finally, by
(2 2) again, we have
d(Az,z) = d(Az,Bz) < ¢(d(Az,Sz),d(Bz,Tz),d(Az,Tz),d(Bz,Sz%),d(Sz,Tz))
= ¢(d(Az, 2),0,d(Az,2),0,0) < v(d(Az, 2)) < d(Az, z),

which implies that Az = z. Therefore, Az = Bz = Tz = z, that is, z is a common fixed point of the
given mappings A, B, S and T The uniqueness of the common fixed point 2 follows easily from (2 2)
Similarly, we can prove Theorem 2 4 when A or B or T is continuous This completes the proof
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Next, we give convergence theorems for sequences of self-mappings on a metric space

THEOREM 2.5. Let {A,}, {B.}, {S.} and {T,,} be sequences of mappings from a metric space
(X,d) into itself such that {A,}, {B,}, {S.} and {T},} converge uniformly to self-mappings A, B, S
and T on X, respectively Suppose that, forn = 1,2,..., 2, is a unique common fixed point of 4,, B,,
S, and T}, and the self-mappings A, B, S and T satisfy the following conditions

d(Az, By) < ¢(d(Azx, Sz),d(By, Ty),d(Az, Ty),d(By, Sz),d(Sz, Ty)) (213)

for all z, y € X, where ¢: (R*)®> — R* is a mapping such that ¢ is upper semicontinuous, non-
decreasing in each variable and for any ¢t > 0, ¢(¢,¢,¢,t,t) < Btfor0< B < 1

If z is a unique common fixed point of A, B, S and T and sup{d(zn,z)} < + oo, then the
sequence {z,} converges to z

PROOF. Lete, > 0fori=1,2 Since {A,} and {S,} converge uniformly to self-mappings A and
S on X, respectively, there exist positive integers N7, Ny such that for all z € X

d(A,z,Az) <€ for n>N; and d(S,z,Sz)<e for n>N,,

respectively Choose N = max{N;, No} and ¢ = max{¢;,e2} Forn > N, we have
d(2n,2) = d(Anz,, Bz) < d(An2,, Az,) + d(Az,, B2)
< d(Anzn, A2,) + ¢(d(Az,, Sz,),d(Bz,Tz2),d(Az,, Tz),d(Bz,Sz,),d(Sn, Tz))
< d(Anzn, Az,) + ¢(d(Azn, Anz,) + d(Anzn, S2,),0,d(Az,, Anzy)

+d(An2,,T2),d(Bz,8,2,) + d(Snzn, S2n), d(Szn, Spzn) + d(Sn2,, T2)) 214)
= d(Anzn, A2,) + ¢(d(Azp, An2a) +d(Snzn, S2,),0,d(Anzn, Az,) + d(2n, 2),
< €+ ¢(2¢,0,e +d(2n,2),€ +d(2,,2), € +d(2,,2)).
From (2 14), if d(2p, 2) > €, then we have
d(2,,2) < €+ @€ + d(zn, 2),€ + d(2n, 2), € + d(2n, 2), € + d(2p, 2), € + d(2n, 2))
< e+ﬂ(e+d(z,,,z)) = €+ﬁ€+ﬂd(znvz)'
This implies that
(1-PB)d(2,,2) < (1+PB)e or d(z,,2) < (i—i‘—g) €. 215)

Thus, letting 8 — 0% in (2 15), then € < d(zy, 2) < €, which is a contradiction Therefore, for n > N,
d(zn, 2) < €, which means that {2,} converges to z This completes the proof.

Similarly, we have the following

THEOREM 2.6. Let {A,}, {B,}, {S»} and {T,,} be sequences of mappings from a metric space
(X, d) into itself satisfying the following condition

d(Anz, Bay) < ¢(d(Anz, Spz), d(Bny, Toy), d(Anz, T,y), d(B,y, Snz),d(Snz, Toy)) (2 16)

for all z, y € X, where the mapping ¢ is as in the condition (2 14)

If {A.}, {Bn}, {S»} and {T,} converge uniformly to self-mappings A, B, S and T on X,
respectively, then A, B, S and T satisfy the condition (2 14)

Further, the sequence {z,} of unique common fixed points 2, of A,,, B,, S, and T, converges to a
unique common fixed point z of A, B, S and T if sup{d(z,, 2)} < + o0

REMARK 3. Our main theorems extend and improve a number of fixed point theorems for
commuting, weakly commuting and compatible mappings in metric spaces
3. FIXED POINT THEOREMS IN PM-SPACES

In this section, we extend the Caristi's fixed point theorem and the Ekeland's variational principle in
PM-spaces Also, we prove some common fixed point theorems in PM-spaces by using the results in
Section 2 In [4] and [13], K Caristi and I Ekeland proved the following theorems, respectively
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THEOREM 3.1. Let (X, d) be a complete metric space and T be a mapping from X into itself If
there exists a lower semicontinuous function { X — R such that d(z,Tz) < {(z) — ¢(Tz) for all
z € X, then T has a fixed point in X

THEOREM 3.2, Let (X,d) be a complete metric space and f be a proper, bounded below and
lower semicontinuous function from X mnto ( — oo, + 0o] Then for each € > 0 and u € X such that
flu) <inf{f(z) = € X} + ¢, there exists a point v € X such that

flv) < flu), 3G
d(u,v) <1, (32)
flw)> fv) —ed(v,w) forall we X, w#v 33)

First, we prove the following

THEOREM 3.3. Let (X, F) be a PM-space of type (C'), and (X, d) be a complete metric space,
where the metric d on X is defined by (x) If{: X — R is a lower semicontinuous and bounded below
function and a mapping T : X — X satisfies the following condition

9(Fr1:(t)) <¢(z) —¢(Tz) forall z€X and t>0, (3 4)

then T has a fixed point in X
PROOF. From (3 4), we have

1 1
d(z,Tx) = /O o(Furs(8))dt < /0 (¢(z) - ¢(Tz))dt = ¢(z) — ¢(Tx)

and thus, by Theorem 3 1, T has a fixed point in X

COROLLARY 3.4. Let (X, F) be a PM-space of type (C),, (X, d) be a complete metric space,
where the metric d on X is defined by (*), and a function n(z,t) : X x Rt — R* be integrable int Ifa
function ¢(z) = fol n(z,t)dt is lower semicontinuous and bounded below and a mapping T : X — X

satisfies the following condition

9(Fyr:(t)) < nlz,t) —n(Tz,t) forall z€X and t>0, 35)

then T has a fixed point in X
PROOF. From (4 5), we have

1 1
d(z,Tz) = /O o(Fra(t))dt < /0 (n(z,t) — n(Tz, 1))dt

1 1
= / n(z,t)dt — / n(Tz,t)dt
0 0
=(z) - ¥(Tz)
Therefore, by Theorem 3 3, T has a fixed point in X
THEOREM 3.5. Let (X, F') be a PM-space of type (C), and (X, d) be a complete metric space,
where the metric d on X is defined by (%) If a function ¢ : X — R is proper, lower semicontinuous and
bounded below, and T is a multi-valued mapping from X into 2% such that for each z € X, there exists
apoint fxr € Tz satisfying that f : X — X is a function satisfying the following condition
g(Frr:(t)) <¢(z) = ¢(fz) forall r €X and t>0, (3 6)

then f and T have a common fixed point in X
PROOF. Since ¢ is proper, there exists a point u € X such that {(z) < + oo and so let A = {z
€ X : g(£;4(t)) £{(z)} Then A is a nonempty closed set in X Since g(F; ;. (t)) < ((z) — ¢(fz)

foreachz € X, fr € A and so we have
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C(I) +g(FJ‘.fI(t)) S C(I) S C(u) - g(Fl.u(t))~
Thus we have
g(Rl./I(t) < g(F‘uJ (t>) + g(Ff‘fT(t))

< () = ((z) +¢(x) — ((f)
=¢(u) - ¢(fx)

Therefore, by Theorem 33, the function f: A — A has a fixed point in A, say zo, and so
zo = fxo € Txo, that is, the point z 1s a common fixed point of f and T This completes the proof

By Theorem 3 5, we have Ekeland's variational principle in PM-spaces

THEOREM 3.6. Let (X, F') be a PM-space of type (C), and (X, d) be a complete metric space,
where the metric d on X 1s defined by () If a function ¢ : X — R is proper, lower semicontinuous and
bounded below and, for each € > 0, there exists a point u € X such that {(u) < inf{¢(z) : T € X} +¢,
then there exists a point v € X such that

C(v) < ((u), (€N
g(Fu.(t) <1, (338)
Cv) —¢(z) < eg(F,.(t)) foral z€X and t>0. 39

PROOF. Let € >0 and let a point u € X such that {(u) < inf{¢(u) :z € X} +€¢ Letting
A={z e X:((z) <{(u) - eg(F,(t))}, then A is a nonempty closed set in X and so, since (X, d) is
complete, A is complete For each z € A, let

Sz={yeX:{(y) <((z) - fg(Fz.ya))vx # y}
and define
Tr — T .1f Sz .15 empty,
Sz if Sz isnonempty
Then T is a multi-valued mapping from A into 24 Since Tz =z € A if Sz =0 and Tz = Sz if
Sz # (0, we have, for eachy € Tz = Sz,
Cly) < ((x) — eg(Fry(t)
and

fg(Fu,y(t)) < eg(Fu,z (t)) + eg(Fz,y(t))
<) =) +¢(z) = C(y)
=((u) - <),

which implies y € A and so we have Tz = Sz C A Assume that T has no fixed point in A Then for
eachz € Aandy € Tz = Sz, we obtain

9(Fey (1)) < (&)~ C), and g(Fey(0) < = C(@) — 2 ).

Thus, by Theorem 4 S, T has a fixed point v in A, which is a contradiction Therefore, Sv = 0, that is,
for each z € X, z #v, {(z) > {(v) — eg(F, .(t)) Since v € A, {(v) < {(u) — eg(F,,(t)) and so
¢(v) < ¢(u) On the other hand, we have

€9(Fuu(t)) < ¢(u) = ¢(v)
<{(u)—inf{¢(z): T € X} <e¢

and so g(F,,(t)) <1 This completes the proof
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Next, by using Theorem 2 4, we prove common fixed point theorems in PM-spaces Now, we
introduce some definitions and properties of compatible mappings of type (A) in PM-spaces ([11])

DEFINITION 3.1. Let (X,F,/A) be an N A Menger PM-space of type ‘(D),, and A, S be
mappings from X into itself A and S are said to be compatible if

lim g(Fis,. 51, (t)) =0 forall ¢>0,

whenever {z,} is a sequence in X such that lim Az, = hm Sz, = = for some = € X
n o»x n o»x

DEFINITION 3.2. Let (X,F,A) be an NA Menger PM-space of type (D), and A, S be
mappings from X into itself A and S are said to be compatible of type (A) if

nlif.!l 9(Fag,, s52. (1) =0 and ”lil:n.g(Fiﬁ'Aw,,.A,lr. ) =0

for all t > 0, whenever {z,}is a sequence in X such that lim Az, = lim Sz, = 2 for some z € X
n oo n o

REMARK 4. (1) In fact, since (X, F,A) is an N A Menger PM-space of type (D), and it is
metrizable by the metric d defined by (x), Definitions 2 1 and 3 1, 22 and 3 2 are equivalent to each
other, respectively
(2) By using Definitions 3 1 and 3 2, we can obtain same properties, that is, Propositions 2 1 ~ 25,
between compatible mappings and compatible mappings of type (A) in PM-spaces

THEOREM 3.7. Let (X, F,A) be a T-complete N A Menger PM-space with the t-norm A such
that A(s,t) > Ap(s,t) =max{s+t—1,0},s,t€(0,1] Let A4, B, S and T be mappings from X
into itself such that

(i) A(X) C T(X)and B(X) C S(X),

(ii)) oneof A, B, S and T is T-continuous,

(iii) the pairs A, S and B, T are compatible mappings of type (A),

(iv) there exists ¢ € ® such that

1 1 1 1
/ Fspz, Atz (t)dt > 1~ ¢ (1 - /0 Fsp,5.(t)dt, 1~ /0 Fgy1y(t)dt, 1 — / Fp.1y(t)dt,
n 0
1 1
1- / Fyps:(t)dt, 1 — / Fyp5:(t)dt | forallz, y€ Xandt >0
0 0

Then A, B, S and T have a unique common fixed point in X

PROOF. Since (X,F,A) is an NA Menger PM-space with the ¢-norm A such that
A(s,¢) > Am(s,t) = max{s +t — 1,0}, s,t € [0, 1], by Remark 1 (5), it is metrizable by the metric d
defined by (*) Thus, if we define g(¢) = 1 — ¢, from (3 12), we have

d(Az, By) < ¢(d(Az, Sz), d(By, Ty), d(Az, Ty), d(By, Sz), d(Sz, Ty))

for all z,y € X. Therefore, by Theorem 2.4, A, B, S and T have a unique common fixed point in X
This completes the proof

As an imimediate consequence of Theorem 3.7, we have the following

COROLLARY 3.8. Let (X, F,A)be asin Theorem 3 7 Let A, B, S and T be mappings from X
into itself satisfying the conditions (i)-(iv) and (v)

there exists ¢ € (0, 1) such that

1 1 1 1
/ FA:,By(t)dt Z l1-c <1 - / FA:,S: (t)dty 1- / FBy,Ty(t)dtv 1- / FAZ.Ty(t)dty
0 0 0 0

1 1
1- / Fy, s:(t)dt, 1 —/ Fg,'Ty(t)dt) forall z, y€ X and t >0
0 0
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Then A, B, S and T have a unique common fixed point in X
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