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ABSTRACT. We show that the solution to the Stefan problem with a convective bound-
ary condition tends to the quasi-stationary approximation as the specific heat tends
to zero. Additional properties of the approximation are given, and some examples
are presented.
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1. INTRODUCTION.
Consider the following problem:
PROBLEM I. Find T(x,t), X(t) for t >0, x € [0,X{t)] for which

X(t) is continuous for all t > 0, (1.1)
X'(t) is continuous on t > 0; (1.2)
T(xt) T,(x,t) are continuous for t >0, 0 < x < X(t); (1.3)
Tt(x,t), Txx(x,t) are continuous for t > 0, 0 < x < X(t); (1.4)
-w < lim inf T(x,t), 1im sup T(x,t) < =} (1.5)
Cth(x,t) = K Txx(x,t), for t >0, 0 <x < X(t) 3 (1.6)
T(x,t) = Tep for to> 0, x > X(t); (1.7)
pHX'(t) = -KTX(X(t),t) for t > 03 (1.8a)
X(0) = 0; (1.8b)

-k 7,(0,t) = h[T - T(0,t)], t>o0. (1.9)
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In the context of melting the slab x > 0 with convective heat transfer from a
fluid at x = 0, the symbols are:

T(x,t) is the temperature at a point x and time t; (°C);
X(t) is the melt front location at time t (m);
c is the material specific heat (KJ/kg-“C);
p is the material density (Kg/m3);
K is the material thermal conductivity (KJ/m-s-°C)
h is the heat transfer coefficient from the
fluid to the material wall at x = 0 (KJ/m2-5—°C),
Tcr is the material melting temperature (°C);
T, is the ambient transfer fluid temperature (°c).
We will also use
a = K/(cp), the material thermal diffusivity (m’/s);

- [0}
AT:TL- Tcr ( C).

The existence of a solution to Problem I has been proved in Fasano and
Primicerio [1]. Recently (Solomon et al [2] and Solomon [3]) we have studied the
relationship of this solution to that of the following "limiting" problem for h = «.

PROBLEM II. Find Y(t), U(x,t) satisfying all of the conditions on X(t),
T(x,t) of Problem I except for (1.9). In its place we require

u(o,t) = T, t > 0. (1.10)
Problem II is the classical Stefan problem having the explicit solution [4]:
Y(t) = 2x/at, (1.11a)
U(x,t) = T - aT erf(x/2/at )/erfA, where A is the (unique) (1.11b)
root of the equation
AeAz erfa = St//n; where St is the "Stefan" number (1.11¢)
St = cAT/H. (1.12)

In the quest for approximate solutions of problems such as the above, a third
problem is of interest. This is formulated by replacing the heat equation (1.6)
with its steady state relation

KT, (x,t) = 0 (1.13)

and thus referred to as the "quasi-stationary" problem. Specifically we have

PROBLEM II1. Find a pair X,(t), T9%5(x,t), corresponding to the phase
front X(t) and temperature T(x,t), satisfying all of the conditions (1.1) - (1.9)
with the exception of the heat equation (1,6), In its stead we demand that
T9%5(x,t) satisfy the steady state equation (1.13) for X € [O,qus(t)].

We will refer to qus(t) and qus(t) as the "quasi-stationary"
approximations to X(t), T(x,t). Indeed the quasi-stationary approximation is often
used as the simplest "effective" approximate solution for a large variety of moving
boundary problems (see, e.g. Solomon [5], and the references therein). This is based
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on the assumption that as ¢ -+ 0 the solution to Problem I converges to that of
Problem III. It is our aim in the present paper to prove this. Indeed one might
consider this result to be a small first step towards the very needed analysis of
the error arising in a family of analytical approximation techniques used in
engineering heat transfer and of untested accuracy Solomon [6].

Our discussion begins in Section 2 with the derivation and some properties of
the quasi-stationary approximation. In Section 3 we prove the asserted convergence
result. We close in Section 4 with some additional remarks concerning the
approximation.

2. THE QUASI-STATIONARY APPROXIMATION.

In melting and solidification processes modeled by Problem I when the Stefan
number St = cAT/H 1is small the spatial temperature dependence is for all purposes
linear. Hence we may attempt to approximate T(x,t) by a linear function

T(x,t) = a(t)x + b(t) . (2.1)

Substitution into (1.7), (1,8) and (1.9) yields the quasi-stationary
approximation

Xqss(t) = (KZn)([1 + 2n%taT/ (ko) | V2 - 1 (2.2a)
7955 (x,t) = T, - PaT(x-X)/(K + hX(t)) (2.2b)
In a similar way we find the quasi-stationary approximation for Problem II to
be
1/2
Vass(t) = (2ka/(oH) 12, (2.3a)
uIS(x,t) = T - x(aT)/X(t) . (2.3b)

Some idea of how accurate these approximations are may be gained by comparing
qus(t), qus(x,t) with Y(t) and U(x,t) of (1.11a, b) for a typical melting
problem related to latent heat thermal energy storage (Solomon [5]).
Example 1. A slab x > 0 of N-Octadecane paraffin wax is to be melted via
an imposed surface temperature of TL =100°C at x =0 . The relevant properties
of the wax are given in Table 1.

o =814 Kg/m
K =1.5x10"% xy/m-s-°C
C =2.16 KJ/Kg-°C
H =243 KJ/Kg
- (o]
T, = 28°C

Table 1. Properties of N-Octadecane Wax [7]

A short calculation shows us that St = .64 whence the root 2 of (1.11c) is
found to be 1 = .515 to the nearest three decimal places. This in turn yields
the front Y(t) = 3.0085 x 10°% /t . on the other hand from (2.3) we obtain
qus(t) = 3.3045 x 10'4 vt , which has a relative error below 10%. In heat
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transfer processes such as that of this example an error of this size is acceptable,
particularly since the thermal parameters (K, ¢, p, H) are themselves not
precisely known.

Example 2. The slab of Example 1 is now to be melted via convective heat
transfer from a transfer fluid at temperature TL = 100°C . The conditions are to be
such that h = .02 KJ/mz-s-°C , which is a reasonable value for heat storage
applications McAdams [8].

Using a computer program for simulating the process of Problem I, we have
calculated the front X(t) for a simulated process of 30 hours.

In Table 2 and Figure 1 we compare the hourly values of the calculated front,
denoted by Xcomp(t) , the quasi-stationary approximation qus(t) of (2.2a),
and the front Y(t) of Example 1 corresponding to h = ». We note that qus(t)
exceeds xcomp(t) by about 10%. On the other hand Y(t) > Xcomp(t) in agreement
with the results of Solomon et al [2]. However qus(t) > Y(t) for t
beyond 16 hours, a fact to which we will return in Section 4, As in Example 1, the
quasi-stationary approximation yields an effective estimation tool for X(t) .
Similar agreement is observed for the surface temperature at x = 0 . (See Table 2
in this section.)

For many applications the quantity of greatest interest for Problem I is the
total heat stored in the melting material as a function of time. An approximation
to this quantity can be deriyed from (2,2), (2.3) as

t
Q¥5(t) = -KOJ T,(0,t")dt’ (2.4)

"

(KeH/h) {[1 + (2n2taT/(KeH))]1/2}

pH qus(t).

It has been shown in Solomon et al [2], that the total energy Q(t) for
Problem 1,

t
qQ(t) = hof [T, - T(0,t*)]dt"

is bounded from below by Qqss(t).
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t(hr) xcomp(t) (m) qus(t) (m) Y(t) (m)
0 0 0 0
1 .0124 .0137 .0181
2 .0194 .0215 .0255
3 .0251 .0277 .0313
4 .0297 .0329 .0361
5 .0339 .0374 .0404
6 .0378 .0416 .0442
7 .0413 .0455 .0478
8 .0445 .0491 .0511
9 .0476 .0525 .0542
10 .0504 .0556 .0571
11 .0531 .0587 .0599
12 .0558 .0616 .0625
13 .0584 .0644 .0651
14 .0608 .0671 .0675
15 .0631 .0697 .0699
16 .0654 .0722 .0722
17 .0677 .0746 .0744
18 .0698 .0770 .0766
19 .0719 .0792 .0787
20 .0740 .0815 .0807
21 .0759 .0837 .0827
22 .0779 .0858 .0847
23 .0797 .0879 .0866
24 .0817 .0899 .0884
25 .0834 .0919 .0903
26 .0852 .0939 .0920
27 .0870 .0958 .0938
28 .0887 .0977 .0955
29 .0904 .0995 .0972
30 .0920 .1014 .0989
Table 2. xcomp(t)’ qus(t) and Y(t) For Example 2

EXAMPLE 2 (continued). For the 30 hour simulation of Example 2 we may
calculate the total energy Qcomp(t) in the system. In Table 3 we compare
Q%°™P(t) with Q95(t) of (2.4). As we see the approximation Q%5(t)
constitutes a reasonable close lower bound to Qcomp(t).
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(a1}
(%
~

t (hr) Qo™ (t) (KJ/m2) QI55(t) (KJ/m2)
0 0 0
1 2922 2709
2 4687 4253
3 6089 5469
4 7292 6499
5 8360 7411
6 9331 8237
7 10,227 8998
8 11,064 9708
9 11,852 10,375
10 12,598 11,007
11 13,308 11,608
12 13,988 12,183
13 14,641 12,735
14 15,269 13,266
15 15,876 13,778
16 16,463 14,274
17 17,033 14,755
18 17,586 15,222
19 18,124 15,676
20 18,650 16,118
21 19,162 16,550
22 19,662 16,971
23 20,151 17,384
24 20,630 17,787
25 21,099 18,182
26 21,559 18,569
27 22,009 18,949
28 22,452 19,322
29 22,887 19,688
30 23,314 20,049

Table 3. Q°™(t) And Q955(t) For Example 2

3. CONVERGENCE TO THE QUASI-STATIONARY APPROXIMATION FOR PROBLEM I.
In Solomon et al [2] we derived a number of properties of the
solution to Problem I. Our results can be summarized as :
THEOREM 1. Let X(t), T(x,t) be a solution to Problem I. Then
a) T(x,t) X(t) are unique;

b) T(x,t) is increasing in t for x e [0,X(t)] ;
c) T(x,t) and -Tx(x,t) are decreasing in x for each t > 0 ;
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d) T(x,t) » T 3 Xt >0
e) T(O,t)-»TL as t o> o

Moreover,
Ter < T(x,t) < T, » t>20, 0<x< X(t) 3 (3.1)
0 < -KTx(x,t) < haT for t >0, 0<x<X(t): (3.2)
f) If Q(t) is the total stored energy in the time (0,t) then
Fo(t) < Q(t) < Fy(t) (3.3)
where
Fo(t) = (KeH/h) ([1 + 2thaT/(KoH)1'/2 - 1y (3.4a)
Fr(t) = (KeH/n)(1 + 5 St)2 ([0 + 2taTh/ (KeH(1 + 3 5t)2)1V/2 - 1 (3.4b)

By d) we may consider T(x,t) to be defined for t >0, x e [0,X(t)].

The solution to Problem I depends on the choice of the specific heat c . We
will denote this dependence by writing the solution as Xc(t) and Tc(x,t) .

From (3.4a), (2.4) we note that the total heat stored, Q%(t) , for ¢ >0,
is bounded below by Q9%5(t) = Fo(t) .

Moreover, St +0 as ¢ >0, so F](t) of (3.4b) tends to Fo(t) = Qqss(t)
and thus from (3.3) 23 have

THEOREM 2. As C 0, Q%(t) » Q¥%5(t) .

COROLLARY 1. For any t > 0 , the surface temperature 1°(0,t) obeys the
relation

t t
: c Ndpt = 4SS ¢+ )dt "
climg OJ T-(0,t')dt* = oI T>(0,t*)dt". (3.5)

PROOF. Since
Q¥ (e) = m st (T - TS0, )t

and
Q°(e) = n st (T - TO(0,))at
(3.5) follows directly from Theorem 1. Indeed, since t is arbitrary in (3.5), we

conclude that
COROLLARY 2. For any tO, t], with to < t] s

Jimg Itl T°(0,t")dt" = jtl 195(0,t " )dt". (3.6)
to to

From Theorem 1 we know that for any ¢ >0 , TC(O,t) is an increasing and
continuous function, bounded by TL . Let t >0 be any value, and let {cj}
be any sequence of specific heats converging to zero, ¢y 0.

Consider the sequence F of surface temperatures {Tj(O,t)} corresponding to
the {cj} .

THEOREM 3. F contains a subsequence which converges pointwise to an
increasing function ¢(t) for t e [o,t*]. Moreover T . < o(t) <T -
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PROOF. The assertion is an immediate consequence of a corollary to Helly's
principle (Natanson [9], p. 221).
%*
THEOREM 4. The limit ¢(t) coincides with T35(0,t) for all t e [0,t ]:
o(t) = T9%%(0,t) . (3.7)

PROOF. Since ¢(t) € [Tcr’ TLJ , the Lebesgue dominated convergence theorem
tells us that for any to, t] s

, ty t)
C}IQ 0 [ TIo,tr)dtt = [ e(t)dtr.
tg tg
Hence from (3.6),
Y
[ (1%%(0,t) - a(t"))dt' = o, (3.8)
to
and so (Royden [10], p. 87) we must have
T955(0,t) = o(t)
almost everywhere on [O,t*J. However qus(o,t) is continuous and ¢(t) is
increasing whence Q(t) must be continuous and the theorem is proved.

The arbitrariness of the choice of {cj} and t* implies
THEOREM 5. For all t e [0,) ,

1¢(0,t) » T955(0,t) as c -~ 0 . (3.9)

We now assert that convergence holds for x e [0, X355(t)]. The first step in
showing this is the following.
THEOREM 6. For all t e [0,») ,

Xc(t) > qus(t) as ¢+0, (3.10)

with convergence uniform on any finite time interval.
PROOF. The proof is a direct application of the heat balance relation
. X(t)
= c
Q(t) = cp oI (T7(x,t) = T )dx + pHX _(t) (3.11)

derived in Solomon et al [2]. Indeed, subtracting (2.4) from (3.11) we find
c qss _ _
Q°(t) - Q¥3(t) = o [X () - Xg (t)]

X (t)
+ Cpof (Tc(x,t) - Tcr)dx'

Now, by (3.1), the integral is bounded by cpaT xc(t) and thus it tends to zero as
¢ >0, because Xc(t) is bounded independently of ¢ by
Xc(tl < KtaT/(pH)

as shown in Solomon et al [2]. Then, by Theorem 3, Q°(t) » Q%°%(t) and the
result follows. We now assert that TS(x,t) converges to TIS(x,t) as c -0 .
Specifically,
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THEOREM 7. As ¢ + 0 the temperature Tc(x,t) converges to qus(t) for
all t>0, 0<x< qus(t) .
To prove this we make use of a series of lemmas. The first describes the
implication of a global heat balance for our material,
LEMMA 1. Let t >0 be any fixed value. Then
£ %)
Jimg oI oI To (x,t)dxdt = 0 (3.12)

PROOF. Since Ti(x,t) is continuous on [O,Xc(t)] for any t >0,
X(t)

OI Tix(x,t)dx = Ti[xc(t),t) - Ti(o’t)'

However TG (x,t) > 0 for all x,t while TL(X(t),t) = -oHX_'(t)/K and
Fi(O,t) = -h(T - 7°(0,t)/K , whence we have

X (t)

C
0< J Tax(xst)dx = (T = T€(0,£))/K - pHX_* (t)/K.

0 C
Integrating with respect to t over [O,t*] yields
£ X (t)
C _ C

0< OI OI Tex(X:t)dx = [Q°(t) - oHX_(t)1/K.

But now as ¢ > 0 the right hand side tends to (Qqss(t) - °quss(t))/K =0 and
our assertion is proved.

x (t)
Let FS(t) = o’ ¢ Tix(x,t) dx . Then as we know FCS(t) > 0 while by the

*

t

above lemma o’ Fc(t')dx' +0 as c¢c+0, for any t* >0 . Let {cj} be

any sequence of specific heats converging to zero: cj +0 . Then
*

t C.
0! IFJ(t)|dt » 0 as j » =.

C. -
Hence F J(t) converges to zero in the mean on [0,t ]. However (Munroe [11],
Theorem 38.7) this implies that ch(t) converges in measure to zero on
this interval. Hence by a theorem of Riesz (Natanson [9], p. 98) there is a
subsequence {c.} of {cj} for which ch(t) converges to zero almost everywhere
on [O,t*] . We can summarize this in
LEMMA 2. There exists a subsequence {cjﬂ of {cj} for which

X (t)

C. J Cs *
FI(t) = OJ Txi(x,t)dx + 0 a.e. on [0,t ]. (3.13)
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Let t be any time for which (3.13) holds, and consider the temperature
distributions ch(x t) . As proved in Solomon et al [2], ch(x,t) is
monoton1ca]1y decreasing in x and is bounded between T and TL 5 similarly
-T J(x,t) s monotonically decreasing in x , and 0 < -T J(x t) < haT/K .

S1nce for all c5 s Xe (t) < haT/(pH) we can define the funct1ons TCJ(x t) and

-Tizx,t) on [0, hAT/(pH)] by setting them equa] to T.. and 0 respectively, on
[Xc(t), haT/pH] . Since the derivatives T J(x t) are un1formly bounded, we may
apply the Arzela-Ascoli lemma to the un1form1y bounded and equicontinuous family of
functions {ch(x,t)} for x e [0,haT/(pH)] , and hence find a subsequence {cj'}
of {cj} for which ch'(x,t) + Q(x,t) , uniformly on [0, haT/(pH)]. Furthermore
¢(x) s monotonically decreasing and

#(0) = 1955(0,t), (3.14a)

o(xB(1)) = T . (3.14b)

T
Similarly the corresponding derivatives TXJ {(x,t) are uniformly bounded and
*
increasing, whence, by He]ly's theorem (Natanson [9]) a subsequence {cj} of {ci‘}

can be found for which Tij(x,t) converges to a monotonically increasing and
bounded (by haT/K) 1imit v¥(x) almost everywhere on [0, haT/pH].
LEMMA 3. The limit ¥(x) is a constant on [0, X955(t)] .
PROOF. For any c; » x e [0, haT/(pH)], t >0
* *

C. C. X C’f
TIx,t) = T3(0,t) + [ T .0(x',t)dx!
0

Letting j » = and using the dominated converge theorem implies

X
#(x) = ¢(0) + 0] ¥(x')dx’ (3.15)
Similarly, integrating by parts implies
* C* C* *
. N N X C.
TI00t) = T3(0,8) + %7 I(x,t) - [T J(x,t)dx (3.16)
0 XX
However
* *(t) *
0< j x'T J(x ,t)dx" < haT/(oH) f Txi(x',t)dx‘

and by choice of t (for which (3.13) holds) we know that the r1ght hand side

tends to zero as cJ - 0* Hence taking the 1imit in (3.16) as cJ + 0 for those

c
points x for which ij(x,t) -+ ¥(x) we conclude that for almost all x on
[O,qus(t)], we have

#(x) = ¢(0) + x¥(x) .
Thus from (3.15) we conclude that for almost all x in (O,qus(t))
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x¥(x) = Ofxw(x‘)dx' . (3.17)
which in turn implies that v(x) is continuous and constant for x € [O,qus(t)],
i.e.

¥(x) =M on [o,xqss(t)].

But then from (3.15),
¢(x) = ¢(0) + Mx

1955(0,t) + Mx ,

and since ¢(X___(t)) = Tcr , we conclude that

qss

o(x) = T955(x,t), for x e [0,X __(t)].

By the arbitrariness of the choice of the original sequence {cj} we conclude
that

qss

MMy 18(x,t) = 1955(x,t) ,

for almost all t in [0,t7] . I

Consider now TS(x,t) as a function of t for fixed x , with t > XS (x) .
From Solomon et al [2], each Tc(x,t) is increasing in t , and since the
family ! converges almost everywhere to the continuous increasing function
T955(x,t) as c » 0, we conclude that the convergence occurs for every t + 0 .
We have thus proved Theorem 7 in its entirety.
4. ADDITIONAL REMARKS

REMARK 1. On the Behavior of the Solution to Problem II as ¢ -~ 0 .
The convergence of the solution to the quasi-stationary solution as ¢ -~ 0 can be
easily seen for Problem II. Here the stream temperature TL is imposed directly
at x =0, and the solution is given by (1.11 a-c}. Indeed, from (1.11a),

Y(t) = 2aTKt/cp].

But from (1.11¢),

c = (H/n/AT)x exp (A2)erfa,
whence

Y(t) = 2{(KtaT/[pH/w]}1/2 {M/[exp(A2)erfa]}1/2,
Howeyer as ¢ >~ 0 we have A > 0 and

Aexp(-A2)/erfa » Vx/2

whence
Y(t) » (2KAT/[pH]}/2 = Y (t).

Similarly, for any x, t, the expression (1.11b) for the temperature depends on

erf(x/2/Tat])/erfa = erf(x/Tcel/2/TKt])/erfa

= erf((X/ZJIKtAT]) erf(x[Hp/T A exp(A2)erfa]l/2,
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which, as 1 » 0, tends to
x[oH/[2KtaTI M2 = x/Y ( (t).

Hence
U(x,t) > TL - XAT/YqSS(t)

= y955(x,t)

and we have proved that as ¢ » 0 the solution to Problem II converges to its
quasi-stationary approximation.

REMARK 2. A Criterion for Assessing the Error in Using the Quasi-Stationary
Approximation. We have shown in Solomon et al [2] that at any time t >0,
Y(t) of (1.11a) is greater than the interface location X(t) for any finite h

Y(t) > X(t). (4.1)

It is natural for us to expect that this condition hold when X(t) is replaced by
the quasi-stationary front location qus(t) 5 for if this were not so, qus(t)
would predict a front location which is less accurate than Y(t) , and physically

impossible to attain.

The time needed for the quasi-stationary front to reach a point x is
t955 = (oH/(KaT)) ((x%/2) + (Kx/h)}.

Similarly Y(t) gives us the time t” = x2/(4aA2) that would be needed by the
front to reach x for infinite h . Clearly (4.1) requires that t” < t98S or,
after some manipulation,

(£955£) = (222/st)[1 + 2K/(hx)] > 1. (4.2)
Let us examine if this can be expected to hold. By (1.1ic),

St//w = x exp(AZ)erfa
However

A
exp(A2)erfa = (2/Vx) [ exp(A2 - s2) ds > 2A/V¥
0

whence

2A2/st < 1.

Thus (4.2) will not hold unless the Biot number
Bi = hx/K

is sufficiently small. Indeed, we must have Bi < B? with Bi* = 2/{[St/(2A2)] - 1.
In Table 4 we see the values of Bl over a range of values of St. If Bi 3_8?
then the quasi-stationary approximation will yield results that are
a) Physically impossible
and
b) Less accurate than X .



QUASI-STATIONARY APPROXIMATION FOR THE STEFAN PROBLEM 561

(See Table 4 in this section.) As an example of this result consider the following.

EXAMPLE 3. A slab of N-Octadecane paraffin wax is melted via the flow of a heat
transfer fluid across the face at x= 0 . We assume the ambient temperature of the
fluid is TL = 100°C while the heat transfer coefficient is h = .02 KJ/mz-s-OC.
Initially the wax is solid at T = 28°C. .

From the data of Table 1 we find that St = .64 whence Bi = 10. This implies
that if x > .075m ~ 10K/h, the quasi-stationary approximation will be
qualitatively in error and exceed Y(t) . That this indeed occurs has been seen in
Table 2 of Section 2 for this process.

REMARK 3. An Example with Varying TL(t). It is of great interest to study
the effect of variability of TL in time on the solution of Problem I. To
illustrate the broad utility of the quasi-stationary approximation we will apply it
to such a process.

EXAMPLE 4. Consider the process of Example 3 with TL now given as the

function

TL(t) = 100 - (50/7200)t.

The ambient fluid temperature is initially 100°C, but over a period of 7200 seconds
declines linearly to 50°C.
If we apply the quasi-stationary technique to this problem we obtain

Xgss(t) = (K/H){(1 + (2n2tAT/[KpH][1 - (25t/[7200aT]])}/2 - 1}

TI5(0,8) = T+ hX (t))

()T (¢) = T I/ (K + hX

qss qss

where AT =100 - 28 = 72°C, A comparison of these approximations with those
obtained via a computer simulation [12] over a 7200 second time interval is
summarized in Table 5. We note that there is good agreement over the entire period.
Most appealing is the fact that T955(0,t) peaks at roughly the same time as the
computed surface temperature. (See Table 5 in this section.)
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St A 222/t _Bi*

.1 .220 .9680 60.50

.2 .306 .9364 29.45

.3 .370 .9127 20.91

.4 .420 .8820 14.95

.5 .465 .8649 12.80

.6 .502 .8400 10.50

.7 .535 .8178 8.98

.8 .567 . .8037 8.19

.9 .595 .7867 7.38

1.0 .620 .7688 6.65

1.2 .665 .7370 5.60

1.4 .705 .7100 4.90

1.6 .740 .6845 4.34

1.8 771 .6605 3.89

2.0 .800 .6400 3.56

2.5 .862 .5944 2.93

3.0 .915 .5582 2.53

3.5 .957 .5233 2.20

4.0 .995 .4950 1.96

4.5 1.030 .4715 1.78

5.0 1.060 .4494 1.63

10.0 1.257 .3160 .92

Table 4. Bi~ for aiven St
TL (t) Computed Quasi-stationary
t(s) o X (t) T (0,t) Xgss (1) 7958 (0 )

0 100 0 28.00 0 28.00
600 95.83 .00320 48.49 .00345 49.37
1200 91.67 ,00543 54.62 .00591 56.06
1800 87.50 .00725 56.17 .00785 58.43
2400 83.33 .00887 56.88 .00947 58.88
3000 79.17 .01006 57.30 .01084 58.24
3600 75.00 .01121 55.76 .01202 56.94
4200 70.83 .01222 54.87 .01304 55.19
4800 66.67 .01312 52.70 .01393 53.14
5400 62.50 .01387 51.15 .01469 50.84
6000 58.33 .01462 48.83 .01534 48.37
6600 54.17 .01519 46.32 .01590 45.78
7200 50 .01570 44.11 .01636 43.08

Table 5. Comparison of Quasi-Stationary and Computed Predictions for Varying TLQEL_
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x (m)
AN

— Computed

7 == Kgsst)

0.03 / ..... Ym(t)

0 i A ' A A A A
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TIME (hr)
Figure 1. Comparison of X(t), X__.(t) and Y(t) for Example 2.

qss
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