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Applying generalized maximum principle and weak maximum principle, we obtain several uniqueness results for spacelike
hypersurfaces immersed in a weighted generalized Robertson-Walker (GRW) space-time under suitable geometric assumptions.
Furthermore, we also study the special case when the ambient space is static and provide some results by using Bochner’s formula.

1. Introduction

In recent years, spacelike hypersurfaces in Lorentzian man-
ifolds have been deeply studied not only from their math-
ematical interest, but also from their importance in general
relativity.

Particularly, there are many articles that study spacelike
hypersurfaces in weighted warped product space-times. A
weighted manifold is a Riemannian manifold with a measure
that has a smooth positive density with respect to the Rie-
mannian one. More precisely, the weighted manifold 𝑀𝑓
associated with a complete 𝑛-dimensional Riemannian man-
ifold (𝑀𝑛, 𝑔) and a smooth function 𝑓 on 𝑀𝑛 is the triple
(𝑀𝑛, 𝑔, 𝑑𝜇 = 𝑒−𝑓𝑑𝑀), where 𝑑𝑀 stands for the volume
element of 𝑀𝑛. In this setting, we will take into account
the so-called Bakry-Émery Ricci tensor (see [1]) which as an
extension of the standard Ricci tensor Ric, which is defined
by

Ric𝑓 = Ric +Hess𝑓. (1)

Therefore, it is natural to extend some results of the Ricci
curvature to analogous results for the Bakry-Émery Ricci
tensor. Before giving more details on our work we present a
brief outline of some recent results related to our one.

In [2], Wei and Wylie considered the complete 𝑛-dimen-
sional weighted Riemannian manifold and proved mean cur-
vature and volume comparison results on the assumption that

the∞-Bakry-Émery Ricci tensor is bounded from below and𝑓 or |∇𝑓| is bounded. Later, Cavalcante et al. [3] researched
the Bernstein-type properties concerning complete two-
sided hypersurfaces immersed in a weighted warped product
space using the appropriated generalized maximum prin-
ciples. Moreover, [4] obtained new Calabi-Bernstein’s type
results related to complete spacelike hypersurfaces in a
weighted GRW space-time. More recently, some rigidity
results of complete spacelike hypersurfaces immersed into a
weighted static GRW space-time are given in [5].

In this paper we study spacelike hypersurfaces in a
weighted generalized Robertson-Walker (GRW) space-times.
Moreover, a GRW space-time is a space-time regarding a
warped product of a negative definite interval as a base,
a Riemannian manifold as a fiber, and a positive smooth
function as a warped function. Furthermore, there exists a
distinguished family of spacelike hypersurfaces in a GRW
space-time, that is, the so-called slices, which are defined as
level hypersurfaces of the time coordinate of the space-time.
Notice that any slice is totally umbilical and has constant
mean curvature.

We have organized this paper as follows. In Section 2,
we introduce some basic notions to be used for spacelike
hypersurfaces immersed in weighted GRW space-times. In
Section 3, we prove some uniqueness results of spacelike
hypersurface in a weighted GRW space-time under appro-
priate conditions on the weighted mean curvature and the
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weighted function by using the generalized Omori-Yau max-
imum principle or the weak maximum principle. Finally, in
Section 4, applying the weak maximum principle, we obtain
some rigidity results for the special case when the ambient
space is static.

2. Preliminaries

Let 𝑀𝑛 be a connected 𝑛-dimensional oriented Riemannian
manifold and 𝐼 be an open interval in R endowed with the
metric−𝑑𝑡2.We let𝜌 : 𝐼 → R+ be a positive smooth function.
Denote −𝐼 ×𝜌 𝑀𝑛 to be the warped product endowed with
the Lorentzian metric

⟨, ⟩ = −𝜋∗𝐼 (𝑑𝑡2) + 𝜌 (𝜋𝐼)2 𝜋∗𝑀 (⟨, ⟩𝑀) , (2)

where 𝜋𝐼 and 𝜋𝑀 are the projections onto 𝐼 and 𝑀, respec-
tively. This space-time is a warped product in the sense of([6],Chap. 7), with fiber (𝑀, ⟨, ⟩), base (𝐼, −𝑑𝑡2), andwarping
function 𝜌. Furthermore, for a fixed point 𝑡0 ∈ 𝐼, we say
that 𝑀𝑛𝑡0 = −{𝑡0} × 𝑀𝑛 is a slice of −𝐼 ×𝜌 𝑀𝑛. Following the
terminology used in [7], we will refer to −𝐼 ×𝜌 𝑀𝑛 as a
generalized Robertson-Walker (GRW) space-time. Particularly,
if the fiber 𝑀𝑛 has constant section curvature, it is called a
Robertson-Walker (RW) space-time.

Recall that a smooth immersion 𝜓 : Σ𝑛 → −𝐼 ×𝜌 𝑀𝑛 of
an 𝑛-dimensional connected manifold Σ𝑛 is called a spacelike
hypersurface if the induced metric via 𝜓 is a Riemannian
metric on Σ𝑛, which will be also denoted for ⟨, ⟩.

In the following, we will deal with two particular func-
tions naturally attached to spacelike hypersurface Σ𝑛, namely,
the angle (or support) function Θ = ⟨𝑁, 𝜕𝑡⟩ and the height
function ℎ = (𝜋𝐼)|Σ, where 𝜕𝑡 fl 𝜕/𝜕𝑡 is a (unitary) timelike
vector field globally defined on𝑀 and𝑁 is a unitary timelike
normal vector field globally defined on Σ.

Let∇ and∇ stand for gradients with respect to themetrics
of −𝐼 ×𝜌 𝑀𝑛 and Σ𝑛, respectively. By a simple computation,
we have

∇𝜋𝐼 = −⟨∇𝜋𝐼, 𝜕𝑡⟩ 𝜕𝑡 = −𝜕𝑡. (3)

Therefore, the gradient of ℎ on Σ𝑛 is
∇ℎ = (∇𝜋𝐼)⊤ = −𝜕⊤𝑡 = −𝜕𝑡 − Θ𝑁. (4)

Particularly, we have

|∇ℎ|2 = −1 + Θ2, (5)

where | | denotes the norm of a vector field on Σ𝑛.
Now, we consider that a GRW space-time −𝐼 ×𝜌 𝑀𝑛 is

endowed with a weighted function 𝑓, which will be called a
weighted GRW space-time −𝐼 ×𝜌 𝑀𝑛𝑓. In this setting, for a
spacelike hypersurface Σ𝑛 immersed into −𝐼 ×𝜌 𝑀𝑛𝑓, the 𝑓-
divergence operator on Σ𝑛 is defined by

div𝑓 (𝑋) = 𝑒𝑓div (𝑒−𝑓𝑋) , (6)

where𝑋 is a tangent vector field on Σ𝑛.

For a smooth function 𝑢 : Σ𝑛 → R, we define its drifting
Laplacian by

Δ𝑓𝑢 = div𝑓 (∇𝑢) = Δ𝑢 − ⟨∇𝑢, ∇𝑓⟩ , (7)

and we will also denote such an operator as the 𝑓-Laplacian
of Σ𝑛.

According to Gromov [8], the weighted mean curvature
or 𝑓-mean curvature𝐻𝑓 of Σ𝑛 is given by

𝑛𝐻𝑓 = 𝑛𝐻 − ⟨∇𝑓,𝑁⟩ , (8)

where 𝐻 is the standard mean curvature of hypersurface Σ𝑛
with respect to the Gauss map𝑁.

It follows from a splitting theorem due to Case (see [9]
Theorem 1.2) that if a weighted GRW space-time −𝐼 ×𝜌 𝑀𝑛𝑓
is endowed with a bounded weighted function 𝑓 such that
Ric𝑓(𝑉, 𝑉) ≥ 0 for all timelike vector fields 𝑉 on −𝐼 ×𝜌 𝑀𝑛𝑓,
then 𝑓 must be constant along R. In the same spirit of this
result, in the followingwewill considerweightedGRWspace-
times−𝐼 ×𝜌 𝑀𝑛𝑓 whose weighted function𝑓 does not depend
on the parameter 𝑡 ∈ 𝐼; that is, ⟨∇𝑓, 𝜕𝑡⟩ = 0. Moreover, for
simplicity, we will refer to them as𝑀𝑛+1 fl −𝐼 ×𝜌 𝑀𝑛𝑓.

In the following, we give some technical lemmas that will
be essential for the proofs of our main results in weighted
GRW space-times𝑀𝑛+1 = −𝐼 ×𝜌 𝑀𝑛𝑓 (for further details on
the proof, see Lemma 1 in [4]).

Lemma 1. Let Σ𝑛 be a spacelike hypersurface immersed in a
weighted GRW spacetime 𝑀𝑛+1 = −𝐼 ×𝜌 𝑀𝑛𝑓, with height
function ℎ. Then,

Δ𝑓ℎ = − (log 𝜌) (ℎ) (𝑛 + |∇ℎ|2) − 𝑛𝐻𝑓Θ, (9)

Δ𝑓𝜌 (ℎ) = −𝑛𝜌 (ℎ)2𝜌 (ℎ) + |∇ℎ|2 𝜌 (ℎ) (log 𝜌) (ℎ)
− 𝑛𝜌 (ℎ)𝐻𝑓Θ.

(10)

If we denote L1𝑓 as the space of the integrable functions
on Σ𝑛 with respect to the weighted volume element 𝑑𝜇 =
𝑒−𝑓𝑑Σ, using the relation of div𝑓(𝑋) = 𝑒𝑓div(𝑒−𝑓𝑋) and
Proposition 2.1 in [10], we can obtain the following extension
of a result in [11].

Lemma 2. Let 𝑢 be a smooth function on a complete weighted
Riemannian manifold Σ𝑛 with weighted function 𝑓 such thatΔ𝑓𝑢 does not change sign on Σ𝑛. If |∇𝑢| ∈ L1𝑓, then Δ𝑓𝑢
vanishes identically on Σ𝑛.

In the following, we will introduce the weak maximum
principle for the drifted Laplacian. By the fact in [12], that
is, the Riemannian manifold 𝑀 satisfies the weak maxi-
mum principle if and only if 𝑀 is stochastically complete,
we can have the next lemma which extended a result of
[13].
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Lemma3. Let (𝑀𝑛, ⟨, ⟩, 𝑒−𝑓𝑑𝑀) be an 𝑛-dimensional stochas-
tically complete weighted Riemannian manifold and 𝑢 : 𝑀 →
R be a smooth function which is bounded from below on𝑀𝑛.
Then there is a sequence of points 𝑝𝑘 ∈ 𝑀𝑛 such that

lim
𝑘
𝑢 (𝑝𝑘) = inf 𝑢,

lim
𝑘
Δ𝑓𝑢 (𝑝𝑘) ≥ 0. (11)

Equivalently, for any smooth function 𝑢 : Σ𝑛 → R which is
bounded from above on𝑀𝑛, there is a sequence of points 𝑞𝑘 ∈𝑀𝑛 such that

lim
𝑘
𝑢 (𝑞𝑘) = sup 𝑢,

lim
𝑘
Δ𝑓𝑢 (𝑞𝑘) ≤ 0. (12)

3. Uniqueness Results in Weighted
GRW Space-Times

In this section, we will state and prove our main results in
weighted GRW space-times𝑀𝑛+1 = −𝐼 ×𝜌 𝑀𝑛𝑓.We point out
that, to prove the following results, we do not require that
the 𝑓-mean curvature 𝐻𝑓 of the spacelike hypersurface Σ𝑛
is constant.

Recall that a slab of a weighted GRW spacetime −𝐼 ×𝜌𝑀𝑛𝑓 is a region of the type

[𝑡1, 𝑡2] × 𝑀𝑛𝑓 = {(𝑡, 𝑝) ∈ −𝐼 ×𝜌 𝑀𝑛𝑓 : 𝑡1 ≤ 𝑡 ≤ 𝑡2} . (13)

Theorem4. Let𝑀𝑛+1 = −𝐼 ×𝜌 𝑀𝑛𝑓 be aweightedGRWspace-
time which obeys (log 𝜌)(ℎ) ≤ 0. Let 𝜓 : Σ𝑛 → 𝑀𝑛+1 be
a complete spacelike hypersurface that lies in a slab of𝑀𝑛+1. If
the𝑓-mean curvature𝐻𝑓 satisfies𝐻2𝑓 ≤ (1/Θ2)(𝜌(ℎ)2/𝜌(ℎ)2)
and |∇ℎ| ∈ L1𝑓(Σ), then Σ𝑛 is a slice of𝑀𝑛+1.
Proof. From (10), we have

1
𝜌 (ℎ)Δ𝑓𝜌 (ℎ) = −𝑛𝜌 (ℎ)2𝜌 (ℎ)2 + (log 𝜌) (ℎ) |∇ℎ|2

− 𝑛𝜌 (ℎ)𝜌 (ℎ) 𝐻𝑓Θ

≤ −𝑛𝜌 (ℎ)2𝜌 (ℎ)2 + (log 𝜌) (ℎ) |∇ℎ|2

+ 𝑛
2 (

𝜌 (ℎ)2
𝜌 (ℎ)2 + 𝐻2𝑓Θ2)

≤ 𝑛
2 (𝐻2𝑓Θ2 −

𝜌 (ℎ)2
𝜌 (ℎ)2 )

+ (log 𝜌) (ℎ) |∇ℎ|2 .

(14)

By the hypotheses, we have Δ𝑓𝜌(ℎ) ≤ 0. Moreover, since
Σ𝑛 lies in a slab, there is a positive constant 𝐶 such that

∇𝜌 (ℎ) ≤ 𝐶𝜌 (ℎ) |∇ℎ| ∈ L
1
𝑓 (Σ) . (15)

Therefore, we can apply Lemma 2 to get Δ𝑓𝜌(ℎ) = 0; that is,
𝜌(ℎ) is constant. Therefore Σ𝑛 is a slice.
Theorem5. Let𝑀𝑛+1 = −𝐼 ×𝜌 𝑀𝑛𝑓 be aweightedGRWspace-
time which obeys 𝜌(ℎ) ≤ 0. Let 𝜓 : Σ𝑛 → 𝑀𝑛+1 be a complete
spacelike hypersurface that lies in a slab of𝑀𝑛+1. If the𝑓-mean
curvature𝐻𝑓 satisfies𝐻2𝑓 ≤ 𝜌(ℎ)2/𝜌(ℎ)2 and |∇ℎ| ∈ L1𝑓(Σ),
then Σ𝑛 is a slice of𝑀𝑛+1.
Proof. By a similar reasoning as in the proof of Theorem 4,
we have

1
𝜌 (ℎ)Δ𝑓𝜌 (ℎ) ≤ −𝑛𝜌 (ℎ)2𝜌 (ℎ)2 + (log 𝜌) (ℎ) |∇ℎ|2

+ 𝑛
2 (

𝜌 (ℎ)2
𝜌 (ℎ)2 + 𝐻2𝑓Θ2)

≤ 𝑛
2𝐻2𝑓Θ2 −

𝑛
2
𝜌 (ℎ)2
𝜌 (ℎ)2 +

𝜌 (ℎ)
𝜌 (ℎ) |∇ℎ|2

≤ 𝑛
2 (𝐻2𝑓 −

𝜌 (ℎ)2
𝜌 (ℎ)2 )Θ2

+ 𝜌 (ℎ)
𝜌 (ℎ) |∇ℎ|2 ,

(16)

where the last inequality is due to Θ2 ≥ 1.
Taking into account the assumptions, we have Δ𝑓𝜌(ℎ) ≤0. Now in the same argument as in Theorem 4, we have thatΣ𝑛 is a slice.
Next, we will use the weak maximum principle to study

the rigidity of the spacelike hypersurfaces in weighted GRW
space-times.

Theorem6. Let𝑀𝑛+1 = −𝐼 ×𝜌 𝑀𝑛𝑓 be aweightedGRWspace-
time which satisfies (log 𝜌) ≤ 0 and there is a point ℎ0 ∈ 𝐼
such that 𝜌(ℎ0) = 0. Let 𝜓 : Σ𝑛 → 𝑀𝑛+1 be a stochastically
complete constant 𝑓-mean curvature 𝐻𝑓 spacelike hypersur-
face such that sup ℎ ≥ ℎ0, inf ℎ ≤ ℎ0 which is contained in
a slab; then Σ𝑛 is 𝑓-maximal. In addition, if Σ𝑛 is complete and|∇ℎ| ∈ L1𝑓, then Σ𝑛 is a slice.
Proof. We take the Gauss map𝑁 of the hypersurface Σ𝑛 such
that Θ > 0; from (7) we have Θ ≥ 1.

By Lemma 3, the weak maximum principle for the
drifted Laplacian holds on Σ𝑛; then there exist two sequences{𝑝𝑗}, {𝑞𝑗} ⊂ Σ𝑛 such that

lim
𝑗
ℎ (𝑝𝑗) = inf ℎ,
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lim
𝑗
Δ𝑓ℎ (𝑝𝑗) ≥ 0.
lim
𝑗
ℎ (𝑞𝑗) = sup ℎ,

lim
𝑗
Δ𝑓ℎ (𝑞𝑗) ≤ 0.

(17)

On the other hand, from (9), we have

𝐻𝑓 = (−𝜌 (ℎ) /𝜌 (ℎ)) {𝑛 + |∇ℎ|2} − Δ𝑓ℎ
𝑛Θ . (18)

Since Σ𝑛 lies in a slab, if ℎ is bounded from below, then

𝐻𝑓 ≤ (−𝜌 (inf ℎ) /𝜌 (inf ℎ)) {𝑛 + ∇ℎ (𝑝𝑗)2}
𝑛Θ (𝑝𝑗) . (19)

Moreover, if ℎ is bounded from above, we get

𝐻𝑓 ≥ (−𝜌 (sup ℎ) /𝜌 (sup ℎ)) {𝑛 + ∇ℎ (𝑞𝑗)2}
𝑛Θ (𝑞𝑗) . (20)

Considering that the function −𝜌/𝜌 is increasing, then

𝐻𝑓 ≤ (−𝜌 (inf ℎ) /𝜌 (inf ℎ)) {𝑛 + ∇ℎ (𝑝𝑗)2}
𝑛Θ (𝑝𝑗)

≤ (−𝜌 (ℎ0) /𝜌 (ℎ0)) {𝑛 + ∇ℎ (𝑝𝑗)2}
𝑛Θ (𝑝𝑗) ≤ 0,

𝐻𝑓 ≥ (−𝜌 (sup ℎ) /𝜌 (sup ℎ)) {𝑛 + ∇ℎ (𝑞𝑗)2}
𝑛Θ (𝑞𝑗)

≥ (−𝜌 (ℎ0) /𝜌 (ℎ0)) {𝑛 + ∇ℎ (𝑞𝑗)2}
𝑛Θ (𝑞𝑗) ≥ 0.

(21)

Hence, 𝐻𝑓 = 0; that is, Σ𝑛 is a 𝑓-maximal spacelike hyper-
surface. Using (10), we have

Δ𝑓𝜌 (ℎ) = −𝑛𝜌 (ℎ)2𝜌 (ℎ) + |∇ℎ|2 𝜌 (ℎ) (log 𝜌) (ℎ) ≤ 0. (22)

In the following, by the same argument as in Theorem 4, we
have that Σ𝑛 is a slice.
4. Weighted Static GRW Space-Times

In this section, we obtain some rigidity results of stochasti-
cally complete hypersurfaces in weighted static GRW space-
times −𝐼 × 𝑀𝑛𝑓 by the weak maximal principle. Firstly,
we give the following technical result which extended the
corresponding conclusion in [12].

Lemma 7. Let 𝑀 be a stochastically complete Riemannian
manifold and 𝑢 : 𝑀 → R be a nonnegative smooth function
on𝑀. If there exists a positive constant 𝜆 such that Δ𝑓𝑢 ≥ 𝜆𝑢,
then 𝑢 = 0.
Theorem 8. Let 𝜓 : Σ𝑛 → −𝐼 × 𝑀𝑛𝑓 be a stochastically com-
plete hypersurface with constant 𝑓-mean curvature 𝐻𝑓 in a
weighted static GRW spacetime −𝐼 × 𝑀𝑛𝑓. Assume that𝐾𝑀 ≥
−𝑘 for some positive constant 𝑘 and the weighted function 𝑓 is
convex. If |∇ℎ|2 ≤ 𝛼|𝐴|2/(𝑛 − 1)𝑘 for some constant 0 < 𝛼 < 1,
then Σ𝑛 is a slice.
Proof. Let 𝐸1, . . . , 𝐸𝑛 be a (local) orthonormal frame inX(Σ);
using the Gauss equation, we have that

Ric (𝑋,𝑋) = 𝑛∑
𝑖=1

⟨𝑅 (𝑋, 𝐸𝑖)𝑋, 𝐸𝑖⟩ + 𝑛𝐻 ⟨𝐴𝑋,𝑋⟩
+ |𝐴𝑋|2 ,

(23)

for𝑋 ∈ X(Σ). Moreover, we also have

⟨𝑅 (𝑋, 𝐸𝑖)𝑋, 𝐸𝑖⟩
= 𝐾𝑀 (𝑋∗, 𝐸∗𝑖 ) (⟨𝑋∗, 𝑋∗⟩ ⟨𝐸∗𝑖 , 𝐸∗𝑖 ⟩ − ⟨𝑋∗, 𝐸∗𝑖 ⟩2) ,

(24)

where𝐾𝑀 is the sectional curvature of the fiber𝑀𝑛 and𝑋∗ =𝑋 + ⟨𝑋, 𝜕𝑡⟩𝜕𝑡 and 𝐸∗𝑖 = 𝐸𝑖 + ⟨𝐸𝑖, 𝜕𝑡⟩𝜕𝑡 are the projections of
the tangent vector fields𝑋 and 𝐸𝑖 onto𝑀𝑛.

By a direct computation and considering the hypothesis𝐾𝑀 > −𝑘, we get
𝑛∑
𝑖=1

⟨𝑅 (𝑋, 𝐸𝑖)𝑋, 𝐸𝑖⟩
≥ −𝑘 ((𝑛 − 1) |𝑋|2 + (𝑛 − 2) ⟨𝑋, ∇ℎ⟩2 + |𝑋|2 |∇ℎ|2) .

(25)

Substituting (25) into (23),

Ric (𝑋,𝑋)
≥ −𝑘 ((𝑛 − 1) |𝑋|2 + (𝑛 − 2) ⟨𝑋, ∇ℎ⟩2 + |𝑋|2 |∇ℎ|2)

+ 𝑛𝐻 ⟨𝐴𝑋,𝑋⟩ + |𝐴𝑋|2 .
(26)

Furthermore, taking into account that the weighted func-
tion 𝑓 is convex, we have

Hess𝑓 (𝑋,𝑋) = Hess𝑓 (𝑋,𝑋) − ⟨∇𝑓,𝑁⟩ ⟨𝐴𝑋,𝑋⟩
≥ −⟨∇𝑓,𝑁⟩ ⟨𝐴𝑋,𝑋⟩ . (27)

Therefore,

Ric𝑓 (𝑋,𝑋)
≥ −𝑘 ((𝑛 − 1) |𝑋|2 + (𝑛 − 2) ⟨𝑋, ∇ℎ⟩2 + |𝑋|2 |∇ℎ|2)

+ 𝑛𝐻𝑓 ⟨𝐴𝑋,𝑋⟩ + |𝐴𝑋|2 .
(28)
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In particular, we have

Ric𝑓 (∇ℎ, ∇ℎ) ≥ −𝑘 (𝑛 − 1) |∇ℎ|2 (1 + |∇ℎ|2)
+ 𝑛𝐻𝑓 ⟨𝐴 (∇ℎ) , ∇ℎ⟩ + |𝐴 (∇ℎ)|2 . (29)

Now we recall the Bochner-Lichnerowicz formula (see
[2]):

1
2Δ𝑓 (|∇ℎ|2) = |Hess ℎ|2 + Ric𝑓 (∇ℎ, ∇ℎ)

+ ⟨∇Δ𝑓ℎ, ∇ℎ) .
(30)

From the fact that𝐻𝑓 is a constant, we have
∇Δ𝑓ℎ = −𝑛𝐻𝑓𝐴 (∇ℎ) . (31)

By [14], we get

|Hess ℎ|2 = |𝐴|2 (1 + |∇ℎ|2) . (32)

Using (29), (31), and (32) in (30), we have
1
2Δ𝑓 |∇ℎ|2 ≥ (|𝐴|2 − (𝑛 − 1) 𝑘 |∇ℎ|2) (1 + |∇ℎ|2) . (33)

Finally, considering the hypothesis |∇ℎ|2 ≤ 𝛼|𝐴|2/(𝑛−1)𝑘,
we obtain

Δ𝑓 |∇ℎ|2 ≥ 2 (1 − 𝛼) |𝐴|2 |∇ℎ|2 . (34)

Thus, there is a positive constant 𝜆 such that

Δ𝑓 |∇ℎ|2 ≥ 𝜆 |∇ℎ|2 . (35)

Therefore, ℎ is constant by Lemma 7.

Theorem 9. Let 𝜓 : Σ𝑛 → −𝐼 × 𝑀𝑛𝑓 be a stochastically com-
plete hypersurface with constant 𝑓-mean curvature 𝐻𝑓 in a
weighted static GRW space-time −𝐼 × 𝑀𝑛𝑓. Assume that the
sectional curvature 𝐾𝑀 is nonnegative and the weighted func-
tion 𝑓 is convex. If |∇ℎ|2 is bounded from above, then Σ𝑛 is𝑓-maximal.

Proof. As in the proof ofTheorem 8, taking into account that
the hypothesis 𝐾𝑀 is nonnegative, there is a constant 𝑘 ≥ 0
such that

1
2Δ𝑓 |∇ℎ|2 ≥ |Hess ℎ|2 + (𝑛 − 1) 𝑘 |∇ℎ|2 (1 + |∇ℎ|2) . (36)

Moreover, considering the relation 𝑛|Hess ℎ|2 ≥ (Δ𝑓ℎ)2,
we have

Δ𝑓 |∇ℎ|2 ≥ 2
𝑛 (Δ𝑓ℎ)

2 . (37)

Using (9) and (37), we obtain

Δ𝑓 |∇ℎ|2 ≥ 2𝑛𝐻2𝑓Θ2 ≥ 2𝑛𝐻2𝑓 ≥ 0. (38)

By the hypothesis that |∇ℎ|2 is bounded from above, applying
Lemma 3, the weak maximum principle, we get

0 ≥ lim
𝑘
Δ𝑓 |∇ℎ|2 (𝑞𝑘) ≥ 2𝑛𝐻2𝑓 ≥ 0. (39)

Therefore Σ𝑛 is 𝑓-maximal.

As a consequence of the proof of Theorem 8, we can get
the following corollary.

Corollary 10. Let 𝜓 : Σ𝑛 → −𝐼 ×𝑀𝑛𝑓 be a stochastically com-
plete hypersurface with constant 𝑓-mean curvature 𝐻𝑓 in a
weighted static GRW space-time −𝐼 ×𝑀𝑛𝑓. Assume that 𝐾𝑀 ≥
−𝑘 and Hess𝑓 ≥ −𝛽 for some positive constants 𝑘 and 𝛽. If|∇ℎ|2 ≤ 𝛼|𝐴|2/((𝑛−1)𝑘+𝛽) for some constant 0 < 𝛼 < 1, thenΣ𝑛 is a slice.
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Matemática, vol. 42, no. 2, pp. 277–300, 2011.

[11] S. T. Yau, “Some function-theoretic properties of complete Rie-
mannian manifold and their applications to geometry,” Indiana
UniversityMathematics Journal, vol. 25, no. 7, pp. 659–670, 1976.

[12] S. Pigola, M. Rigoli, and A. G. Setti, “A remark on the maxi-
mum principle and stochastic completeness,” Proceedings of the



6 Advances in Mathematical Physics

American Mathematical Society, vol. 131, no. 4, pp. 1283–1288,
2003.

[13] M. Rimoldi, Rigidity Results for Lichnerowicz Bakry-Émery Ricci
Tensors [Ph.D. thesis], Università degli Studi di Milano, Milano,
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