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We study reconstruction of time-varying sparse signals in a wireless sensor network, where the bandwidth and energy constraints
are considered severely. A novel particle filter algorithm is proposed to deal with the coarsely quantized innovation. To recover the
sparse pattern of estimate by particle filter, we impose the sparsity constraint on the filter estimate by means of two methods.
Simulation results demonstrate that the proposed algorithms provide performance which is comparable to that of the full
information (i.e., unquantized) filtering schemes even in the case where only 1 bit is transmitted to the fusion center.

1. Introduction

In recent years, wireless sensor networks (WSNs) have been
widely applied in many areas. A WSN system is composed
of a large number of battery-powered sensors via wireless
communication. Reconstruction of time-varying signals is
a key technology for WSNs and plays an important role in
many applications ofWSNs (see, e.g., [1–3] and the references
therein). As we know, the lifetime of a WSN depends on the
lifespan of its sensors, which are battery-powered. To prolong
the lifespan of sensors, sensors are often allowed to transmit
only partial (e.g., quantized/encoded) information to a fusion
center. Therefore, quantization of sensor measurements has
been widely taken into account in the practical applications
[4–6]. Moreover, it is maybe infeasible to quantize and
transmit sensor measurements directly. This is because, for
unstable systems, while the states will become unbounded,
a large number of quantization bits may be needed, and
so higher bandwidth and rate of quantizer are used by
sensors. However, as demonstrated in [1–3], the filtering
schemes relying on the quantized innovations can provide
the performance, which is comparable to that of the full (e.g.,
unquantized/uncoded) information filtering schemes.

On the other hand, due to sparseness of signals exhibited
inmany applications, recently developed compressed sensing
techniques have been extensively applied in WSNs [7–9].
This enables reconstruction of sparse signal from far fewer

measurements. Therefore, the demands for communication
between sensors and the fusion center will be lessened by
exploiting sparseness of signals in WSNs, so as to save
both bandwidth and energy [9, 10]. Reconstruction of time-
varying sparse signals in WSNs has been recently studied
in [11] by using the group lasso and fused lasso techniques.
This is a batch algorithm which relies on quadratic pro-
gramming to recover the unknown signal. A computationally
efficient recursive lasso algorithm (R-lasso) was introduced
in [12], for estimating recursively the sparse signal at each
point in time. In [13], the SPARLS algorithm relies on the
expectation-maximization technique to find estimates of the
tap-weight vector output stream from its noisy observations.
Recently, many researchers have attempted to solve the
problem in the classic framework of signal estimation, such
as Kalman filtering (KF) and its variants [14–16]. The KF-
based approaches can be divided into two classes: the hybrid
and self-reliant. For the former, the peripheral optimization
schemes were employed to estimate the support set of a
sparse signal, and then a reduced-order Kalman filter was
used to reconstruct the signal [14]. Meanwhile, for the latter,
the sparsity constraint is enforced via the so-called pseudo-
measurement (PM) [15]. In [15], two stages of Kalman
filtering are employed: one for tracking the temporal changes
and the other for enforcing the sparsity constraint at each
stage. In [16], an unscented Kalman filter for the pseudo-
measurement update stage was proposed. To the best of
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the authors’ knowledge, there is limited work on recursive
compressed sensing techniques considering quantization as
a mean of further reduction of the required bandwidth
and power resources. However, an increased attention has
been paid to develop algorithms for reconstructing sparse
signals using quantized observations recently [17–21]. In [17],
a convex relaxation approach for reconstructing sparse signal
from quantized observations was proposed by using an ℓ

1
-

norm regularization term and two convex cost functions. In
[18], Qiu and Dogandzic proposed an unrelaxed probabilistic
model with ℓ

0
-norm constrained signal space and derived

an expectation-maximization algorithm. In addition, [19–21]
have investigated the reconstruction of sparse source from 1-
bit quantized measurement in the extreme case.

In this paper, we study reconstruction of time-varying
sparse signals in WSNs by using quantized measurements.
Our contributions are as follows:

(1) We propose an improved particle filter algorithm
which extends the fundamental results [2] to a
multiple-observation case by employing information
filter form. The algorithm in [2] is derived under the
assumption that the fusion center has access to only
onemeasurement source at each time step.The exten-
sion to a multiple-measurement scenario is straight-
forward but, in general,may lead to a computationally
involved scheme. In contrast, the proposed algorithm
can be implemented in a computationally efficient
sequential processing form and avoids any matrix
inversion. Meanwhile, the proposed algorithm has
an advantage over numerical stability for inaccurate
initialization.

(2) We propose a new method to impose sparsity con-
straint on estimator by the particle filter algorithm.
Compared to the iterative method in [15], the result-
ing method is noniterative and easy to implement.

In particular, the system has an underlying state-space
structure, where the state vector is sparse. In each time
interval, the fusion center transmits the predicted signal
estimate and its corresponding error covariance to a selected
subset of sensors. The selected sensors compute quantized
innovations and transmit them to the fusion center. The
fusion center reconstructs the sparse state by employing the
proposed particle filter algorithm and sparse cubature point
filter method.

This paper is organized as follows. Section 2 gives a
brief overview of basic problems in compressed sensing and
introduces the sparse signal recovery method using Kalman
filtering with embedded pseudo-measurement. In Section 3,
we describe the system model. Section 4 develops a particle
filter with quantized innovation. To recover the sparsity
pattern of the state estimate by particle filter, a sparse cubature
point filter method is developed with lower complexity
compared to reiterative PM update method in Section 5.
The intact version of adaptively recursive reconstruction
algorithm for sparse signals with quantized innovations and
the analysis of their complexity are presented in Section 6.

Section 7 contains simulation results, and the conclusions are
concluded in Section 8.

Notation.N
𝑑
(𝜇, Σ) denotes 𝑑-dimensional Gaussian r.v. with

mean 𝜇 and variance Σ, the 𝑑-dimensional Gaussian prob-
ability density with mean 𝜇, and variance Σ is denoted by
𝜙
𝑑
(⋅, 𝜇, Σ). Φ(𝑥; 𝜇, Σ) denotes Gaussian probability distribu-

tion with mean 𝜇 and variance Σ, and Φ(S; 𝜇, Σ) denotes
the truncated probability, where S belongs to Borel 𝜎-field.
u
𝑖:𝑗

denotes the collection of random {𝑢
𝑖
, . . . , 𝑢

𝑗
}. Boldfaced

uppercase and lowercase symbols represent matrices and
vectors, respectively. For a vector x, x(𝑖) denotes its 𝑖th
component and Cov[x] denotes the error covariance 𝐸[(x −
𝐸x)(x − 𝐸x)𝑇]. For a matrix R, R(𝑙, 𝑙) denotes the (𝑙, 𝑙) entry
of R.

2. Sparse Signal Reconstruction Using
Kalman Filter

2.1. Sparse Signal Recovery. Compressive sensing is a frame-
work for signal sensing and compression that enables repre-
sentation of a sensed signal with fewer samples than those
ones required by classical sampling theory. Consider a sparse
random discrete-time process {x

𝑘
}
𝑘≥0

in 𝑅𝑁, where ‖x
𝑘
‖
0
≪

𝑁, and x
𝑘
is called 𝐾-sparse if ‖x

𝑘
‖
0
= 𝐾. Assume x

𝑘
evolves

according to the following dynamical equations:

x
𝑘+1

= F
𝑘
x
𝑘
+ w
𝑘
, (1)

y
𝑘
= H
𝑘
x
𝑘
+ k
𝑘
, (2)

where F
𝑘
∈ 𝑅
𝑁×𝑁 is the state transition matrix and H

𝑘
∈

𝑅
𝑀×𝑁 is the measurement matrix. Moreover, {w

𝑘
}
𝑘≥0

and
{k
𝑘
}
𝑘≥0

denote the zero mean’s white Gaussian sequence with
covariances W

𝑘
⪰ 0 and R

𝑘
⪰ 0, respectively. y

𝑘
is 𝑀-

dimensional linear measurement of x
𝑘
. When 𝑀 < 𝑁 and

rank(H
𝑘
) < 𝑁, it is noted that the reconstruction x

𝑘
from

underdetermined system is an ill-posed problem.
However, [22, 23] have shown that x

𝑘
can be accurately

reconstructed by solving the following optimization problem:

min
x̂𝑘∈𝑅𝑁

x̂𝑘
0 ,

s.t. y𝑘 −H
𝑘
x̂
𝑘



2

2
≤ 𝜖.

(3)

Unfortunately, the above optimization problem is NP-
hard and cannot be solved effectively. Fortunately, as shown
in [23], if the measurement matrix H

𝑘
obeys the so-called

restricted isometry property (RIP), the solution of (3) can
be obtained with overwhelming probability by solving the
following convex optimization:

min
x̂𝑘∈𝑅𝑁

x̂𝑘
1 ,

s.t. y𝑘 −H
𝑘
x̂
𝑘



2

2
≤ 𝜖.

(4)

This is a fundamental result in compressed sensing (CS).
Moreover, for reconstructing a𝐾-sparse signal x

𝑘
∈ 𝑅
𝑁,𝑀 ≥

𝐶 ⋅ 𝐾 log(𝑁/𝐾) linear measurements are needed, where 𝐶 is
a fixed constant.
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2.2. Pseudo-Measurement Embedded Kalman Filtering. For
the system given in (1) and (2), the estimation of x

𝑘
provided

by Kalman filtering is equivalent to the solution of the
following unconstrained ℓ

2
minimization problem:

min
x̂𝑘∈𝑅𝑁

𝐸 [
x𝑘 − x̂

𝑘



2

2
| Y
𝑘
] , (5)

where 𝐸[⋅ | Y
𝑘
] is the conditional expectation of the given

measurementsY
𝑘
≜ {y
1
, . . . , y

𝑘
}.

As shown in [15], the stochastic case of (4) is as follows:

min
x̂𝑘∈𝑅𝑁

x̂𝑘
1 ,

s.t. 𝐸 [
x𝑘 − x̂

𝑘



2

2
| Y
𝑘
] ≤ 𝜖
𝑘
,

(6)

and its dual problem is

min
x̂𝑘∈𝑅𝑁

𝐸 [
x𝑘 − x̂

𝑘



2

2
| Y
𝑘
] ,

x̂𝑘
1 ≤ 𝜖𝑘.

(7)

In [15], the authors incorporate the inequality constraint
‖x̂
𝑘
‖
1
≤ 𝜖
𝑘
into the filtering process using a fictitious pseudo-

measurement equation

0 = H̃
𝑘
x
𝑘
− 𝜖


𝑘
, (8)

where H̃
𝑘

= sign(x𝑇
𝑘
) and 𝜖



𝑘
∼ N(0, 𝑅



𝜖
) serves as

the fictitious measurement noise; constrained optimization
problem (7) can be solved in the framework of Kalman
filtering and the specificmethod has been summarized as CS-
embedded KF (CSKF) algorithm with ℓ

1
-norm constraint in

[15]. It is apparent from (8) that themeasurementmatrix H̃
𝑘
is

state-dependent and can be approximated by Ĥ
𝑘
= sign(x̂𝑇

𝑘
),

where sign(⋅) is the sign function. The pseudo-measurement
equation was interpreted in Bayesian filtering framework,
and a semi-Gaussian prior distribution was discussed in [15].
Furthermore, 𝑅

𝜖
is a tuning parameter which regulates the

tightness of ℓ
1
-norm constraint on the state estimate x̂

𝑘
.

3. System Model and Problem Statement

Consider a WSN configured in the star topology (see Fig-
ure 1 for an example topology). In the star topology, the
communication is established between sensors and a single
central controller, called the fusion center (FC). The FC is
mains powered, while the sensors are battery-powered and
battery replacement or recharging in relatively short intervals
is impractical. The data is exchanged only between the FC
and a sensor. In our application, 𝑀 sensors observe linear
combinations of sparse time-varying signals and send the
observations to a fusion center for signal reconstruction.
Here, our attention is focused on Gaussian state-space mod-
els; that is, for sensor 𝑙, the signal and the observation satisfy
the following discrete-time linear system:

x
𝑘+1

= F
𝑘
x
𝑘
+ w
𝑘
,

𝑦
𝑙,𝑘
= h
𝑙,𝑘
x
𝑘
+ V
𝑙,𝑘
,

(9)

Fusion center
Sensor
Communication flow

Figure 1: Network topology.

where h
𝑙,𝑘

∈ 𝑅
1×𝑁 is the local observation matrix and

x
𝑘
∈ 𝑅
𝑁 denotes time-varying state vector which is sparse

in some transform domain; that is, x
𝑘
= Ψs

𝑘
, where the

majority of components of s
𝑘
are zero andΨ is an appropriate

basis. Without loss of generality, we assume that x
𝑘
itself

is sparse and has at most 𝐾 nonzero components whose
locations are unknown (𝐾 ≪ 𝑁). The fusion center gathers
observations at all 𝑀 sensors in the 𝑀-dimensional global
real-valued vector y

𝑘
and preserves the global observation

matrixH
𝑘
= [ h𝑇
1,𝑘

h𝑇
2,𝑘

⋅ ⋅ ⋅ h𝑇
𝑀,𝑘

]
𝑇
∈ 𝑅
𝑀×𝑁 which satisfies

the so-called restricted isometry property (RIP) imposed in
the compressed sensing. Then, the global observation model
can be described in (2). All the sensors are unconcerned about
the sparsity. Moreover, w

𝑘
and k
𝑘
are uncorrelated Gaussian

white noise with zero mean and covariances W
𝑘
and R

𝑘
,

respectively.
The goal of theWSN is to forman estimate of sparse signal

x
𝑘
at the fusion center. Due to the energy and bandwidth

constraint inWSNs, the observed analogmeasurements need
to be quantized/coded before sending them to the fusion
center. Moreover, the quantized innovation scheme also can
be used. At time 𝑘, the 𝑙th sensor observes a measurement
𝑦
𝑙,𝑘

and computes the innovation 𝑒
𝑙,𝑘
= 𝑦
𝑙,𝑘
− h
𝑙
x̂
𝑘|𝑘−1

, where
h
𝑙
x̂
𝑘|𝑘−1

together with the variance of innovation Cov[𝑒
𝑙,𝑘
]

is received from the fusion center. Then, the innovation 𝑒
𝑙,𝑘

is quantized to 𝑞
𝑙,𝑘

and sent to the fusion center. As the
fusion center has enough energy and enough transmission
bandwidth, the data transmitted by the fusion center do
not need to be quantized. The decision of which sensor
is active at time 𝑘 and consequently which observation
innovation 𝑒

𝑙,𝑘
gets transmitted depends on the underlying

scheduling algorithm.The quantized transmission of 𝑒
𝑙,𝑘
also

implies that 𝑞
𝑙,𝑘
can be viewed as a nonlinear function of the

sensor’s analog observation. The aforementioned procedure
is illustrated in Figure 2.

4. A Particle Filter Algorithm with Coarsely
Quantized Observations

Most of the earlier works for estimation using quantizedmea-
surements concentrated upon using numerical integration
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Figure 2: System model.

methods to approximate the optimal state estimate and make
an assumption that the conditional density is approximately
Gaussian. However, this assumption does not hold for
coarsely quantized measurements, as demonstrated in the
following.

Firstly, suppose {x
𝑘
} and {𝑦

𝑙,𝑘
} are jointly Gaussian; then

it is well known that the probability density of x
𝑛
conditioned

on y
𝑙,0:𝑘

is a Gaussian with the following parameters:

x
𝑘
| y
𝑙,0:𝑘

∼ 𝜂
𝑘
+ Σx𝑘y𝑙,0:𝑘Σ

−1

y𝑙,0:𝑘y𝑙,0:𝑘,

where 𝜂
𝑘
∼N
𝑑
(0,Σx𝑘 − Σx𝑘y𝑙,0:𝑘Σ

−1

y𝑙,0:𝑘Σy𝑙,0:𝑘x𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≜Σ
Δ

x𝑘y𝑙,0:𝑘

),

(10)

where y
𝑙,0:𝑘

≜ {𝑦
𝑙,0
, . . . , 𝑦

𝑙,𝑘
}. When {x

𝑘
} and {𝑦

𝑙,𝑘
} follow the

linear dynamical equations defined in (9), it is well known
that the covariance ΣΔx𝑘y𝑙,0:𝑘 ≜ P

𝑘|𝑘
= Cov[x

𝑘
−𝐸[x
𝑘
| y
𝑙,𝑘
]] can

be propagated by Riccati recursion equation of KF. Let {𝑞
𝑙,𝑘
}

denote the quantized measurements obtained by quantizing
{𝑦
𝑙,𝑘
}; that is, {𝑞

𝑙,𝑘
} is a measurable function of {𝑦

𝑙,0:𝑘
}. It will

be shown that the probability density of x
𝑘
conditioned on the

quantizedmeasurements q
𝑙,0:𝑘

≜ {𝑞
𝑙,0
, . . . , 𝑞

𝑙,𝑘
} has the similar

characterization as (10). The result is stated in the following
lemma.

Lemma 1 (akin to Lemma 3.1 in [2]). The state x
𝑘
conditioned

on the quantized measurements q
𝑙,0:𝑘

can be given by a sum of
two independent random variables as follows:

x
𝑘
| q
𝑙,0:𝑘

∼ 𝜂
𝑘
+ Σx𝑘y𝑙,0:𝑘Σ

−1

y𝑙,0:𝑘 [y𝑙,0:𝑘 | q𝑙,0:𝑘] ,

where 𝜂
𝑘
∼N
𝑑
(0,Σ
Δ

x𝑘y𝑙,0:𝑘) .
(11)

Proof . See Appendix.

It should be noted that the difference between (10) and (11)
is the replacement of y

𝑙,0:𝑘
by random variable y

𝑙,0:𝑘
| q
𝑙,0:𝑘

.
Apparently, y

𝑙,0:𝑘
| q
𝑙,0:𝑘

is a multivariate Gaussian random

variable truncated to lie in the region defined by q
𝑙,0:𝑘

. So, the
covariance of x

𝑘
| q
𝑙,0:𝑘

can be expressed as

Cov [x
𝑘
| q
𝑙,0:𝑘
]

= Σ
Δ

x𝑘y𝑙,0:𝑘

+ Σx𝑘y𝑙,0:𝑘Σ
−1

y𝑙,0:𝑘Cov [y𝑙,0:𝑘 | q𝑙,0:𝑘]Σ
−1

y𝑙,0:𝑘Σy𝑙,0:𝑘x𝑘 .

(12)

Under an environment of high rate quantization, it is
apparent that y

𝑙,0:𝑘
| q
𝑙,0:𝑘

converges to y
𝑙,0:𝑘

and x
𝑘
| q
𝑙,0:𝑘

approximates Gaussian. From Lemma 1, we note that x
𝑘
|

q
𝑙,0:𝑘

is not Gaussian. For nonlinear and non-Gaussian signal
reconstruction problems, a promising approach is particle
filtering [24]. The particle filtering is based on sequential
Monte Carlo methods and the optimal recursive Bayesian
filtering. It uses a set of particles with associated weights to
approximate the posterior distribution. As a bootstrap, the
general shape of standard particle filtering is outlined below.

Algorithm 0 (standard particle filtering (SPF))

(1) Initialization. Initialize the𝑁
𝑝
particles, x𝑖

0|−1
∼ 𝑝(x

0
)

and x
0|−1

= 0.
(2) At time 𝑘, using measurement 𝑞

𝑙,𝑘
= 𝑄(𝑦

𝑙,𝑘
), the

importance weights are calculated as follows: 𝜔𝑖
𝑘
=

𝑝(𝑞
𝑙,𝑘
| x
𝑘
= x𝑖
𝑘|𝑘−1

, q
𝑙,0:𝑘−1

).
(3) Measurement update is given by

x̂𝑝𝑓
𝑘|𝑘
=

𝑁𝑝

∑

𝑖=1

𝜔
𝑖

𝑘
x𝑖
𝑘|𝑘−1

, (13)

where 𝜔𝑖
𝑘
are the normalized weights; that is,

𝜔
𝑖

𝑘
=

𝜔
𝑗

𝑘

∑
𝑁𝑝

𝑖=1
𝜔
𝑖

𝑘

. (14)

(4) Resample 𝑁
𝑝
particles with replacement as follows.

Generate i.i.d. random variables {𝐽
𝜄
}
𝑁𝑝

𝜄=1
such that

𝑃(𝐽
𝜄
= 𝑖) = 𝜔

𝑖

𝑘
:

x𝜄
𝑘|𝑘
= x𝐽𝜄
𝑘
. (15)

(5) For 𝑖 = 1, . . . , 𝑁
𝑝
, predict new particles according to

x𝑗
𝑘+1|𝑘

∼ 𝑝 (x
𝑘+1

| x
𝑘
= x𝑖
𝑘|𝑘
, q
𝑙,0:𝑘
) ,

i.e., x𝑗
𝑘+1|𝑘

= F
𝑘
x𝑖
𝑘|𝑘
.

(16)

(6) Consider x̂𝑝𝑓
𝑘+1|𝑘

= F
𝑘
x̂𝑝𝑓
𝑘|𝑘
. Also, set 𝑘 = 𝑘 + 1 and

iterate from Step (2).

Assume that the channel between the sensor and fusion
center is rate-limited severely, and the sign of innovation
scheme is employed (i.e., 𝑞

𝑙,𝑘
= sign(𝑦

𝑙,𝑘
− �̂�
𝑙,𝑘|𝑘−1

)).
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Obviously, the importance weights are given by 𝜔
𝑖

𝑘
=

Φ(𝑞
𝑙,𝑘
h
𝑙
(x𝑖
𝑘|𝑘−1

− x̂
𝑘|𝑘−1

); 0,R
𝑒𝑘
(𝑙, 𝑙)). We note that 𝐸[x

𝑘
|

q
𝑙,0:𝑘
] = Σx𝑘y𝑙,0:𝑘Σ

−1

y𝑙,0:𝑘𝐸[y𝑙,0:𝑘 | q
𝑙,0:𝑘
]. Therefore, it will be

sufficient to propagate particles that are distributed as 𝜉
𝑘
|

q
𝑙,0:𝑘

, where

𝜉
𝑘
= Σx𝑘y𝑙,0:𝑘Σ

−1

y𝑙,0:𝑘y𝑙,0:𝑘. (17)

In addition, note that the quantizer output, 𝑞
𝑙,𝑘
at time 𝑘,

is calculated by quantizing a scalar valued function of 𝑦
𝑙,𝑘
,

q
𝑙,0:𝑘−1

. So, on receipt of 𝑞
𝑙,𝑘

and by using the previously
received quantized values q

𝑙,0:𝑘−1
, some Borel measurable set

containing 𝑦
𝑙,𝑘
, that is, 𝑦

𝑙,𝑘
∈ S
𝑘,q𝑙,0:𝑘 , can be inferred at the

fusion center.
In order to develop a particle filter to propagate 𝜉

𝑘
| q
𝑙,0:𝑘

,
we need to give the measurement update of the probability
density 𝑝(𝜉

𝑘−1
| q
𝑙,0:𝑘−1

) → 𝑝(𝜉
𝑘−1

| q
𝑙,0:𝑘
) and time update of

the probability density 𝑝(𝜉
𝑘−1

| q
𝑙,0:𝑘
) → 𝑝(𝜉

𝑘
| q
𝑙,0:𝑘
), which

are described by Lemmas 2 and 3, respectively.

Lemma 2. The likelihood ratio between the conditional laws of
𝜉
𝑘−1

| q
𝑙,0:𝑘

and 𝜉
𝑘−1

| q
𝑙,0:𝑘−1

is given by

𝑝 (𝜉
𝑘−1

| q
𝑙,0:𝑘
)

𝑝 (𝜉
𝑘−1

| q
𝑙,0:𝑘−1

)
∝ Φ(S

𝑘,q𝑙,0:𝑘 ; h𝑙,𝑘F𝑘𝜉𝑘−1,R𝑒𝑘 (𝑙, 𝑙)) . (18)

So, if {𝜉𝑖
𝑘−1|𝑘−1

}
𝑖
is a set of particles distributed by the law

𝑝(𝜉
𝑘−1

| q
𝑙,0:𝑘−1

), then, from Lemma 2, a new set of particles
{𝜉
𝜄

𝑘−1|𝑘
}
𝜄
can be generated. For each particle 𝜉𝑖

𝑘−1|𝑘−1
, associate

a weight 𝜔𝑖 = Φ(S
𝑘,q𝑙,0:𝑘 ; h𝑙,𝑘F𝑘𝜉𝑘−1,R𝑒𝑘(𝑙, 𝑙)), generate i.i.d.

random variables {𝐽
𝜄
} such that 𝑃(𝐽

𝜄
= 𝑖) ∝ 𝜔

𝑖, and set
𝜉
𝜄

𝑘−1|𝑘
= 𝜉
𝐽𝜄

𝑘−1|𝑘−1
. This is the standard resampling technique

from Steps (3) and (4) of Algorithm 0 [25]. It should be noted
that this is equivalent to ameasurement update since we update
the conditional law 𝑝(𝜉

𝑘−1
| q
𝑙,0:𝑘−1

) by receiving the new
measurement 𝑞

𝑙,𝑘
.

Lemma 3. The random variable 𝑦
𝑙,𝑘
| 𝜉
𝑘−1
, q
𝑙,0:𝑘

is a truncated
Gaussian and its probability density function can be expressed
as 𝜙(S

𝑘,q𝑙,0:𝑘 ; h𝑙,𝑘F𝑘𝜉𝑘−1,R𝑒𝑘(𝑙, 𝑙)).
This result should be rather obvious. Here, one can observe

that 𝜉
𝑘
is the MMSE estimate of the state x

𝑘
given y

𝑙,0:𝑘
. Since

{x
𝑘
} and {𝑦

𝑙,𝑘
} have the state-space structure, Kalman filter can

be employed to propagate 𝜉
𝑘
recursively as follows:

𝜉
𝑘|𝑘
= F
𝑘
𝜉
𝑘|𝑘−1

+ K
𝑘
(𝑦
𝑙,𝑘
− h
𝑙,𝑘
F
𝑘
𝜉
𝑘−1|𝑘−1

)

K
𝑘
=

P
𝑘|𝑘−1

h𝑇
𝑙,𝑘

h
𝑙,𝑘
P
𝑘|𝑘−1

h𝑇
𝑙,𝑘
+ R
𝑘
(𝑙, 𝑙)

.

(19)

However, the information filter (IF), which utilizes the infor-
mation states and the inverse of covariance rather than the
states and covariance, is the algebraically equivalent form of
Kalman filter. Compared with the KF, the information filter
is computationally simpler and can be easily initialized with
inaccurate a priori knowledge [26]. Moreover, another great
advantage of the information filter is its ability to deal with

multisensor data fusion [27]. The information from different
sensors can be easily fused by simply adding the information
contributions to the information matrix and information state.

Hence, we substitute the information form for (19) as
follows:

Y
𝑘|𝑘
= Y
𝑘|𝑘−1

+I
𝑘

z
𝑘|𝑘
= z
𝑘|𝑘−1

+ i
𝑘
,

(20)

where Y
𝑘|𝑘

= P−1
𝑘|𝑘

and z
𝑘|𝑘

= Y
𝑘|𝑘
𝜉
𝑘|𝑘

are the informa-
tion matrix and information state, respectively. In addition,
the covariance matrix and state can be recovered by using
MATLAB’s leftdivide operator; that is, P

𝑘|𝑘
= Y
𝑘|𝑘
\ I
𝑁
and

𝜉
𝑘|𝑘

= Y
𝑘|𝑘

\ z
𝑘|𝑘
, where I

𝑁
denotes an 𝑁 × 𝑁 identity

matrix.The information state contribution i
𝑘
and its associated

information matrixI
𝑘
are

I
𝑘
= h𝑇
𝑙,𝑘
R−1
𝑘
(𝑙, 𝑙) h

𝑙,𝑘

i
𝑘
= h𝑇
𝑙,𝑘
R−1
𝑘
(𝑙, 𝑙) 𝑦

𝑙,𝑘
.

(21)

Together with (20), Lemma 3 completely describes the
transition from 𝑝(𝜉

𝑘−1
| q
𝑙,0:𝑘
) to 𝑝(𝜉

𝑘
| q
𝑙,0:𝑘
). Following

suit with Step (5) of Algorithm 0, suppose {𝜉𝜄
𝑘−1|𝑘

}
𝜄
is a set

of particles distributed as 𝑝(𝜉
𝑘−1

| q
𝑙,0:𝑘
); then a new set of

particles {𝜉𝑖
𝑘|𝑘
}
𝑖
, which are distributed as 𝑝(𝜉

𝑘
| q
𝑙,0:𝑘
), can be

obtained as follows. For each 𝜉𝜄
𝑘−1|𝑘

, generate {𝑦𝑖
𝑙,𝑘|𝑘
} by the law

described as follows:

𝑝 (𝑦
𝑙,𝑘
| 𝜉
𝜄

𝑘−1|𝑘
, q
𝑙,0:𝑘
)

= 𝜙 (S
𝑘,q𝑙,0:𝑘 ; h𝑙F𝑘𝜉

𝜄

𝑘−1|𝑘
,R
𝑒𝑘
(𝑙, 𝑙)) .

(22)

Also, set z𝑖
𝑘|𝑘
= z𝜄
𝑘|𝑘−1

+ h𝑇
𝑙,𝑘
R−1
𝑘
(𝑙, 𝑙)𝑦
𝑖

𝑙,𝑘|𝑘
.

From the above, the particle filter using coarsely quan-
tized innovation (QPF) has been derived for individual sen-
sor. The extension of multisensor scenario will be described
in Section 6.

5. Sparse Signal Recovery

To ensure that the proposed quantized particle filtering
scheme recovers sparsity pattern of signals, the sparsity
constraints should be imposed on the fused estimate, that
is, (x̂
𝑘|𝑘
). Here, we can make the sparsity constraint enforced

either by reiterating pseudo-measurement update [15] or via
the proposed sparse cubature point filter method.

5.1. Iterative Pseudo-Measurement Update Method. As stated
in Section 2, the sparsity constraint can be imposed at each
time point by bounding the ℓ

1
-norm of the estimate of the

state vector, ‖x̂
𝑘|𝑘
‖
1
≤ 𝜖
𝑘
. This constraint is readily expressed

as a fictitious measurement 0 = ‖x̂
𝑘|𝑘
‖
1
− 𝜖


𝑘
, where 𝜖

𝑘

can be interpreted as a measurement noise [15, 28]. Now
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we construct an auxiliary state-space model of the form as
follows:

𝛾
𝜏+1

= 𝛾
𝜏
,

0 = Ĥ
𝜏
𝛾
𝜏
− 𝜖
𝜏
,

(23)

where 𝛾
1|1

= x̂
𝑘|𝑘

and P𝑝𝑚
1|1

= P
𝑘|𝑘

and Ĥ
𝜏

=

[sign(�̂�
1,𝜏|𝜏

) ⋅ ⋅ ⋅ sign(�̂�
𝑁,𝜏|𝜏

)], 𝜏 = 1, 2, . . . , 𝐿, �̂�
𝑗,𝜏|𝜏

, denotes
the 𝑗th component of the least-mean-square estimate of 𝛾

𝜏

(obtained via Kalman filter). Finally, we reassign x̂
𝑘|𝑘

= �̂�
𝐿|𝐿

and P
𝑘|𝑘

= P𝑝𝑚
𝐿|𝐿

, where the time-horizon of auxiliary state-
space model (23) 𝐿 is chosen such that ‖�̂�

𝐿|𝐿
− �̂�
𝐿−1|𝐿−1

‖
2 is

below some predetermined threshold. This iterative proce-
dure is formalized below:

�̂�
𝜏+1|𝜏+1

= �̂�
𝜏|𝜏
−

P𝑝𝑚
𝜏|𝜏

sign (�̂�
𝜏|𝜏
)

�̂�
𝜏|𝜏

1

sign (�̂�
𝜏|𝜏
)
𝑇

P𝑝𝑚
𝜏|𝜏

sign (�̂�
𝜏|𝜏
) + 𝑅
𝜖

, (24)

P𝑝𝑚
𝜏+1|𝜏+1

= P𝑝𝑚
𝜏|𝜏
−

P𝑝𝑚
𝜏|𝜏

sign (�̂�
𝜏|𝜏
) sign (�̂�

𝜏|𝜏
)
𝑇

P𝑝𝑚
𝜏|𝜏

sign (�̂�
𝜏|𝜏
)
𝑇

P𝑝𝑚
𝜏|𝜏

sign (�̂�
𝜏|𝜏
) + 𝑅
𝜖

. (25)

5.2. Sparse Cubature Point Filter Method. Suppose a novel
refinement method based on cubature Kalman filter (CKF).
Compared to the iterative method described above, the
resulting method is noniterative and easy to implement.

It is well known that unscented Kalman filter (UKF) is
broadly used to handle generalized nonlinear process and
measurement models. It relies on the so-called unscented
transformation to compute posterior statistics of ℏ ∈ 𝑅𝑚 that
are related to x by a nonlinear transformation ℏ = f(x). It
approximates themean and the covariance of ℏ by a weighted
sum of projected sigma points in the 𝑅𝑚 space. However, the
suggested tuning parameter for UKF is 𝜅 = 3 − 𝑁. For a
higher order system, the number of states is far more than
three, so the tuning parameter 𝜅 becomes negative and may
halt the operation. Recently, a more accurate filter, named
cubature Kalman filter, has been proposed for nonlinear state
estimation which is based on the third-degree spherical-
radial cubature rule [29]. According to the cubature rule, the
2𝑁 sample points are chosen as follows:

𝜒
𝑠
= x̂ + √𝑁(Sx)𝑠 , 𝜔

𝑠
=

1

2𝑁
,

𝜒
𝑁+𝑠

= x̂ − √𝑁(Sx)𝑠 , 𝜔
𝑁+𝑠

=
1

2𝑁
,

(26)

where 𝑠 = 1, 2, . . . , 𝑁 and Sx ∈ 𝑅𝑁×𝑁 denotes the square-root
factor of P; that is, P = SxS𝑇x . Now, the mean and covariance
of ℏ = f(x) can be computed by

𝐸 [x] = 1

2𝑁

2𝑁

∑

𝑠=1

𝜒
∗

𝑠
,

Cov [y] = 1

2𝑁

2𝑁

∑

𝑠=1

𝜒
∗

𝑠
𝜒
∗𝑇

𝑠
− x̂x̂𝑇,

(27)

where 𝜒∗
𝑠
= f(𝜒
𝑠
), 𝑠 = 0, 1, . . . , 2𝑁.
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Figure 3: Illustration of the proposed reconstruction algorithm.

By the iterative PM method, it should be noted that
(24) can be seen as the nonlinear evolution process during
which the state gradually becomes sparse. Motivated by this,
we employ CKF to implement the nonlinear refinement
process. Let P

𝑘|𝑘
and 𝜒

𝑠,𝑘|𝑘
be the updated covariance and

the 𝑖th cubature point at time 𝑘, respectively (i.e., after the
measurement update). A set of sparse cubature points at time
𝑘 is thus given by

𝜒
∗

𝑠,𝑘|𝑘
= 𝜒
𝑠,𝑘|𝑘

−

P
𝑘|𝑘

sign (𝜒
𝑠,𝑘|𝑘

)

𝜒
𝑠,𝑘|𝑘

1

sign (𝜒
𝑠,𝑘|𝑘

)
𝑇

P
𝑘|𝑘

sign (𝜒
𝑠,𝑘|𝑘

) + �̌�
𝜖

,

(28)

where �̌�
𝜖
= O (


𝜒
𝑠,𝑘|𝑘



2

2
+ g𝑇P

𝑘|𝑘
g) + 𝑅

𝜖
(29)

for 𝑠 = 1, . . . , 2𝑁, where g ∈ 𝑅𝑁 is a tunable constant vector.
Once the set {𝜒∗

𝑠,𝑘|𝑘
}
2𝑁

𝑠=1
is obtained, its sample mean and

covariance can be computed by (27) directly. For readability,
we defer the proof of (29) to Appendix.

6. The Algorithm

We now summarize the intact algorithm as follows (illus-
trated in Figure 3):

(1) Initialization: at 𝑘 = 0, generate {�̂�
𝑖

0|−1
, �̂�
0|−1

,P
0|−1

};
then compute {ẑ𝑖

0|−1
, ẑ
0|−1

,Y
0|−1

}.
(2) The fusion center transmits R

𝑒𝑘
(𝑙, 𝑙) which denote the

(𝑙, 𝑙) entry of the innovation error covariance matrix
(see (30)) and predicted observation �̂�

𝑙,𝑘
(see (31)) to

the 𝑙th sensor:

R
𝑒𝑘
= H
𝑘
P
𝑘|𝑘−1

H𝑇
𝑘
+ R
𝑘
, (30)

�̂�
𝑙,𝑘|𝑘−1

= h
𝑙,𝑘
�̂�
𝑘|𝑘−1

. (31)
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(3) The 𝑙th sensor computes the quantized innovation
(see (32)) and transmits it to the fusion center

𝑞
𝑙,𝑘
= 𝑄(

𝑦
𝑙,𝑘
− �̂�
𝑙,𝑘|𝑘−1

R
𝑒𝑘
(𝑙, 𝑙)

)R
𝑒𝑘
(𝑙, 𝑙) . (32)

(4) On receipt of quantized innovation (see (32)), the
Borel 𝜎-field S

𝑘,q𝑙,0:𝑘 can be inferred. Then, a set of
observation particles (see (33)) and corresponding
weights (see (34)) are generated by fusion center:

𝑦
𝑖

𝑙,𝑘|𝑘
∼ 𝜙 (S

𝑘,q𝑙,0:𝑘 ; h𝑙,𝑘�̂�
𝑖

𝑘|𝑘−1
,R
𝑒𝑘
(𝑙, 𝑙)) , (33)

𝜔
𝑖

𝑙,𝑘
∼ Φ(S

𝑘,q𝑙,0:𝑘 ; h𝑙,𝑘�̂�
𝑖

𝑘|𝑘−1
,R
𝑒𝑘
(𝑙, 𝑙)) . (34)

(5) Run measurement updates in the information form
(see (35)) using an observation particle y𝑖

𝑘|𝑘
=

[𝑦
𝑖

1,𝑘|𝑘
⋅ ⋅ ⋅ 𝑦
𝑀

𝑙,𝑘|𝑘
]
𝑇 generated in Step (4):

Y
𝑘|𝑘
= Y
𝑘|𝑘−1

+

𝑀

∑

𝑙=1

h𝑇
𝑙,𝑘
R−1
𝑘
(𝑙, 𝑙) h

𝑙,𝑘
,

ẑ𝑖
𝑘|𝑘
= ẑ𝑖
𝑘|𝑘−1

+

𝑀

∑

𝑙=1

h𝑇
𝑙,𝑘
R−1
𝑘
(𝑙, 𝑙) 𝑦

𝑖

𝑙,𝑘|𝑘
.

(35)

(6) Resample the particles by using the normalized
weights.

(7) Compute the fused filtered estimate ẑ
𝑘|𝑘
:

ẑ
𝑘|𝑘
=

𝑁𝑝

∑

𝑖=1

𝜔
𝑖

𝑘
ẑ𝑖
𝑘|𝑘
, (36)

where 𝜔𝑖
𝑘
= ∏
𝑀

𝑙=1
𝜔
𝑖

𝑙,𝑘
.

(8) Impose the sparsity constraint on fused estimate �̂�
𝑘|𝑘

by either (a) or (b):

(a) iterative PM update method;
(b) sparse cubature point filter method.

(9) Determine time updates ẑ𝑖
𝑘+1|𝑘

, ẑ
𝑘+1|𝑘

, Y
𝑘+1|1

, �̂�
𝑙,𝑘+1|𝑘

,
and P

𝑘+1|𝑘
for the next time interval:

ẑ𝑖
𝑘+1|𝑘

= F
𝑘
ẑ𝑖
𝑘|𝑘
,

ẑ
𝑘+1|𝑘

= F
𝑘
ẑ
𝑘|𝑘
,

Y
𝑘+1|𝑘

= [F
𝑘
P
𝑘|𝑘
F𝑇
𝑘
+W
𝑘+1
]
−1

,

�̂�
𝑘+1|𝑘

= Y
𝑘+1|𝑘

\ ẑ
𝑘+1|𝑘

,

P
𝑘+1|𝑘

= Y
𝑘+1|𝑘

\ I
𝑁
.

(37)

Remarks. Here, the use of symbol 𝜉 is just for algorithm
description and also can be interchanged with x. In addition,
it should be noted that the proposed algorithm amounts to
𝑁
𝑝
Kalman filters running in parallel that are driven by the

observations {𝑦𝑖
𝑙,𝑘
}
𝑁𝑝

𝑖=1
.

6.1. Computational Complexity. The complexity of sampling
Step (4) in the general algorithm is 𝑂(𝑁

𝑝
). Measurement

update Step (5) is of the order𝑂(𝑁2𝑀)+𝑂(𝑁𝑁
𝑝
); resampling

Step (7) has a complexity 𝑂(𝑁
𝑝
). Step (9) has complexity

either 𝑂(𝑁2𝐿) or 𝑂(𝑁). The complexity of time update Step
(10) is 𝑂(𝑁2𝑁

𝑝
) + 𝑂(𝑁

2
𝑀).

7. Simulation Results

In this section, the performance of the proposed algo-
rithms is demonstrated by using numerical experiment, in
which sparse signals are reconstructed from a series of
coarsely quantized observations. Without loss of generality,
we attempt to reconstruct a 10-sparse signal sequence {x

𝑘
} in

𝑅
256 and assume that the support set of sequence is constant.

The sparse signal consists of 10 elements that behave as a
random walk process. The driving white noise covariance of
the elements in the support of x

𝑘
is set asW

𝑘
(𝑖, 𝑖) = 0.1

2. This
process can be described as follows:

x
𝑘+1

(𝑖) =
{

{

{

x
𝑘
(𝑖) + w

𝑘
(𝑖) , if 𝑖 ∈ supp (x

𝑘
) ,

0, otherwise,
(38)

where 𝑖 ∼ 𝑈int[1, 256] and x
0
(𝑖) ∼ N(0, 5

2
). Both the

index 𝑖 ∼ supp(x
𝑘
) and the value of x

𝑘
(𝑖) are unknown. The

measurement matrix H ∈ 𝑅
72 × 256 consists of entries that

are sampled according toN(0, 1/72). This type of matrix has
been shown to satisfy the RIP with overwhelming probability
for sufficiently sparse signals. The observation noise covari-
ance is set as R

𝑘
= 0.01

2I
72
. The other parameters are set as

x̂
0|−1

= 0, 𝑁
𝑝
= 150, and 𝐿 = 100. There are two scenarios

considered in the numerical experiment. The first one is
constant support, and the second one is changing support.
In the first scenario, we assume severely limited bandwidth
resources and transmit 1-bit quantized innovations (i.e.,
sign of innovation). We compare the performance of the
proposed algorithms with the scheme considered in [15],
which investigates the scenario where the fusion center has
full innovation (unquantized/uncoded). For convenience, we
refer to the scheme in [15] as CSKF; the proposed QPF with
iterative PM update method and sparse cubature point filter
method are referred to as Algorithms 1 and 2, respectively.

Figure 4 shows how various algorithms track the nonzero
components of the signal. The CSKF algorithm performs
the best since it uses full innovations. Algorithm 1 per-
forms almost as well as the CSKF algorithm. The QPF
clearly performs poorly, while Algorithm 2 performs close to
Algorithm 1 gradually.

Figure 5 gives a comparison of the instantaneous values of
the estimates at time index 𝑘 = 100. All of three algorithms
can correctly identify the nonzero components.

Finally, the error performance of the algorithms is shown
in Figure 6. The normalized RMSE (i.e., ‖x

𝑘
− x̂
𝑘
‖
2
/‖x
𝑘
‖
2
)

is employed to evaluate the performance. As can be seen,
Algorithm 1 performs better thanAlgorithm 2 and very close
to the CSKF before 𝑘 = 40. However, the reconstruction
accuracies of all algorithms almost coincide with each other



8 Mathematical Problems in Engineering

0 20 40 60 80 100
−1

0

1

2

3

4

Time index Time index

Time index Time index

0 20 40 60 80 100
−4

−3

−2

−1

0

1

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

True
CSKF
Algorithm 1

Algorithm 2
QPF

True
CSKF
Algorithm 1

Algorithm 2
QPF

True
CSKF
Algorithm 1

Algorithm 2
QPF

True
CSKF
Algorithm 1

Algorithm 2
QPF

x 7
x 7

7

x 2
7

x 1
4
1

Figure 4: Nonzero component tracking performance.

50 100 150 200 250
−8

−6

−4

−2

0

2

4

6

8

Support index

A
m

pl
itu

de

True
CSKF

Algorithm 1
Algorithm 2

Figure 5: Instantaneous values at 𝑘 = 100.

0 10 20 30 40 50 60 70 80 90 100
Time index

N
or

m
al

iz
ed

 R
M

SE

QPF
CSKF Algorithm 1

Algorithm 2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 6: Normalized RMSE.



Mathematical Problems in Engineering 9

0 20 40 60 80 100
0

1

2

3

4

0 20 40 60 80 100
−1

0

1

2

3

0 20 40 60 80 100 0 20 40 60 80 100

x 4
x 9

1

x 4
2

x 9
8

−0.5

0

0.5

1

1.5

2

−1.5

−1

−0.5

0

0.5

Time index

Time index

Time index

Time index

True
Algorithm 1
Algorithm 2

True
Algorithm 1
Algorithm 2

True
Algorithm 1
Algorithm 2

True
Algorithm 1
Algorithm 2

Figure 7: Support change tracking.

after roughly 𝑘 = 45. It is noted that the performance is
achieved with far fewer measurements than the unknowns
(<30%). In the example, the complexity of Algorithm 2 is
dominated by𝑂(𝑁2𝑀) = 4.915 × 10

6, which is of the same
order as that of QPF, while the complexity of Algorithm 1 is
dominated by𝑂(𝑁2𝐿) = 6.553 × 10

6. It is maybe preferable
to employ Algorithm 2.

In the second scenario, we verify the effectiveness of
the proposed algorithm for sparse signal with slow change
support set. The simulation parameters are set as 𝑁 = 160,
𝑀 = 40, W

𝑘
(𝑖, 𝑖) = 0.01

2, and R
𝑘
= 0.25

2I
40

and the
others are the same as the first scenario. We assume that
there are only 𝐾 = 4 possible nonzero components and that
the actual number of the nonzero elements may change over
time. In particular, the component x{4} is nonzero for the
entire measurement interval, x{42} becomes zero at 𝑘 = 61,
x{91} is nonzero from 𝑘 = 41 onwards, and x{98} is nonzero
between 𝑘 = 41 and 𝑘 = 61. All the other components remain
zero throughout the considered time interval. Figure 7 shows
the estimator performance compared with the actual time

variations of the 4 nonzero components. As can be seen, the
algorithms have good performance for tracking the support
changed slowly.

In addition, we study the relationship between quanti-
zation bits and accuracy of reconstruction. Figure 8 shows
normalized RMSE versus number of quantization bits when
𝑘 = 100. The performance gets better but gains little as the
quantization bits increase. However, more quantization bits
will bring greater overheads of communication, computa-
tion, and storage, resulting in more energy consumption of
sensors. For this reason, 1-bit quantization scheme has been
employed in our algorithms and is enough to guarantee the
accuracy of reconstruction.

Moreover, it is noted that the information filter is
employed to propagate the particles in our algorithms. Com-
pared with KF, apart from the ability to deal with multisensor
fusion, the IF also has an advantage over numerical stability.
In Figure 9, we take Algorithm 1, for example, and give
the comparison of two cases whether Algorithm 1 is with
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KF or with IF. As can be seen, Algorithm 1-IF gives good
performance, but Algorithm 1-KF diverges.

8. Conclusions

The algorithms for reconstructing time-varying sparse sig-
nals under communication constraints have been proposed
in this paper. For severely bandwidth constrained (1-bit) sce-
narios, a particle filter algorithm, based on coarsely quantized
innovation, is proposed. To recover the sparsity pattern, the
algorithm enforces the sparsity constraint on fused estimate
by either iterative PM update method or sparse cubature
point filter method. Compared with iterative PM update
method, the sparse cubature point filter method is preferable
due to the comparable performance and lower complexity.
A numerical example demonstrated that the proposed algo-
rithm is effective with a far smaller number of measurements

than the size of the state vector. This is very promising in
the WSNs with energy constraint, and the lifetime of WSNs
can be prolonged. Nevertheless, the algorithm presented in
this paper is only suitable for the time-varying sparse signal
with an invariant or slowly changing support set, and the
more generalmethods should be combinedwith a support set
estimator which will be discussed in our future work further.

Appendix

Proof. In order to prove Lemma 1, we will show that the
moment generating function (MGF) of x

𝑘
| q
𝑙,0:𝑘

can be
regarded as the product of two MGFs corresponding to the
two random variables in (11). Recall that the MGF of a 𝑑-
dimensional r.v. a is expressed as𝑀a(𝑠) = 𝐸[𝑒

𝑠
𝑇a
], ∀𝑠 ∈ 𝑅

𝑑.
Note that

𝑝 (x
𝑘
| q
𝑙,0:𝑘
) = ∫𝑝 (x

𝑘
, y
𝑙,0:𝑘

| q
𝑙,0:𝑘
) 𝑑y
𝑙,0:𝑘

(A.1)

and𝑝(x
𝑘
| y
𝑙,0:𝑘
, q
𝑙,0:𝑘
) = 𝑝(x

𝑘
| y
𝑙,0:𝑘
), so theMGFof x

𝑘
| q
𝑙,0:𝑘

can be given by

𝐸 [𝑒
𝑠
𝑇x𝑘 | q

𝑙,0:𝑘
]

= ∫ 𝑒
𝑠
𝑇x𝑘𝑝 (x

𝑘
| y
𝑙,0:𝑘
) 𝑝 (y
𝑙,0:𝑘

| q
𝑙,0:𝑘
) 𝑑x
𝑘
𝑑y
𝑙,0:𝑘

= 𝑒
(1/2)𝑠

𝑇
Σ
Δ

x𝑘y𝑙,0:𝑘
𝑠
∫ 𝑒
𝑠
𝑇
Σx𝑘y𝑙,0:𝑘Σ

−1

y𝑙,0:𝑘
y𝑙,0:𝑘

𝑝 (y
𝑙,0:𝑘

| q
𝑙,0:𝑘
) 𝑑y
𝑙,0:𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

MGF of Σx𝑘y𝑙,0:𝑘Σ
−1

y𝑙,0:𝑘
y𝑙,0:𝑘|q𝑙,0:𝑘

⇒

𝑀x𝑘|q𝑙,0:𝑘 (𝑠) = 𝑀𝜂𝑘 (𝑠)𝑀y𝑙,0:𝑘|q𝑙,0:𝑘 (Σ
−1

y𝑙,0:𝑘Σy𝑙,0:𝑘x𝑘𝑠) ,

(A.2)

where 𝜂
𝑘
∼ N
𝑑
(0,Σ
Δ

x𝑘y𝑙,0:𝑘). Here, we used the fact that x
𝑘
|

y
𝑙,0:𝑘

∼ N
𝑑
(Σx𝑘y𝑙,0:𝑘Σ

−1

y𝑙,0:𝑘 ,Σ
Δ

x𝑘y𝑙,0:𝑘) and𝑀b(c𝑡) = 𝑀cb(𝑡). Then,
the result should be rather obvious from (A.2).

Proof. Consider the pseudo-measurement equation

0 =
x𝑘
1 − 𝜖



𝑘
. (A.3)

As x
𝑘
is unknown, the relation x

𝑘
= x̂
𝑘
+ x̃
𝑘
can be used to get

0 = [sign (x
𝑘
)]
𝑇 x
𝑘
− 𝜖


𝑘
= sign (x̂

𝑘
)
𝑇

+ g𝑇x
𝑘
− 𝜖


𝑘
, (A.4)

where ‖g‖ ≤ 𝑐 almost surely. Equation (A.4) is the approx-
imate pseudo-measurement with an observation noise �̌�

𝑘
=

g𝑇x
𝑘
−𝜖


𝑘
. Note that𝐸[𝜖

𝑘
] = 0 and𝐸[𝜖2

𝑘
] = 𝑅


𝜖
. Since themean

of �̌�
𝑘
cannot be obtained easily, we approximate the second

moment

𝐸 [ ̌𝜖
2

𝑘
] = 𝐸 [g𝑇 (x̂

𝑘
+ x̃
𝑘
) (x̂
𝑘
+ x̃
𝑘
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𝑘
] + 𝑅


𝜖
. (A.5)

Here, we used the fact that x̂
𝑘
and 𝜖



𝑘
are statistically

independent. Substituting P
𝑘|𝑘

obtained by KF for the error
covariance in (A.5), we can get

�̌�
𝜖
= 𝐸 [ ̌𝜖

2

𝑘
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𝑘
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