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We deal with a class of problems whose objective functions are compositions of nonconvex nonsmooth functions, which has a
wide range of applications in signal/image processing. We introduce a new auxiliary variable, and an efficient general proximal
alternatingminimization algorithm is proposed.Thismethod solves a class of nonconvex nonsmooth problems through alternating
minimization. We give a brilliant systematic analysis to guarantee the convergence of the algorithm. Simulation results and the
comparison with two other existing algorithms for 1D total variation denoising validate the efficiency of the proposed approach.
The algorithm does contribute to the analysis and applications of a wide class of nonconvex nonsmooth problems.

1. Introduction

In the past few years, increasing attentions have been paid to
convex optimization problems, which consist of minimizing
a sum of convex or smooth functions [1–3]. Each of the
objective functions enjoys several appreciated properties, like
strong convexity, Lipschitz continuity, or other convex condi-
tions. These properties can usually lead to great advantage in
computing. Meanwhile works on such convex problems have
provided a sound theoretic foundation. Both of the theoretic
and computing advantages created many benefits to practical
use. It is particularly noticeable in signal/image processing,
machine learning, computer vision, and so forth. However,
what deserves the special attention is the fact that the convex
or smooth models are always approximations of nonconvex
nonsmooth problems. For example, nonconvex ℓ0-norm in
sparse recovery problems is routinely relaxed as convex ℓ1-
norm, and many related works were developed [4, 5].
Although the difference between the nonconvex nonsmooth
problem and its approximations vanishes in certain case, it is
nonnegligible sometimes, like the problem in paper [6]. On
the other hand, excellent numerical performances of various

nonconvex nonsmooth algorithms inspire researchers to
continue on their directions to the nonconvex methodology.

Nonconvex and nonsmooth convex optimization prob-
lems are ubiquitous in different disciplines, including signal
denoising [7], image deconvolution [8, 9], or other ill-posed
inverse problems [10], to name a few. In this paper, we
aim at solving the following generic nonconvex nonsmooth
optimization problem, formulated in real Hilbert spaces X
and {U𝑚}𝑚=1,2,...,𝑀, for some 𝑀 ∈ N+:�̂� ∈ argmin

𝑥
{𝑃 (𝑥) fl 𝑓 (𝑥) + 𝑀∑

𝑚=1

ℎ𝑚 (𝐿𝑚𝑥)} , (1)

where (i)𝑓(⋅) : X→ R∪{+∞} and ℎ𝑚(⋅) : U𝑚 → R∪{+∞}
are proper lower semicontinuous functions; (ii) the operators𝐿𝑚 : X → U𝑚 are linear; and (iii) the set of minimizers is
supposed to be nonempty.

It is quite meaningful to find a common convergent
point in the optimal set of sums of simple functions [2,
11]. Insightful studies for nonconvex problems are presented
in [12, 13]: if nonconvex structured functions of the type𝐿 = 𝑓(𝑥) + 𝑄(𝑥, 𝑦) + 𝑔(𝑦) has the Kurdyka-Lojasiewicz
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(K-L) property, then each bounded sequence generated by a
proximal alternating minimization algorithm converges to a
critical point of 𝐿. Our main work is mainly based on this
convergence result and introduces a generic proximal mini-
mization method for the general model (1). Note that if some
of the functions in (1) are zeros and linear operator 𝐿𝑚 is
the identity 𝐼𝑑, the model would reduce to common one
in compressed sensing [14]. The model we consider is the
generalization of many application problems, such as the
common “lasso” problem [15], and composition in papers
[2, 16]. Here, we provide a few of the typical examples.

Example 1 (1D total variationminimization [7]). In this appli-
cation, we need to solve the following denoising problem:�̂� ∈ argmin

𝑥∈X
{𝑥 − 𝑦22 + 𝜆 ‖𝐷𝑥‖0} , (2)

where 𝑦 ∈ X is the input signal, X = R𝑛, ‖𝑧‖0 counts the
number of nonzero elements of 𝑧, and 𝐷𝑥 fl (𝑥2 − 𝑥1, 𝑥3 −𝑥2, . . . , 𝑥𝑛−𝑥𝑛−1) is defined as derivation of original signal 𝑥.

Noise removal is the basis and requisite of other sub-
sequential applications and algorithm dealing with total
variation (TV) regularizer; this regularizer is of great impor-
tance since it can efficiently deal with noisy signals which
have sparse derivatives (or gradients), for instance, piecewise
constant (PWC) signal that has flat sections with a number
of abrupt jumps. The 1D total variation minimization can be
extended to related 2-dimension image restoration.

Example 2 (group lasso [17]). In this application, one needs
to solve �̂� ∈ arg min

𝑥∈R𝑁
{12 𝐴𝑥 − 𝑦22 + 𝜆 𝑛∑𝑖=1 𝑥𝑖2} , (3)

where 𝑥𝑇 = (𝑥𝑇1 , 𝑥𝑇2 , . . . , 𝑥𝑇𝑛 ), 𝑥𝑖 ∈ R𝑝𝑖 are the decision block
variables and ∑𝑛𝑖=1 𝑝𝑖 = 𝑁 with 𝑝𝑖 is the corresponding
block size.

In the past few years, researches on structural sparse sig-
nal recovery have been very popular and group lasso is typical
one of those important problems. It attracts many attentions
in face recognition, multiband signal processing, and other
machine learning problems. The general case is also applied
to many other kinds of structural sparse recovery problems,
like 𝑙12-minimization [18] and block sparse recovery [19].

Example 3 (image deconvolution [20]). In this application,
one needs to solve�̂� ∈ argmin

𝑋∈X
{‖A𝑋 − 𝑌‖2𝐹 + 𝜆TV (𝑋)} , (4)

whereX = R𝑚×𝑛 and ‖𝑋‖𝐹 = [∑𝑖∑𝑗(𝑋2𝑖,𝑗)]1/2. The discrete
total variation, denoted by TV in (4), is defined as follows.
We define 𝑟 × 𝑟 matrix:

𝐷𝑟 fl( 1 −1−1 1
d d−1 1 ), (5)

and the discrete gradient operator 𝐷 : X→ X2 is defined as

𝐷𝑋𝑖,𝑗 = (𝑑𝑥𝑖,𝑗, 𝑑𝑦𝑖,𝑗) , 𝑑𝑥 = 𝐷𝑚𝑋, 𝑑𝑦 = 𝑋𝐷𝑇𝑛 . (6)

Then we have TV(𝑋) = ‖𝐷𝑋‖1,2 = ∑𝑖∑𝑗√|𝑑𝑥𝑖,𝑗|2 + |𝑑𝑦𝑖,𝑗|2.
The concept of deconvolution finds lots of applications

in signal processing and image processing [21–23]. In this
paper, it would just be considered as a specific case to problem
(1), although paying attention to this problem (4) with other
details is equally important.

The main difficulty in solving (1) lies in that 𝑥 is coupled
by 𝐿𝑚. In order to surmount the computation barrier, we
introduce a new auxiliary variable and split the problem
into two sequences of subproblems, minutely described in
the next section. Then our problem is an extension of
problem given in paper [12]. The paper aims at giving a
generic proximal alternating minimization method for a
class of nonconvex nonsmooth problem (1), to be applied
in many fields. The motivation is introduction of auxiliary
variable and splitting the original problem into two kinds of
easier nonconvex nonsmooth subproblems. Recent studies
often give the regularization ℎ𝑚 a reasonable assumption;
namely, the proximal map of ℎ𝑚 is easy to calculate. Then
convergence analysis can be extended by the context of the
present work [12]. In the last section, we show application to
nonconvex nonsmooth 1D total variation signal denoising.

2. Algorithm

In order to reduce computation complexity caused by com-
posite of nonconvex function ℎ𝑚(⋅) and operator 𝐿𝑚, we
introduce a sequence of auxiliary variables {𝜃𝑚}𝑀𝑚=1. Then,
the problem in (1) can be represented equivalently as follows:
for each 𝑚 ∈ {1, . . . ,𝑀}(�̂�, �̂�𝑚) ∈ argmin

𝑥,𝜃𝑚
{𝑃𝑚 (𝑥, 𝜃𝑚) fl 𝑓 (𝑥) + 𝑄𝑚 (𝑥, 𝜃𝑚)+ 𝐻 (𝜃)} , (7)

where {𝜃𝑚}𝑀𝑚=1 are represented as a concise whole 𝜃 and

𝑄 (𝑥, 𝜃) fl 𝑀∑
𝑚=1

𝜏𝑚2 𝜃𝑚 − 𝐿𝑚𝑥22 ;𝑄𝑚 (𝑥, 𝜃𝑚) fl 𝜏𝑚2 𝜃𝑚 − 𝐿𝑚𝑥22 ;𝐻 (𝜃) fl 𝑀∑
𝑚=1

ℎ𝑚 (𝜃𝑚) .
(8)

The last term ∑𝑀𝑚=1(𝜏𝑚/2)‖𝜃𝑚 − 𝐿𝑚𝑥‖22 ensures the high
similarity between 𝜃𝑚 and 𝐿𝑚𝑥 (𝑚 = 1, . . . ,𝑀). And this
quadratic functionminimization can be easily solved. Hence,
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the original complex composite is split into two simpler
objectives.

Apparently, now this form could be solved by a series
of alternating proximal minimization methods [12]: for
each 𝑚 ∈ {1, . . . ,𝑀},
𝑥𝑘+1 ∈ argmin

𝑢
{𝑓 (𝑢) + 𝑄 (𝑢, 𝜃𝑘) + 12𝜁𝑘 𝑢 − 𝑥𝑘22} ; (9a)

𝜃𝑘+1𝑚 ∈ argmin
V𝑚
{𝑄𝑚 (𝑥𝑘+1, V𝑚) + ℎ𝑚 (V𝑚)

+ 12𝜇𝑘 V𝑚 − 𝜃𝑘𝑚22} . (9b)

We then make the following assumptions about (9a) and
(9b):

inf
X×∏𝑀𝑚=1U𝑚

𝑓 (𝑥) + 𝐻 (𝜃) + 𝑄 (𝑥, 𝜃) > −∞;𝑓 (𝑥) + 𝐻(𝜃0) + 𝑄 (𝑥, 𝜃0) is proper;
for some positive 0 < 𝑟− < 𝑟+, the stepsize sequences satisfy 𝑟− < 𝜁𝑘, 𝜇𝑘 < 𝑟+ ∀𝑘 ≥ 0. (H)

The assumption is weakly required and can be easily meet.
In the first section, the given three examples all satisfy the
first two conditions, and the third condition holds when
proper parameters are set in practical tests. Besides, each of
the proximal terms (1/2𝜁𝑘)‖𝑢 − 𝑥𝑘‖22 and (1/2𝜇𝑘)‖V𝑚 − 𝜃𝑘𝑚‖22
in (9a) and (9b) is used to meet the decrease condition of
objective function. If we omit them, the algorithm can also
perform well but can not build direct general convergence
theories. At that time, it reduces to alternating projection
minimization method.

3. Convergence Results

In fact, now the problem is a proximal alternating mini-
mization case, whose global convergence has been detailedly
analyzed in paper [12]. The paper mainly concentrates on
theory analysis of problem 𝐿(𝑥, 𝑦) = 𝑓(𝑥) + 𝑄(𝑥, 𝑦) +𝑔(𝑦) with the following form:𝑥𝑘+1∈ argmin

𝑥
{𝐿 (𝑥, 𝑦𝑘) + 12𝜁𝑘 𝑥 − 𝑥𝑘22 , 𝑥 ∈ R𝑚} ,𝑦𝑘+1∈ argmin

𝑦
{𝐿 (𝑥𝑘+1, 𝑦) + 12𝜇𝑘 𝑦 − 𝑦𝑘22 , 𝑦 ∈ R𝑛} .

(10)

And if 𝐿 has the Kurdyka-Lojasiewicz (K-L) property, then
each bounded sequence generated by the above algorithm
converges to a critical point of 𝐿. Even convergence rate
of the algorithm can be computed, which depends on the
geometrical properties of the function 𝐿 around its critical
points. It is remarkable that assumption with K-L property
can be verified in many common functions.

The convergence difference between algorithm of paper
[12] and ours is that our minimization objective is not two
variables (𝑥, 𝑦) but 𝑥 and a sequence of variables {𝜃𝑚}𝑀𝑚=1.
In this section, our work is to give similar consequence of
algorithms (9a) and (9b).

3.1. Preliminary

Definition 4 (subdifferentials [24, 25]). Let 𝑔 : R𝑁 → (−∞,+∞] be a proper and lower semicontinuous function.
(1) For a given 𝑥 ∈ dom(𝑔), the Fréchet subdifferential

of 𝑔 at 𝑥, written as �̂�𝑔(𝑥), is the set of all vectors 𝑢 ∈
R𝑁 which satisfy

lim
𝑦 ̸=𝑥

inf
𝑦→𝑥

𝐽 (𝑦) − 𝐽 (𝑥) − ⟨𝑢, 𝑦 − 𝑥⟩𝑦 − 𝑥2 ≥ 0. (11)

When 𝑥 ∉ dom(𝑔), we set �̂�𝐽(𝑥) = 0.
(2) The “limiting” subdifferential, or simply the subdif-

ferential, of 𝐽 at 𝑥 ∈ R𝑁, written as 𝜕𝑔(𝑥), is defined
through the following closure process:𝜕𝑔 (𝑥) fl {𝑢 ∈ R𝑁 : ∃𝑥𝑘 → 𝑥, 𝑔 (𝑥𝑘) → 𝑔 (𝑥) , 𝑢𝑘∈ �̂�𝑔 (𝑥𝑘) → 𝑢 as 𝑘 → ∞} . (12)

A necessary condition for 𝑧 ∈ X to be a minimizer
of 𝑔 is

0 ∈ 𝜕𝑔 (𝑥) . (13)
A point that satisfies (13) is called limiting-critical or simply
critical point. The set of critical points of 𝑔 is denoted
by crit𝑔.

Being given (𝑥0, 𝜃0) ∈ X×∏𝑀𝑚=1U𝑚, recall that sequence
generated by (9a) and (9b) is of the form (𝑥𝑘, 𝜃𝑘) → (𝑥𝑘+1,𝜃𝑘) → (𝑥𝑘+1, 𝜃𝑘+1). According to the basic properties of 𝑃, we
can deduce a few important points.

Corollary 5. Assume sequences (𝑥𝑘, 𝜃𝑘) are generated by (9a)
and (9b) under assumption (H), and then they are well
defined. Moreover, consider the following:

(i) The following estimate holds:𝑃 (𝑥𝑘, 𝜃𝑘) + 12𝜁𝑘 𝑥𝑘 − 𝑥𝑘−122 + 𝑀∑𝑚=1 12𝜇𝑘 𝜃𝑘𝑚 − 𝜃𝑘−1𝑚 22⩽ 𝑃 (𝑥𝑘−1, 𝜃𝑘−1) , ∀𝑘 ≥ 1; (14)

hence 𝐿(𝑥𝑘, 𝜃𝑘) dose not increase.
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(ii)
∞∑
𝑘=1

𝑥𝑘 − 𝑥𝑘−122 + 𝑀∑
𝑚=1

𝜃𝑘𝑚 − 𝜃𝑘−1𝑚 22 < ∞; (15)

hence lim𝑘→∞‖𝑥𝑘 − 𝑥𝑘−1‖2 + ∑𝑀𝑚=1 ‖𝜃𝑘𝑚 − 𝜃𝑘−1𝑚 ‖2 = 0.
(iii) For 𝑘 ≥ 1, we have( 𝑀∑
𝑚=1

(∇𝑥𝑄𝑚 (𝑥𝑘, 𝜃𝑘𝑚) − ∇𝑥𝑄𝑚 (𝑥𝑘, 𝜃𝑘−1𝑚 )) , 0)
− ( 1𝜁𝑘−1 (𝑥𝑘 − 𝑥𝑘−1) , 𝑀∏𝑚=1 1𝜇𝑘−1 (𝜃𝑘𝑚 − 𝜃𝑘−1𝑚 ))∈ 𝜕𝑃 (𝑥𝑘, 𝜃𝑘) ,

(16)

where above 0 is a multivector with the same dimension
of ∏𝑀𝑚=1𝜃𝑚.

Besides, for all bounded subsequence (𝑥𝑘𝑗 , 𝜃𝑘𝑗) of (𝑥𝑘, 𝜃𝑘),𝑑𝑖𝑠𝑡(0, 𝜕𝑃(𝑥𝑘𝑗 , 𝜃𝑘𝑗)) → 0, 𝑘𝑗 → +∞.
Corollary 6. Assume that (H) hold. Let (𝑥𝑘, 𝜃𝑘) be a
sequence complying with (9a) and (9b). Let 𝜔(𝑥0, 𝜃0) denote
the set (possibly empty) of its limit points. Then

(i) if (𝑥𝑘, 𝜃𝑘) is bounded, then 𝜔(𝑥0, 𝜃0) is a nonempty
compact connected set and dist((𝑥𝑘, 𝜃𝑘), 𝜔(𝑥0, 𝜃0)) →0 as 𝑘 → +∞,

(ii) 𝜔(𝑥0, 𝜃0) ⊂ crit𝑃,
(iii) 𝑃 is finite and constant on 𝜔(𝑥0, 𝑦0), equal

to inf𝑘∈N𝑃(𝑥𝑘, 𝑦𝑘) = lim𝑘→+∞𝑃(𝑥𝑘, 𝜃𝑘).
The above proposition gives some convergence results

about sequences generated by (7), (9a), and (9b). Point (ii)
guarantees that all limiting points produced by (9a) and (9b)
must be limiting-critical points. And (iii) gives the point that
objective 𝑃 converges to the finite and constant.

3.2. Convergence to a Critical Point. This part gives more
precise convergence analysis about the proximal algorithms
(9a) and (9b).

Let 𝑓 : X→ R∪{+∞} be a proper lower semicontinuous
function. For −∞ < 𝜂1 < 𝜂2 ≤ +∞, let us set [𝜂1 < 𝑓 <𝜂2] = {𝑥 ∈ X : 1 < 𝑓(𝑥) < 2}. Then we give an important
definition in the optimization theory.

Definition 7 (K-L property [12]). The function 𝑓 is said to
have the K-L property at 𝑥 ∈ dom 𝜕𝑓 if there exist 𝜂 ∈(0, +∞], a neighborhood 𝑈 of 𝑥,and a continuous concave
function 𝜙 : [0, 𝜂) → R+ such that

(i) 𝜙(0) = 0;
(ii) 𝜙 is 𝐶1 on (0, 𝜂);
(iii) for all 𝑠 ∈ (0, 𝜂), 𝜙(𝑠) > 0;
(iv) for all 𝑥 ∈ 𝑈 ∩ [𝑓(𝑥) < 𝑓 < 𝑓(𝑥) + 𝜂], the Kurdyka-

Lojasiewicz inequality holds:𝜙 (𝑓 (𝑥) − 𝑓 (𝑥)) dist (0, 𝜕𝑓 (𝑥)) ≥ 1. (17)

If we justify that a function has K-L property, we should
estimate 𝜂, 𝑈, 𝜙. Many convex functions, for instance, satisfy
the above property with 𝑈 = R𝑛 and 𝜂 = +∞. Besides, a lot
of nonconvex examples are also given in paper [12].

Below, we will give convergence analysis to critical point.

Theorem 8 (convergence). Assume that 𝑃 satisfies (H) and
has the Kurdyka-Lojasiewicz property at each point of the
domain of 𝑓. Then

(i) either ‖(𝑥𝑘, 𝜃𝑘)‖2 tends to infinity,
(ii) or (𝑥𝑘 − 𝑥𝑘−1, 𝜃𝑘 − 𝜃𝑘−1) is 𝑙1, that is,
+∞∑
𝑘=1

(𝑥𝑘 − 𝑥𝑘−12 + 𝑀∑
𝑚=1

𝜃𝑘𝑚 − 𝜃𝑘−1𝑚 2) < +∞, (18)

and, as a consequence, (𝑥𝑘, 𝜃𝑘) converges to a critical point
of 𝑃.

The above theorem’s proof is based on the same analysis
process in paper [12], so here we just present the convergence
results but omit their proofs.

4. Application to 1D TV Denoising

In practical scientific and engineering contexts, noise removal
is the basis and requisite of other subsequential applications.
It has received extensive attentions. A range of computa-
tional algorithms have been proposed to solve the denoising
problem [26–28]. Among these solvers, total variation (TV)
regularizer is of great importance since it can efficiently deal
with noisy signals that have sparse derivatives (or gradients).
For instance, piecewise constant (PWC) [29] signal with
noise, whose derivative is sparse relative to signal dimension,
could be denoised by powerful TV denoising method.

In 1D TV denoising problem [10], one needs to solve
model (2). TV denoisingminimizes a composite of two parts.
The first part is to keep the error, between the observed data
and the original, as small as possible.The second is devoted to
minimizing the sparsity of the gradients. Usually, denoising
model is defined as one combination of a quadratic data
fidelity term and a convex regularization term or a differential
regularization, for example, convex but nonsmooth problem
[30]

argmin
𝑥∈R𝑛

{𝑦 − 𝑥22 + 𝜆 ‖𝐷𝑥‖1 : 𝑥 ∈ R𝑛} (19)

or differential but nonconvex problem [7]

argmin
𝑥∈R𝑛

{𝑦 − 𝑥22 + 𝜆∑
𝑖

1𝑎 log (1 + 𝑎 [𝐷𝑥]𝑖) : 𝑥
∈ R𝑛} , 𝑎 > 0, (20)

where ‖𝑥‖1 = ∑𝑛𝑖=1 |𝑥𝑖|. Exact solution of the above two types
can be obtained by very fast direct algorithms [7, 30]. In fact,
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Figure 1: Total variation denoising with nonconvex nonsmooth ℓ0 penalty (RMSE = 0.1709), compared with convex ℓ1 penalty [21] (RMSE
= 0.2720) and smooth log penalty [7] (RMSE = 0.2611).

convex ℓ1-norm is the replacement of nonconvex ℓ0-norm in
(19) since convex optimization techniques have been deeply
studied. The latter, like logarithmic penalty and arctangent
penalty, can be solved byMMupdate iteration, in which total
objective function (including data fidelity and regularization
terms) should meet strictly convex condition.

In this test, we apply our algorithms (9a) and (9b) to this
example. Auxiliary variable 𝜃 is introduced to reduce com-
plexity of the composition ‖𝐷𝑥‖0. Then (2) is represented as

arg min
𝑥∈R𝑛,𝜃∈R𝑛−1

{𝑥 − 𝑦22 + 𝜏2 ‖𝐷𝑥 − 𝜃‖22 + 𝜆 ‖𝜃‖0} . (21)

Apparently this problem satisfies the convergence conditions
[12]. Concrete steps by algorithms (9a) and (9b) are shown in𝑥𝑘+1 ∈ argmin

𝑢∈R𝑛
{𝑢 − 𝑦22 + 𝜏2 𝐷𝑢 − 𝜃𝑘22+ 12𝜁𝑘 𝑢 − 𝑥𝑘22} ; (22a)

𝜃𝑘+1 ∈ arg min
V∈R𝑛−1

{𝜆 ‖V‖0 + 𝜏2 𝐷𝑥𝑘+1 − V22+ 12𝜇𝑘 V − 𝜃𝑘22} . (22b)

In fact, when tests 𝜁𝑘 and 𝜇𝑘 can be set as very large
constants, the last proximal terms (1/2𝜁𝑘)‖𝑢 − 𝑥𝑘‖22 and(1/2𝜇𝑘)‖V − 𝜃𝑘‖22 in each computing step could be negligible.
Hence, the computation of (22a) and (22b) is as follows.

Computation of (22a). The former step (22a) is a quadratic
function and could be computed through many techniques,
like gradient descent.

Computation of (22b). Apparently, the latter (22b) could
be rewritten as a proximal operator of function 𝑔(𝜃) [12];
that is, prox𝜆/𝜏‖𝜃‖0(𝐷𝑥𝑘+1). Consider the proximal operator
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prox𝜆/𝜏‖⋅‖0(𝑢). When 𝑛 = 1, ℓ0 norm is reduced to | ⋅ |0, where
one easily establishes that

prox𝜆/𝜏|⋅|0 (𝑢) = {{{{{{{{{{{{{
𝑢, if |𝑢| > √2𝜆𝜏 ;{0, 𝑢} , if |𝑢| = √2𝜆𝜏 ;0, otherwise. (23)

When 𝑛 is arbitrary, trivial algebraic manipulations are
given, with 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) ∈ R𝑛:[prox𝜆/𝜏‖⋅‖0 (𝑢)]𝑖 = prox𝜆/𝜏|⋅|0 (𝑢𝑖) , (24)

and thus prox𝜆/𝜏‖𝜃‖0(𝐷𝑥𝑘+1) is a perfectly known object.
Total variation denoising examples with three convex

and nonconvex regularization instances (the two others are
convex and nonconvex but smooth algorithms in [7, 30],
resp.) are figured in Figure 1. Original piece signal data 𝑥0 ∈
R𝑛 with length 𝑛 = 256 is obtained with MakeSignal in
paper [7]. The noisy data is obtained using additive white
Gaussian noise (AWGN) (𝜎 = 0.5). For both convex and
nonconvex cases, we set 𝜆 = √𝑛𝜎/4, consistent with the
range suggested in [30] for standard (convex) TV denoising
and nonconvexity parameter is set to its maximal value, 𝑎 =1/(4𝜆) default in [7]. These settings could lead to the best
denoising result in their papers. All the other settings are
consistent with paper [7]. The maximum iteration numbers
are all 500. All the codes are tested in the same computer.

According to the comparison between our algorithm
for TV-ℓ0 norm and the proposed algorithms in papers
[7, 30], our algorithm has better result with smaller
Root-Mean-Square-Error (RMSE), where RMSE(𝑥) fl√(1/𝑛)∑𝑛𝑖=1 ‖𝑥𝑖 − 𝑥0𝑖 ‖22. Referring to Figure 1, the best RMSE
results for 1D TV denoising with convex ℓ1 penalty [21] and
smooth log penalty [7] are 0.2720 and 0.2611, respectively.
And ours is 0.1709, much better than the convex and smooth
cases.

5. Conclusion

Nonconvex nonsmooth algorithm finds many interesting
applications in many fields. In this paper, we give a general
proximal alternating minimization method for a kind of
nonconvex nonsmooth problems with complex composition.
It has concise form, good theory results, and promising
numerical result. For specific 1D standard TV denoising
problem, the improvement is more dramatic compared to the
existing algorithms [7, 30]. Besides, our algorithm works on
other nonconvex nonsmooth problems, such as block sparse
recovery, group lasso, and image deconvolution, of which the
examples are just too numerous to mention.
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