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Examining the performance of the GNSS PLL, this paper presents novel results describing the statistical properties of four popular
phase estimators under both strong- andweak-signal conditions when subject to thermal noise, deterministic dynamics, and typical
pedestrian motion. Design routines are developed which employ these results to enhance weak-signal performance of the PLL in
terms of transient response, steady-state errors, and cycle-slips. By examining both single and data-pilot signals, it is shown that
appropriate design and tuning of the PLL can significantly enhance tracking performance, in particular when used for pedestrian
applications.

1. Introduction

Despite the military origins of Global Navigation Satellite
Systems (GNSS), the most widespread use of GNSS receivers
is civilian and the single most common receiver platform is
the cellular handset. Although the civilian user is, generally,
less demanding in terms of position, velocity, and timing
accuracy, signal processing for civilian applications is not a
simple task. Severe attenuation experienced in the indoor
environment,multipath propagation through urban environ-
ments, and the limitations of consumer-grade receivers are all
obstacles to maintaining acceptable receiver performance.

While many receivers can adequately track carrier fre-
quency under most operating conditions, including in the
indoor environment, reliable carrier phase tracking still
proves challenging. Owing to a very short wavelength, when
subject to any appreciable attenuation, the dynamics of
pedestrian motion can induce carrier phase cycle-slips or
even loss of phase-lock. Despite these challenges, the ability
to track carrier phase is desirable for many reasons includ-
ing enhanced bit-synchronization, reduced bit-error-rate,
enhanced range estimation, improved velocity estimation,
and, ultimately, provision for carrier-based positioning.

In response to this challenge, this paper focuses on the
process of carrier phase tracking in a scalar phase-lock-loop
(PLL). The primary weakness of the PLL when operating on

attenuated signals is the process of phase error estimation or
phase discrimination.The performance of phase discrimina-
tor functions typically degrades rapidly with reduced signal
strength and their behavior under weak-signal conditions
is generally unique to each discriminator function. To best
design a PLL, therefore, this behavior must be understood.
This work aims to develop a thorough mathematical model
for the carrier phase discriminator and, from this model, to
infer best practices for GNSS PLL design. In particular, two
case studies are investigated: pedestrian navigation using the
GPS L1 C/A signal and data-pilot tracking of the Galileo E1
B/C signal.

Two classes of phase discriminator will be examined,
those which employ pure-PLL discriminators and those
which employ Costas discriminators. Pure-PLL discrimi-
nators are those which are designed to capture the entire
phase error on the interval [−𝜋, 𝜋] and are therefore useful
for synchronization with continuous wave signals or those
with smooth modulation, such as frequency-modulation.
They represent the earliest form of PLL, dating back to the
1930s [1] and over the last decade have seen applications in
GNSS receivers for modernized signals which include a pilot
signal-component. By the 1950s, the use of suppressed-carrier
modulation required the development of PLLs which were
insensitive to carrier-modulation ofwhich themost notable is
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the Costas PLL [2]. This type of PLL, capturing the phase
error on the interval [−𝜋/2, 𝜋/2], is widely used in GNSS
receivers for BPSK modulated signals, such as GPS L1 C/A
or Galileo E1B. Strictly speaking, the Costas PLL is that
which performs phase estimation via the product of the
in-phase and quadrature base-band channels; however,
the term Costas PLL or Costas discriminator has become
synonymous with the class of all modulation-insensitive
phase discriminators.

The paper is organized as follows: Section 2 introduces
the GNSS signal, the PLL architecture, and the linearized PLL
model. A statistical analysis of four popular carrier phase
estimators is developed in Section 3. Weak-signal effects on
the transient and steady-state performance of the PLL are
considered in Section 4 and Section 5 presents the application
of the theory developed here to the problem of PLL design.

2. Receiver Model and PLL Architecture

To facilitate the following analysis, the PLL is modeled as
a simplified linear, time-invariant (LTI) system. A model of
the received signal and the corresponding correlator values
are developed and a general description of the classical
PLL is introduced. A selection of discriminator functions
are examined and equivalent linear models are provided,
including an assessment of the operating region over which
the linearization is accurate. These component models are
then combined to yield a linearized system describing the
PLL operation.Through these models, it is proposed that the
PLL behavior under weak-signal conditions can be described
as the superposition of the response of an equivalent linear
model of the PLL to various stimuli, including that of thermal
noise and of phase variations, where the particular linear
model is a function of the prevailing signal strength.

2.1. Downconversion and IF Signal Processing. Thecorrelation
of the local replica signals with the incoming digital interme-
diate frequency (IF) signal over the interval [(𝑚−1)𝑇

𝐿
: 𝑚𝑇
𝐿
]

can be approximated by the well-known expressions for the
in-phase, 𝐼, and quadrature, 𝑄, values [3, 4]:

𝐼 = √𝐶𝑑𝑅 (𝜏) sinc(
𝛿𝜔𝑇
𝐿

2
) cos (𝛿𝜃) + 𝑛𝑖,

𝑄 = √𝐶𝑑𝑅 (𝜏) sinc(
𝛿𝜔𝑇
𝐿

2
) sin (𝛿𝜃) + 𝑛𝑞,

(1)

where 𝜏, 𝛿𝜔, and 𝛿𝜃 denote the mean code phase, carrier
frequency, and carrier phase errors, respectively, and 𝑅(𝜏) is
the spreading code autocorrelation function. The variable 𝑇

𝐿

denotes the coherent integration period and also defines the
interval between successive updates of the tracking loop. It
is assumed that the coherent integration period is aligned
with the data modulation symbol boundaries, such that the
variable 𝑑 ∈ {−1, 1} denotes the data sign, which is constant
during correlation interval. Under normal PLL operation, the
code phase and carrier frequency are reasonably well tracked
by the receiver, such that 𝑅(𝜏) sinc(𝛿𝜔𝑇

𝐿
/2) ≈ 1, and so they

have a negligible effect on (1).The propagation of the thermal

noise to the correlator values is modeled as additive white
Gaussian noise (AWGN):

𝑛
𝑖
, 𝑛
𝑞
∈N(0,

𝑁
0

2𝑇
𝐿

) , (2)

where 𝑁
0
represents the one-sided thermal noise floor in

W/Hz. An estimate of the carrier phase tracking error, 𝛿𝜃,
is then made by applying a carrier phase discriminator to
the values 𝐼 and 𝑄. This estimation procedure is discussed
in more detail in Section 3.

2.2. The Phase-Lock Loop. The standard phase-lock loop is a
feedback control loop which tracks the carrier phase using
estimates of the carrier phase tracking error. Although all
realizable phase error estimators are nonlinear, if the estimate
is linearized around zero phase error and normalized such
that the noise-free estimate has unity gain, the phase error
estimate, denoted by 𝑒, can be approximated by [4]

𝑒 ≈ 𝐾
𝐷
𝛿𝜃 + 𝑛

𝜃
for − LR < 𝛿𝜃 < LR, (3)

where LR represents the linear region of the discriminator.
That is, the phase error estimate is approximately equal to a
constant times the true phase error, plus a zero mean, white
noise, 𝑛

𝜃
.The constant gain,𝐾

𝐷
, is referred to as the discrimi-

nator gain and depends on the chosen discriminator function
and the prevailing signal-to-noise-ratio. The variance of 𝑛

𝜃

is also dependent on the phase discriminator used and the
received signal-to-noise ratio.The two-sided spectral density
of 𝑛
𝜃
is denoted here by 𝑁

𝜃
. The linear region is defined

as the interval [−LR, LR], over which this discriminator
approximation is valid. The exact details of the linearization
of this phase error estimate and the values of the PSD of 𝑛𝜃
for various discriminators will be given in Section 3.

The remainder of the PLL is linear and can be represented
by a system of 𝑧-domain transfer functions, where the update
interval of the system is 𝑇

𝐿
. Such a linearized loop model

is useful as it facilitates the estimation of loop stability and
tracking performance. Of particular interest are the transfer
functions between the carrier phase, 𝜃, and the carrier phase
estimate, 𝜃, between the carrier phase, 𝜃, and the tracking
error, 𝛿𝜃, and between the thermal noise, 𝑛

𝜃
, and the tracking

error, 𝛿𝜃. These quantities are depicted in a linearized loop
model in Figure 1. The transfer functions of interest are given
by

𝐻
𝜃 (𝑧) =

Θ̂ (𝑧)

Θ (𝑧)
=

𝐾
𝐷
NCO (𝑧) 𝐹 (𝑧)

1 + 𝐾
𝐷
NCO (𝑧) 𝐹 (𝑧)

, (4)

𝐻
𝛿𝜃 (𝑧) =

ΔΘ (𝑧)

Θ (𝑧)
= 1 − 𝐻

𝜃 (𝑧) , (5)

𝐻
𝑛 (𝑧) =

ΔΘ (𝑧)

𝑁
𝜃 (𝑧)

=
−1

𝐾
𝐷

𝐻
𝜃 (𝑧) , (6)

where uppercase symbols represent the 𝑧-transform of the
corresponding lowercase time series. The functions 𝐹(𝑧)
and NCO(𝑧) represent the 𝑧-transform of the loop filter
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Figure 1: Linearized PLL Model.

and the numerically controlled oscillator, respectively. The
numerically controlled oscillator is defined as [4]

NCO (𝑧) =
𝑇
𝐿

𝑧 − 1
. (7)

Generally, a proportional and integral (PI) controller is
used inGNSS PLLs. A generalization of this type of controller
takes the form [5]

𝐹 (𝑧) =

𝑃

∑
𝑝=0

𝐴
𝑝
(
𝑇
𝑠
𝑧

𝑧 − 1
)

𝑝

, (8)

where 𝑃 + 1 is the order of the resultant closed loop system.

3. Carrier Phase Estimation

As discussed in Section 2.2, the performance of the PLL in
the presence of AWGN can be estimated by examining the
linear model and the noise performance of the carrier phase
discriminator. Four popular carrier phase discriminators
are examined here: the four-quadrant arctangent discrim-
inator, the arctangent discriminator, the decision-directed
discriminator, and the simple quadrature discriminator. The
discriminators are characterized in terms of gain, 𝐾

𝐷
, and

variance, 𝜎2
𝑛𝜃
, where

𝐾
𝐷
=
𝜕E [𝑒]
𝜕𝛿𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛿𝜃=0
, (9)

𝜎
2

𝑛𝜃
= Var [𝑛

𝜃
] = Var [𝑒]|𝛿𝜃=0 , (10)

and, in Section 3.7, the linear region will also be considered.
In the carrier phase discriminator analysis that follows, it

is assumed that the PLL is operating normally, with a mean
frequency error of zero and a maximum frequency error that
is reasonably small relative to the update interval, such that
the phase error accrued over the update interval is less than
the linear region of the discriminator, for example.

3.1. Measuring Signal Quality. It will be shown that the
performance of the estimators considered in this work varies
with the signal-to-noise ratio (SNR) of the correlator values,
specifically the coherent SNR, defined as [3, 6]

SNR
𝑐
=

E [𝐼]2

Var [𝐼]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛿𝜃=0
. (11)

This metric represents the quality of the signals which
are applied to the discriminator and is largely the same as
the 𝐸
𝑏
/𝑁
0
metric used in, for example, [7], for characterizing

baseband communication systems with the distinction that
SNR
𝑐
need not, necessarily, correspond to a full bit period. A

number of factors influence the value of the SNR
𝑐
including

the received signal power, the receiver’s noise floor, the
coherent integration period, the front-end filter, and the
quantizer configuration. In an ideal receiver, the value of
SNR
𝑐
can be related directly to the received carrier-to-noise-

density ratio (often denoted 𝐶/𝑁
0
or CNR) and the coherent

integration time. Similarly, if the losses induced by factors
such as front-end filtering and quantization can be modeled
as a single loss value, denoted here by 𝐿, then the following
approximation is valid [3, 8]:

SNR
𝑐
≈
2𝐿𝐶𝑇

𝐿

𝑁
0

. (12)

The advantage of using SNR
𝑐
as a signal quality metric,

as opposed to 𝐶/𝑁
0
, for example, is that it reflects all of

the signal processing effects applied to the received signal.
Therefore, the performance of various discriminators can be
related to one signal metric, as opposed to the ensemble
of quantities: 𝑃, 𝑁

0
, 𝑇
𝐿
, 𝐿 and, perhaps, others. Moreover,

as will be shown in Section 5.2, to achieve a specified loop
performance it may be necessary to maintain a particular
value of SNR

𝑐
and so, accordingly a designer may wish to

adjust 𝑇
𝐿
, given a particular 𝐶/𝑁

0
.

As a numerical example, consider a typical received GPS
L1 C/A signal under open sky conditions and a typical con-
sumer grade receiver.The received signal power using a patch
antenna will be approximately −160 dBW and the receiver
thermal noise floor may be assumed to be −205 dBW/Hz. If
the receiver employs a front-end filter with a 2MHz band-
width and a one-bit quantizer then the combined receiver
10 processing losses will be approximately 2 dB. Tallying
these figures and assuming a coherent integration period of
1ms, the expected value of SNR

𝑐
is 16 dB. Alternatively, if a

coherent integration period of 20ms was assumed then the
expected value of SNR

𝑐
would be 29 dB. Under weak-signal

conditions, however, such as the indoor environment, SNR
𝑐

can fall to 0 dB and below.

3.2. The Four-Quadrant Arctangent Discriminator (Atan2).
The four-quadrant arctangent discriminator is defined as [8]

𝑒
Atan2
𝑚

= arctan 2 (𝐼
𝑚
, 𝑄
𝑚
) , (13)

and is a pure-PLL discriminator, appropriate for pilot signals,
or when data wipe-off is employed. The mean response of
this discriminator to phase error, denoted here by 𝜇Atan2

𝑒
,

is well known (see, e.g., [8–10]). For high values of SNR
𝑐
,

𝜇
Atan2
𝑒

is relatively linear across a wide range of phase error
values and has approximately unity gain. As the value of SNR

𝑐

reduces, the gain reduces considerably and the linear region
diminishes. Expressions describing the exact mean response
of the discriminator and its variance are developed as follows.
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If the correlator values are interpreted as a complex pair,
𝐼 + 𝑗𝑄, then the argument, arg{𝐼 + 𝑗𝑄}, can be shown to
be distributed according to the probability density function,
𝑝(𝜙), defined as [9]

𝑝 (𝜙) =
1

2𝜋
𝑒
−(SNR𝑐/2) +

1

2√𝜋
𝑒
−(SNR𝑐/2)sin2(𝜙)√

SNR
𝑐

2

⋅ cos (𝜙) (1 + erf (√
SNR
𝑐

2
cos (𝜙))) .

(14)

Using 𝑝(𝜙), it can be readily shown that the value of 𝜇Atan2
𝑒

is
given by

𝜇
Atan2
𝑒

= ∫
𝜋

−𝜋

arctan 2 (cos (𝛿𝜃 + 𝜙) , sin (𝛿𝜃 + 𝜙)) 𝑝 (𝜙) 𝑑𝜙

= ∫
𝜋

−𝜋

𝜙𝑝 (𝜙 − 𝛿𝜃) 𝑑𝜙.

(15)

From (9), taking the first derivative of (15) and setting
𝛿𝜃 = 0, the discriminator gain is found to be

𝐾
Atan2
𝐷

=
𝜕𝜇

Atan2
𝑒

𝜕𝛿𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛿𝜃=0
= ∫
𝜋

−𝜋

𝜙𝑝
󸀠
(𝜙) 𝑑𝜙, (16)

where 𝑝󸀠(𝜙) is the first derivative of 𝑝(𝜙) with respect to 𝜙,
given by

𝑝
󸀠
(𝜙) =

𝑒
−(SNR𝑐/2)

4𝜋
√SNR

𝑐
sin (𝜙)

⋅ (√2𝜋𝑒
(1/2)SNR𝑐cos2(𝜙) (SNR

𝑐
cos2 (𝜙) + 1)

⋅ (erf (
√SNR

𝑐
cos (𝜙)

√2
) + 1)

+ 2√SNR
𝑐
cos (𝜙)) .

(17)

A plot of 𝐾
𝐷

versus SNR
𝑐
for this discriminator is

shown in Figure 2. It is evident that for SNR
𝑐
values below

approximately 6 dB, the discriminator gain reduces rapidly.
This reduction in discriminator gain has implications for the
closed loop poles of (4), (5), and (6). This will be discussed
further in Section 4.

In a similar fashion to the mean of the four-quadrant
arctangent discriminator, the variance of this carrier phase
estimate can be found via

Var [𝑛𝜃]

= ∫
𝜋

−𝜋

arctan 2 (cos (𝛿𝜃 + 𝜙) , sin (𝛿𝜃 + 𝜙))2𝑝 (𝜙) 𝑑𝜙.
(18)

This variance estimate, however, is a function of𝛿𝜃. Assuming
that the PLL is tracking with an approximately zero mean
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phase error, it is useful to linearize this estimate around a zero
phase error, 𝛿𝜃 = 0:

Var [𝑛𝜃] ≈ ∫
𝜋

−𝜋

arctan 2 (cos (𝜙) , sin (𝜙))2 𝑝 (𝜙) 𝑑𝜙

= ∫
𝜋

−𝜋

𝜙
2
𝑝 (𝜙) 𝑑𝜙.

(19)

A plot of Var[𝑛𝜃] for this discriminator is shown in
Figure 3. For convenience, approximate solutions to (16)
and (19) are provided in the appendix. Unsurprisingly, the
discriminator variance changes linearly with SNR

𝑐
for high

SNR
𝑐
values, bearing the approximate relationship: Var[𝑛𝜃] ≈

1/SNR
𝑐
. In this region, (14) is approximately Gaussian. At

SNR
𝑐
≈ 11 dB the discriminator variance exceeds 1/SNR

𝑐

with reducing SNR
𝑐
. At this point, (14) has begun to resem-

ble a truncated Gaussian distribution. As SNR
𝑐
is further
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reduced, (14) falls below the 1/SNR
𝑐
curve and approaches

a uniform distribution over the interval [−𝜋, 𝜋], reaching
a maximum variance of 𝜋2/3. This nonlinear relationship
between SNR

𝑐
and Var[𝑛𝜃] has a significant impact on the

performance of the PLL under weak-signal conditions and,
in conjunction with the discriminator gain effects described
earlier, can result in severely degraded tracking performance.
These effects must, therefore, be considered in the design of
the PLL and will be discussed further in Section 4.

3.3. The Arctangent Discriminator (Atan). The arctangent
discriminator is defined as [7, 8, 11]

𝑒
Atan

= arctan(𝑄
𝐼
) (20)

and is a Costas discriminator, suitable for use on data-
modulated signals. Similar to the four-quadrant arctangent
discriminator, for high values of SNR

𝑐
, 𝜇Atan
𝑒

changes in a rel-
atively linear fashionwith changing 𝛿𝜃 and has approximately
unity gain. As the value of SNR

𝑐
reduces, the gain reduces

considerably and the linear region diminishes. This occurs
at a higher SNR

𝑐
value for the arctangent discriminator than

for the four-quadrant arctangent discriminator, owing to its
smaller linear region (discussed further in Section 3.7).

Similar to Section 3.2, it can be shown that the mean
response of the arctangent discriminator, after some simplifi-
cation, is given by

𝜇
Atan
𝑒

= ∫
𝜋

−𝜋

arctan(
sin (𝛿𝜃 + 𝜙)
cos (𝛿𝜃 + 𝜙)

)𝑝 (𝜙) 𝑑𝜙

= ∫
𝜋

0

𝜙 (𝑝 (𝜙 − 𝛿𝜃) − 𝑝 (𝜙 + 𝛿𝜃)) 𝑑𝜙

− 𝜋∫
𝜋

𝜋/2

(𝑝 (𝜙 − 𝛿𝜃) − 𝑝 (𝜙 + 𝛿𝜃)) 𝑑𝜙,

(21)

where the limits of integration have been manipulated such
that the arctangent function and its arguments reduce to
simple linear combinations of 𝛿𝜃, 𝜙, and 𝜋.

Again, from (9), taking the first derivative of (21) and
setting 𝛿𝜃 = 0, the arctangent discriminator gain, 𝐾Atan

𝐷
, is

found to be

𝐾
Atan
𝐷

=
𝜕𝜇

Atan
𝑒

𝜕𝛿𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛿𝜃=0

= 2∫
𝜋

0

𝜙𝑝
󸀠
(𝜙) 𝑑𝜙 − 2𝜋∫

𝜋

𝜋/2

𝑝
󸀠
(𝜙) 𝑑𝜙.

(22)

Figure 2 depicts the relationship between 𝐾
𝐷
and SNR

𝑐
for

this discriminator. For SNR
𝑐
values below approximately

10 dB, the discriminator gain reduces rapidly. Although the
trend is similar to that of the four-quadrant arctangent dis-
criminator, it occurs at a higher SNR

𝑐
value and the reduction

in𝐾
𝐷
with SNR

𝑐
is greater.

Similar to the four-quadrant arctangent discriminator,
the variance of this carrier phase estimate, linearized around
a zero phase error, can be found via

Var [𝑛𝜃]

≈ 2 (∫
𝜋

0

𝜙
2
𝑝 (𝜙) 𝑑𝜙 + 𝜋∫

𝜋

𝜋/2

(𝜋 − 2𝜙) 𝑝 (𝜙) 𝑑𝜙) .

(23)

Figure 3 illustrates this relationship across an appropriate
range of SNR

𝑐
values. Again, similar to the four-quadrant

arctangent discriminator, the discriminator variance changes
linearly with SNR

𝑐
for high SNR

𝑐
values. As SNR

𝑐
is reduced,

(14) approaches a uniform distribution over the interval
[−𝜋/2, 𝜋/2] and reaches a maximum variance of 𝜋2/12. Once
again, approximate solutions to (22) and (23) are provided in
the Appendix.

3.4. The Quadrature Discriminator (𝑄). The quadrature dis-
criminator is defined, as its name suggests, as

𝑒
𝑄
= 𝑄, (24)

which is a pure-PLL discriminator, appropriate for non-data
modulated signals. It is also notable both as being the phase
detector used in the earliest PLLs; and as being the only
discriminator for which the resultant PLL admits tractable
nonlinear analysis [12, 13]. This discriminator function is, by
far, the simplest form of carrier phase estimator. Owing to its
simple definition, the characteristics of this discriminator are
quite easily expressed, having a mean value, 𝜇𝑄

𝑒
, of

𝜇
𝑄

𝑒
= E [𝑄] = 𝑑√𝑃 sin (𝛿𝜃) . (25)

Unlike the arctangent-based discriminator functions, this
phase estimate is not self-normalizing; that is, the estimate is a
function of the nominal received signal power. To use this dis-
criminator, even for high SNR

𝑐
values (where the arctangent-

based discriminators are completely self-normalizing), this
phase estimatemust be normalized by an estimate of√𝑃.The
discriminator gain, 𝐾𝑄

𝐷
, is given by

𝐾
𝑄

𝐷
= √𝑃, (26)

which, unlike the previous three discriminators, is indepen-
dent of SNR

𝑐
. The variance of this carrier phase estimate is

given by

Var [𝑛𝜃] = E [𝑄2󵄨󵄨󵄨󵄨󵄨𝛿𝜃=0] =
𝑃

SNR
𝑐

. (27)

Note that when the carrier phase estimate has been
correctly normalized by 1/√𝑃, then the variance of this
carrier phase estimate is given by 1/SNR

𝑐
. This 1/SNR

𝑐
curve

is illustrated in Figure 3, providing a comparison with the
arctangent based discriminators.

3.5. The Decision-Directed Quadrature Discriminator
(sign(𝐼) ⋅ 𝑄). The decision-directed discriminator is defined
as [8]:

𝑒
sign(𝐼)⋅𝑄

= sign (𝐼) ⋅ 𝑄. (28)
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The purpose of the sign(𝐼) ⋅ 𝑄 term in this discriminator
function is to render it insensitive to data modulation.The𝑄
term provides an estimate of 𝛿𝜃multiplied by the data value 𝑑
while the sign(𝐼)⋅𝑄 term provides an estimate of 𝑑. As 𝑑2 = 1,
this discriminator is (ideally) insensitive to data modulation.
The value of 𝜇sign(𝐼)⋅𝑄

𝑒
can be found from

𝜇
sign(𝐼)⋅𝑄
𝑒

= E [sign (𝐼) ⋅ 𝑄] , (29)

where E[⋅] denotes the expectation operator. Since 𝐼 and 𝑄
are statistically independent, then

𝜇
sign(𝐼)⋅𝑄
𝑒

= E [sign (𝐼) ⋅ 𝑄]E [𝑄]

= E [sign (𝐼) ⋅ 𝑄] (𝑑√𝑃 sin (𝛿𝜃)) .
(30)

FindingE[sign(𝐼)⋅𝑄] is equivalent to the estimation of𝑑 given
the AWGN corrupted sample:√𝑃 cos(𝛿𝜃)𝑑 + 𝑛

𝑖
. It can, thus,

be readily shown that [7]

𝜇
sign(𝐼)⋅𝑄
𝑒

= √𝑃 erf (√
SNR
𝑐

2
cos (𝛿𝜃)) sin (𝛿𝜃) . (31)

The gain, 𝐾sign(𝐼)⋅𝑄
𝐷

, of this discriminator can be shown,
using (9) and (31), to be

𝐾
sign(𝐼)⋅𝑄
𝐷

= √𝑃 erf (√
SNR
𝑐

2
) . (32)

A plot of𝐾
𝐷
versus SNR

𝑐
is shown in Figure 2.

Unlike the arctangent based discriminators, the variance
of the decision-directed discriminator can be readily related
to SNR

𝑐
. From (10) and (28), we find

Var [𝑛𝜃] = E [sign (𝐼)2 𝑄2󵄨󵄨󵄨󵄨󵄨𝛿𝜃=0] = E [𝑄2󵄨󵄨󵄨󵄨󵄨𝛿𝜃=0]

=
𝑃

SNR
𝑐

.

(33)

As with the quadrature discriminator, once the carrier
phase estimate has been correctly normalized by 1/√𝑃, then
the variance of this carrier phase estimate is given by 1/SNR

𝑐
,

as depicted in Figure 3.

3.6. The Gain-to-Noise Ratio (GNR). Sections 4.3 and 5 will
illustrate that the performance of the tracking loop can be
related, amongst other things, to the gain and variance of the
discriminator. In fact, it will be shown that, under steady-state
conditions, it is directly related to the ratio of the square of
the gain to the variance. It is useful, therefore, to consider
this ratio as a metric by which the tracking capability of each
discriminator can be compared.Thismetric, termed the gain-
to-noise ratio and denoted by GNR, is defined as

GNR =
𝐾
2

𝐷

Var [𝑛𝜃]
. (34)

A plot of GNR for each of the four discriminators is shown in
Figure 4. As can be expected from the analysis presented in
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Figure 4: GNR versus SNR
𝑐
for the four-quadrant arctangent

discriminator, the arctangent discriminator, decision-directed dis-
criminator, and the quadrature discriminator.

Section 3, under high SNR
𝑐
conditions (SNR

𝑐
> 12 dB, e.g.),

the GNR for each discriminator is similar.The reason for this
is that for these high SNR

𝑐
values 𝐾

𝐷
≈ 1 and Var[𝑛𝜃] ≈

1/SNR
𝑐
for each of the four discriminators. For reduced SNR

𝑐

conditions, however, the unique relationship between 𝐾
𝐷
,

Var[𝑛𝜃], and SNR
𝑐
for each discriminator becomes evident.

As the gain and variance characteristics of each discriminator
are different, the GNR curves diverge as SNR

𝑐
is reduced.

Because the tracking capability of the PLL can be directly
related to the GNR (as will be shown in Section 4.3), it
provides insight into the relative tracking performance of
each discriminator. Interestingly this metric also provides
some insight into the relative benefits of a pilot signal, as
it is clear that the GNR of the pure-PLL discriminators is
noticeably higher than that of the Costas discriminators for
SNR
𝑐
values below approximately 5 dB, as will be discussed

further in Section 5.4.
While the GNR can provide valuable insight into the

operation of the PLL in its linear region, it does not com-
pletely characterize the discriminator’s influence on closed
loop operation, as will be discussed next.

3.7.TheDiscriminator Linear Region. The linearized discrim-
inator model employed in previous sections is an optimistic
performance model and, generally, is only accurate for a
limited range of 𝛿𝜃.This range is termed the linear region and
is finite for all discriminators. Indeed, it is ultimately limited
to the range [−𝜋, 𝜋], owing to the periodic nature of the sinu-
soid. As has been shown in the previous sections, the values
of 𝐾
𝐷
and 𝜇

𝑒
are dependent on the discriminator function,

and, with the exception of the quadrature discriminator, are
also dependent on SNR

𝑐
.

In general, the linear region is symmetric around the
origin and so it can be defined by the single scalar LR such
that the linear region is the interval [−LR, LR]. LR is defined
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Figure 5: LR
10% versus SNR

𝑐
for the four-quadrant arctangent dis-

criminator (Atan2), the arctangent discriminator (Atan), decision-
directed discriminator (sign(𝐼) ⋅ 𝑄), and the quadrature discrimina-
tor (𝑄).

as the value of 𝛿𝜃 at which the true value of 𝜇
𝑒
and the

approximation 𝜇
𝑒
≈ 𝐾
𝐷
𝛿𝜃 differ by a certain percentage.

The percentage is chosen arbitrarily, often depending on the
application, but typical values are 5% and 10%. Specifically,
LR for an 𝑥% linear region, denoted LR

𝑥%, is defined as

LR
𝑥% = {𝛿𝜃 ∈R :

𝐾
𝐷
𝛿𝜃

𝜇
𝑒

= (1 −
𝑥

100
) , 𝛿𝜃 > 0} , (35)

where the notation 𝐴 = {𝐵 ∈ 𝐶 : 𝐷} can be interpreted as
𝐴 equals values of 𝐵 in the set 𝐶 such that condition 𝐷 is
satisfied.

It is, thus, the intersection of the mean discriminator
curve and the line (𝑥/100)𝐾

𝐷
𝛿𝜃 that defines the linear region.

A plot of LR
10% versus SNR

𝑐
is shown in Figure 5. Exam-

ining the pure-PLL discriminators, it can be seen that the
four-quadrant arctangent discriminator has a significantly
larger linear region than the quadrature discriminator over
the entire SNR

𝑐
range of interest. For the Costas case, the arc-

tangent discriminator has a significantly larger linear region
than the decision-directed discriminator, for high SNR

𝑐

values. For SNR
𝑐
values below approximately 7 dB, however,

the linear region of both discriminators converge. The impli-
cations of the specific LR values and their dependence on
SNR
𝑐
will be discussed further in Section 5.

4. Closed Loop Operation

This section examines the closed loop operation of the
PLL, specifically investigating the relationship between the
discriminator gain and variance and their SNR

𝑐
-dependence

on the closed loop transient and steady-state behavior. The
relationship between the tracking bandwidth and the SNR

𝑐
-

dependent discriminator gain is examined theoretically and
the resultant influence on the transient response is illustrated
via simulated phase step-tests. In terms of steady-state per-
formance, the significance of the GNR metric as a means of
predicting thermal noise induced tracking error is examined.

4.1. Tracking Bandwidth. The design of PLL loop filters is
often a delicate balance between a sufficiently fast loop to cope
with satellite-to-user dynamics, and a sufficiently slow loop
to resist thermal noise induced tracking error. It is crucial,
therefore, that a designer has control over the exact placement
of the loop poles. In general, direct specification of the closed
loop poles is not intuitive and, so, the pole placement is
often specified in terms of damping coefficient and equivalent
bandwidth (second-order-dominant systems are generally
parametrized in terms of the system damping coefficient,
𝜁, and natural frequency, 𝜔

𝑛
, each of which a uniquely

observable effect in the time-domain [5]; when considering
the system in terms pole-zero placement, however, it is
more convenient to reparametrize the system in terms of the
dominant poles, given by −𝛽(1 ± 𝜂) which can be related via
𝛽 = 𝜔

𝑛
𝜁 and 𝜂 = √1 − 𝜁−2.)

The effective two-sided rectangular bandwidth of the
closed loop transfer function, denoted here by 𝐵

𝜃
, is defined

as

𝐵
𝜃
=

1

2𝜋𝑇
𝐿

∫
𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨
𝐻
𝜃
(𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜔. (36)

Generally, |𝐻
𝜃
(𝑒
𝑗𝜔
)|
2 will be low-pass, with a relatively

smooth pass-band. 𝐵
𝜃
, therefore, is indicative of the speed at

which the PLL will settle.
It is important to note the presence of 𝐾

𝐷
in both the

numerator and denominator of 𝐻
𝜃
(𝑧) in (4). As has been

shown in Section 3,𝐾
𝐷
is dependent on the prevailing SNR

𝑐
.

For low SNR
𝑐
values, the value of 𝐾

𝐷
is less than unity and,

therefore, the effective bandwidth of the PLL will be less
than its design value. As will be shown in Sections 4.2 and
5.1, this can have a significant impact on the overall loop
performance.

In light of this effect, it is convenient to denote the high-
SNR
𝑐
value (or the design value) of𝐵

𝜃
by𝐵Design
𝜃

and to define
it as

𝐵
Design
𝜃

= 𝐵
𝜃

󵄨󵄨󵄨󵄨𝐾𝐷=1
. (37)

Examining𝐻
𝜃
(𝑧) once again, it is clear that the denomi-

nator can be rendered independent of 𝐾
𝐷
by scaling 𝐹(𝑧) or,

more specifically, the gains, 𝐴
𝑝
, by a factor 1/𝐾

𝐷
. To imple-

ment this gain-compensation the receiver must estimate the
prevailing value of SNR

𝑐
and calculate the value of 𝐾

𝐷

corresponding to this value and the particular discriminator
employed. This approach maintains the value of 𝐵

𝜃
at the

prescribed value 𝐵Design
𝜃

, regardless of the prevailing SNR
𝑐
.

Note that although this gain-compensationmodifies the loop
filter gains as the prevailing signal strength changes, it is not
an adaptive loop; it merely corrects for gain degradation in
order to maintain a constant loop bandwidth. The effects of
𝐾
𝐷
and benefits of this gain-compensation are explored next.

4.2. Transient Response. This section examines the transient
response of a second-order PLL employing an arctangent
discriminator and a loop update rate of 𝑇

𝐿
= 1ms under

both high- and low-SNR
𝑐
conditions.The loop filter, detailed

in Table 1, effects a critically damped system, 𝜂 = 0, with
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Figure 6: The response of the PLL to phase and frequency steps of −0.4 rad and −1.2𝜋 rad/s, respectively.

Table 1: PLL design parameters for transient response experiment.

High Low Comp.
𝑇
𝐿
(s) 0.001 0.001 0.001

𝐾
𝐷

1.0 0.4 0.4
{𝐴
0
, 𝐴
1
} {16.35, 65.10} {16.35, 65.10} {41.46, 165.14}

𝑧
0

0.9912 0.996 − 0.00398𝑖 0.9913
𝑧
1

0.9927 0.996 + 0.00398𝑖 0.9927
𝛽 8.06 4.01 8.06
𝜂 0.0 −0.996𝑖 0.0
𝜁 1.0 0.71 1.0
𝐵
𝜃
(Hz) 10.0 5.22 10.0

a tracking bandwidth of 𝐵
𝜃
= 10Hz. The system was excited

by a simultaneous step in phase of −0.12𝜋 rad and a step in
frequency of −1.2𝜋 rad/s. An example of a simulated response
of the PLL to this excitation, for a signal received at an SNR

𝑐
of

23 dB, is plotted in Figure 6(a) and labeled “High.” As can be
seen, the PLL exhibits a smooth, critically damped response
which settles to within 5% of its peak value within 0.5 s.

To illustrate the impact of the SNR
𝑐
-dependent𝐾

𝐷
on the

transient response of the PLL, this simulation was repeated
under “Low”-SNR

𝑐
conditions.The particular case of SNR

𝑐
of

0 dB was chosen as it corresponds to𝐾
𝐷
= 0.4 for the arctan-

gent discriminator (see Figure 2). An example of the PLL
response in this case is shown in Figure 6(a) and labeled
“Low.” It is evident, apart from the increased noise, that the
response of the PLL has become slower and more oscillatory.

This transient was simulated a total of 500 times, for
both the high-SNR

𝑐
and the low-SNR

𝑐
cases and the average

response was calculated and is presented in Figure 6(b),
labeled “High” and “Low,” respectively. Indeed, it can be
seen that the reduction in SNR

𝑐
has induced a slower and

underdamped response. Given 𝐾
𝐷

= 0.4, this has been
calculated to be 𝜁 = 0.71.

Using (36), 𝐵
𝜃
was calculated for both the high-SNR

𝑐

case and the low-SNR
𝑐
cases to be 10Hz and 5.28Hz,

respectively. It is clear that the value of 𝐵
𝜃
is significantly

reduced by the reduction in𝐾
𝐷
, an observation which agrees

with Figure 6(b), in the sense that reduced 𝐵
𝜃
results in an

increased mean time to settle.
To eliminate this effect, the gain compensation discussed

in Section 4.1 was applied to the PLL and the low-SNR
𝑐

scenario of 0 dB was reprocessed. The parameters of the
compensated loop are presented in Table 1, in the column
labeled “Comp.”. An example of the 𝐾

𝐷
compensated loop

response is shown in Figure 6(a). Again, the mean value of
this response is estimated over 500 trials and is plotted in
Figure 6(b). It is clear that the mean response is restored to
that of the high-SNR

𝑐
case. Restoration of the PLL transient

performance does, unfortunately, come at a price. It can be
seen in Figure 6(a) that the 𝐾

𝐷
-compensated loop response

exhibits significantly more thermal noise induced tracking
error. This has implications for the steady-state operation of
the PLL and is discussed next.

4.3. Tracking Error/Jitter. Following the transient response
of the PLL, once the signal parameters (phase, Doppler, and
higher order effects) have been estimated, the PLL settles
and tracks the carrier phase. This so-called steady-state
performance is, typically, dominated by thermal noise. The
performance of the PLL in the presence of thermal noise
can be measured in terms of the steady-state tracking error
variance or tracking jitter, denoted here by 𝜎2

𝛿𝜃
. In the case of

the PLL, the noise which corrupts the estimate 𝜃 of the carrier
phase 𝜃 is 𝑛

𝜃
and has propagated through the discriminator.

Similar to the thermal noise floor, 𝑁
0
, it is convenient to

consider an equivalent noise floor for the tracking error
estimate, 𝑒. Denoted here by𝑁

𝜃
, the noise floor of the phase

error estimate, in rad2/Hz, is defined as

𝑁
𝜃
= 𝑇
𝐿
Var [𝑛𝜃] . (38)

Note that, unlike 𝑁
0
, 𝑁
𝜃
is defined as a two-sided PSD.

Given the transfer function𝐻
𝑛
(𝑧) and (38), the tracking error

variance can be estimated as

𝜎
2

𝛿𝜃
=

𝑁
𝜃

2𝜋𝑇
𝐿

∫
𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑛
(𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜔. (39)

Although 𝑁
𝜃
can be well approximated by 𝑁

0
/2 for

high values of SNR
𝑐
, for lower values of SNR

𝑐
their values



International Journal of Navigation and Observation 9

diverge and 𝑁
0
alone cannot be used to predict closed loop

performance.
Using (39), the impact of 𝐾

𝐷
on the noise performance

of the PLL can be examined. As discussed in Section 4.2, it is
necessary to compensate for the SNR

𝑐
-induced reduction in

𝐾
𝐷
by increasing the filter gains, 𝐴

𝑝
, by a factor 1/𝐾

𝐷
. Using

such gain-compensation, from (6), 𝜎2
𝛿𝜃
is given by

𝜎
2

𝛿𝜃
=

Var [𝑛𝜃]
𝐾2
𝐷

𝐵
𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐴𝑝→𝐴𝑝/𝐾𝐷

=
Var [𝑛𝜃]
𝐾2
𝐷

𝐵
Design
𝜃

= 𝐵
Design
𝜃

GNR−1.

(40)

This result implies that, given perfect 𝐾
𝐷
compensation,

𝜎
2

𝛿𝜃
is equal to a constant term, 𝐵Design

𝜃
, divided by the ratio

𝐾
2

𝐷
/Var[𝑛𝜃]. Although the ratio Var[𝑛𝜃]/𝐾2

𝐷
appears in (40),

its reciprocal is chosen as the definition of the GNR; this
is done so that GNR conforms with metrics such as SNR

𝑐
,

SNR
𝑛𝑐
, and 𝐶/𝑁

0
, where the numerator pertains to the

signal and the denominator pertains to the noise; also, this
definition of GNR can be used as a measure of usefulness; the
higher the GNR, the more useful the discriminator estimate.
As the name suggests, the constant term, 𝐵Design

𝜃
, is chosen

by the designer. The ratio,𝐾2
𝐷
/Var[𝑛𝜃], is related to SNR

𝑐
via

a function which is particular to each discriminator, defined
earlier as GNR.

To illustrate the usefulness of the GNR in predicting the
relative closed loop performance of various discriminators
in the presence of thermal noise, the tracking error variance
of a simulated PLL was measured for each of the four
discriminators, across a range of SNR

𝑐
conditions. The loop

filter configuration of Table 1 was used and perfect 𝐾
𝐷
com-

pensation was applied to the loop filter gains for each case.
A total of 29 SNR

𝑐
conditions were simulated, ranging from

−5 dB to 23 dB which corresponds to a 𝐶/𝑁
0
range of 22 to

50 dBHz and 𝑇
𝐿
= 1ms, for each of the four discriminators.

The results of the Monte-Carlo simulations are presented
in Figure 7. Using (40), the theoretically predicted variance
was calculated and is also plotted in Figure 7, exhibiting
good agreement with the simulation results. For SNR

𝑐
values

below approximately 0 dB, the simulation results for the
arctangent and decision-directed discriminator have been
omitted. In these cases, the PLL has lost lock and the resulting
measurements of tracking error variance are meaningless.

Examining the relative performance of the four discrim-
inators in Figure 7, we see that, for high SNR

𝑐
values, all four

discriminators perform equally well. As the SNR
𝑐
is reduced,

however, the individual characteristics of each discriminator
influence the performance. These trends compare well with
those observed in Figure 4. In fact, from (40), the relative
relationship is identical as the curves of Figure 7 are simply
the reciprocal of the curves of Figure 4multiplied by the con-
stant𝐵Design

𝜃
. It is noticeable that, for SNR

𝑐
< 8 dB, both of the

Costas discriminators perform more poorly than the pure-
PLL discriminators.This is to be expected and is the unavoid-
able cost of achieving insensitivity to data modulation.
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Figure 7: 𝜎2
𝛿𝜃

versus SNR
𝑐
for 𝐵Design
𝜃

= 10Hz and each of four
discriminators for both simulated (markers) and theoretical (solid)
results and traditional theoretical model (dashed).

It is worth mentioning how the tracking jitter curves
presented here compare with the traditional theory, which
offers two different equations, one representing the class
of pure-PLL discriminators, both the quadrature and four-
quadrant arctangent, and another representing the Costas
discriminators, including the decision-directed quadrature
discriminator and the arc tangent discriminator.

Included in Figure 7, for comparison purposes, is a
plot of the traditional theoretical performance estimate,
representing the general class of Costas discriminators [8,
16]. While this offers a reasonable fit for high SNR

𝑐
values

and aligns within 15% of the measured performance of the
decision-directed quadrature discriminator, it diverges from
the measured performance of the arctangent discriminator
with reducing SNR

𝑐
, being in error by over 50% by an SNR

𝑐

of 4 dB, and further diverging below this value. Interestingly,
the traditional theory describing the performance of the
class pure-PLL discriminators coincides exactly with that
presented here for the quadrature discriminator. However, it
offers a very poor fit to the performance of the four-quadrant
arctangent discriminator being in error by 50% by an SNR

𝑐

of 7 dB.
It is reasonable, therefore, to conclude that a comparison

of the relative closed loop tracking performance of PLLs
which employ the same loop filter, but different discrimina-
tors, can be inferred directly by simply examining the relative
GNR of the discriminators. That is, the relative linear closed
loop performance of two PLLs, for any loop configuration,
can be inferred by simply examining the open loop behavior
of their respective discriminators. This will be discussed
further in Section 5.2 and the usefulness of the GNR in
choosing a particular discriminator for a given application
will be discussed.
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5. Applications to Receiver Design

This section discusses applications of the theory developed
in the previous section to GNSS receivers in the context of
initial design choices and run-time receiver tuning. Firstly,
the importance of acknowledging the dependence of the
discriminator gain on the prevailing signal conditions and
the benefits of compensating for this gain are considered
by examining real GPS L1 C/A for a pedestrian navigation
scenario. Secondly, the problem of choosing an appropriate
discriminator, given a receiver configuration and received
signal strength, is addressed by utilizing the GNR and the
linear regionmetrics. Finally, and once again employing these
two metrics, the issue of optimal combining of carrier phase
error estimates in data-pilot systems is examined using the
Galileo E1 B/C signals as a case study.

5.1. Maintaining the Design Loop Bandwidth. The impact of
the discriminator gain on the performance of a GPS L1 C/A
tracking loop is examined here in the context of pedestrian
navigation. The experiment encompassed a range of SNR

𝑐

conditions and considered both tracking loops which employ
𝐾
𝐷
gain-compensation and those which do not. Results show

that loops which compensate for 𝐾
𝐷

exhibit significantly
improved cycle-slip performance.

A set of IF data was collected using a GPS-1A front-end
and an Antcom antenna [17, 18] which logged two-bit IF
samples at a rate of 16Ms/s and employed a 2MHz front
end filter. The antenna and receiver were mounted on a rigid
body and carried in the pedestrian’s hand. Under open-sky
conditions, the subject initially stood for one minute and
subsequently traversed a 150m east-west path, repeatedly,
at a steady walk for a period of four minutes. The antenna
was maintained approximately level for the duration of the
experiment and, being hand-held, the antenna, oscillator, and
receiver experienced the typical dynamics of a pedestrian
including gross velocity of each traversal and the transient,
step-induced accelerations.

One particular satellite, PRN 17, was observed at azimuth
and elevation of approximately 80∘ and 78∘, respectively, and
a received 𝐶/𝑁

0
of approximately 46 dBHz. This signal was

tracked using a typical tracking configuration, consisting of
a second-order 20Hz PLL using an arctangent discriminator,
defined by (20), and a 0.5Hz second-order delay-lock loop
(DLL). Both tracking loops used a 1ms update rate. A
second-order non-carrier-aided DLL was chosen to ensure
that carrier-phase tracking errors, induced by the oscillator
and pedestrian dynamics, were not propagated to the code
tracking loop.

The observed carrier Doppler is presented in Figure 8.
The first sixty seconds represent the stationary part of
this experiment where only the satellite-induced Doppler
is evident. The remainder of the data represents walking
dynamics where both the satellite- and pedestrian-induced
gross velocities contribute the observed Doppler. In addition
to the gross Doppler, the transient accelerations associated
with walking have induced quasisinusoidal perturbations to
the observed Doppler via the so-called g-sensitivity of the
oscillator [19]. Typically, a temperature compensated crystal
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Figure 8: The observed Doppler on PRN 17 during the pedestrian
data collection. Highlighted are the transition from standing to
walking, at approximately 60 seconds, and the most harsh Doppler
perturbations induced by the pedestrian dynamics, at approximately
235 seconds.

oscillator (TCXO) used for hand-held GNSS applications will
exhibit a g-sensitivity of the order of 1.5 to 2.5 ppb/g, while
specialized low g-sensitivity oscillators are in the range of 0.35
to 0.5 ppb/g (see, e.g., [15]). The dynamics of a walking stride
can be expected to induce acceleration peaks and troughs of
approximately 8.0 and−6.0m/s, respectively [21]. Given these
values, the Doppler perturbations visible in Figure 8 appear
consistent with what would be expected for a low-power low-
cost device.

To observe the behavior of the carrier tracking loops
under weak-signal conditions, the IF data was attenuated
prior to reprocessing. This attenuation was achieved by
adding white Gaussian noise directly to the IF samples such
that the noise power spectral density in the vicinity of the
carrier frequency was increased by the required amount. The
tracking loops were initialized using the carrier frequency,
carrier phase, and code phase estimates gained from the
reference, unattenuated trial. An estimate of the tracking per-
formance was thenmade by comparing the carrier phase esti-
mate of the PLL during the attenuated trial to that of the refer-
ence trial. This experiment was then repeated for a selection
of signal attenuation values for both the gain-compensated
and non-gain-compensated PLLs. Specifically, the data was
processed for each of 9, 12, 15, and 18 dB of attenuation, which
corresponds to average SNR

𝑐
values of 12.1, 9.1, 6.1, and 3.1 dB,

respectively.These values of attenuation were chosen to cover
an interesting range of discriminator behavior, including the
transition from unity gain to progressively reducing gain,
including the onset of discriminator variance saturation and
including the steepest region of contraction of the linear
region. In this way, it is expected that the performance should
degrade rapidly with increasing attenuation level and that the
application of gain-compensation should improve, to some
extent, the performance.

An estimate of the carrier discriminator gain was pro-
duced within the gain-compensated PLLs by applying a stan-
dard SNR

𝑐
estimator to the correlator values, 𝐼 and𝑄 [8], and

using this SNR
𝑐
estimate in conjunction with the equations
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(b) Gain-compensated PLL

Figure 9: The phase error of the PLL over time for a selection of signal attenuations values of 9, 12, 15, and 18 dB for both PLLs which do not
apply gain-compensation (a) and those which do (b).

provided in the appendix. Details of the accuracy of SNR
𝑐

estimation and the relative sensitivity of the PLL tuning are
discussed further in Section 5.3. Figures 9(a) and 9(b) show
the measured phase error for the non-gain-compensating
and the gain-compensating loops. Apart from the obvious
observations that cycle-slips only occur once the pedestrian
has begun to walk (from 60 seconds onwards), and that cycle-
slips are more frequent in the more highly attenuated trials,
there are some more interesting features of these results.

Firstly, it is clear that the gain-compensating loop exhibits
significantly less slips than the non-gain-compensating loop.
This is due to the fact that the gain reduction induces a slower
response to changes in the received phase, thereby resulting in
a failure to adequately track the phase trajectory. This obser-
vation is supported by the results presented in Table 2, which
shows the number ofmeasured half-cycle-slips for five visible
satellites. The tabulated data is arranged as follows: each row
represents a single satellite, the first and second columns of
each row are the PRN and the 𝐶/𝑁

0
at which the signal was

observed prior to attenuation.The remaining columns repre-
sent the total number of half-cycle-slips observed during the
attenuated trial, with a pair of numbers per attenuation value.
The leftmost number represents the number of half-cycle-
slips observed on the nongain compensated PLL, while the
rightmost, italic number represents the cycle-slips observed
by a PLL implementing live gain-compensation. Secondly,
considering the𝐶/𝑁

0
and attenuation numbers fromTable 2,

it is evident that the benefits of gain-compensation are most
pronounced within an SNR

𝑐
range of 5.0 to 12.0 dB, which

corresponds to the point at which the linear region of the
discriminator begins to contract. In this range, the PLL
is most sensitive to large sustained phase errors, resulting
from a low discriminator gain, as it drastically increases
the probability of a cycle-slip. For SNR

𝑐
values below this

range, the increased noise present on the phase error estimate,
the GNR of the discriminator as significantly reduced, and
the contribution of thermal noise error becomes significant.
Ultimately, of course, the design bandwidth of the PLL ought

Table 2: Cycle-slip statistics for attenuated walking trials.

PRN 𝐶/𝑁
0

Attenuation (dB)
(dBHz) 9.0 12.0 15.0 18.0

4 42.7 2 1 29 8 211 104 — —
9 46.0 0 0 20 6 145 40 439 183
17 47.4 1 1 27 18 202 77 443 227
27 45.8 0 2 46 18 202 66 470 216
28 44.6 3 1 32 9 183 82 411 369

to be reduced to effect a more reasonable tradeoff between
dynamic and thermal noise errors.

Although this particular experiment only investigates
the arctangent discriminator, the general results support
the observations made in Section 4.2 and suggest that a
similar trend may be observed in the case of other discrim-
inators which exhibit low SNR

𝑐
induced gain-degradation.

It should be noted that gain compensation is employed
exclusively here; however, in some cases, the problem of gain
degradation can be circumvented by simply increasing the
coherent integration, thereby increasing SNR

𝑐
and placing

the discriminator in its unity-gain region. Unfortunately, this
approach is not always possible. Firstly the integration period
may be limited by data modulation and, secondly, either
local oscillator instability and/or excessive user dynamics can
induce sufficiently rapid phase variations as to necessitate a
high loop update rate to maintain phase-lock; that is, net
phase dynamicsmay limit the integration period.Under these
circumstances, gain compensation can prove useful.

It is worth commenting on the difference between gain-
compensation, as implemented in this experiment, and tra-
ditional gain-scheduling or adaptive filtering. The process
of gain compensation maintains a constant tracking band-
width, 𝐵

𝜃
, across a range of SNR

𝑐
conditions. In contrast,

gain-scheduling prescribes a particular loop filter which is
deemed appropriate for the prevailing signal conditions and
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an adaptive filter will modify its filter parameters in response
to features of the received signal (SNR

𝑐
, e.g.) [20]. Gain-

compensation does not adapt the PLL bandwidth, it ensures
that it remains constant and equal to the design bandwidth,
𝐵
Design
𝜃

. With this in mind, it is clear that the effective
implementation of a gain-scheduled or adaptive PLL must
consider the effect of SNR

𝑐
on the discriminator and employ

appropriate gain-compensation.

5.2. Choosing a Discriminator for Linear Operation.
Section 4.3 has shown that the closed loop tracking jitter
observed in a PLL can be related directly to the GNR and the
PLL bandwidth. By examining the relative GNR values of dif-
ferent discriminators, in Figure 4, in conjunction with their
linear regions, in Figure 5, it is possible to choose a discrim-
inator which will minimize 𝜎2

𝛿𝜃
for a given loop filter choice.

The first, perhaps obvious, conclusion that can be drawn
from these figures is that the better of the two pure-PLL dis-
criminators always outperforms the better of the two Costas
discriminators, in terms of GNR and linear region.Therefore,
if the received signal is not data modulated, or if the modula-
tion is known, then one of the pure-PLL discriminators will
always yield the better steady-state tracking performance. A
Costas discriminator should only be used when necessitated
by the presence of unknown data-modulation. Thus, the
choice of discriminator should then be considered for two
different discriminator classes, namely, pure-PLL or Costas.

For the pure-PLL discriminators, under high SNR
𝑐
con-

ditions (>11 dB), the four-quadrant arctangent discriminator
incurs less than a 10% performance degradation, when com-
pared with the quadrature discriminator, yet it exhibits a sig-
nificantly larger linear region. The four-quadrant arctangent
discriminator should, therefore, be used in this region as it
provides more robustness than the quadrature discriminator,
being capable of absorbing larger phase transients while
maintaining linear operation.

In the region −3 dB < SNR
𝑐
< 11 dB, the optimum choice

of discriminator may be dependent on the application, the
quadrature discriminator significantly outperforms the four-
quadrant arctangent discriminator in terms of tracking error
but has a notably narrower linear region. For applications
where low tracking error is the main priority, the quadrature
discriminator should be used whereas, if resilience to signal
dynamics is desired, a designer may wish to avail of the larger
linear region of the four-quadrant arctangent discriminator.
For very low SNR

𝑐
values (<−3 dB), the linear regions of both

discriminators are similar, yet the quadrature discriminator
provides approximately 3 dB less tracking error variance and
should, therefore, be used.

Unlike the pure-PLL discriminators, the choice of dis-
criminator is simpler for the Costas case. At SNR

𝑐
≈ 9 dB,

the linear regions of the arctangent discriminator and the
decision-directed discriminator begin to converge. Also,
for reducing SNR

𝑐
values around this point, the GNR of

the decision-directed discriminator begins to significantly
outperform the arctangent discriminator.Thus, for SNR

𝑐
val-

ues above approximately 9 dB, the arctangent discriminator
should be used while, for SNR

𝑐
values below this point, the

decision-directed discriminator should be employed.
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Figure 10: The measured standard deviation the receivers estimate
of SNR

𝑐
for the walking tests described in Section 5.1, compared to

the Cramér-Rao Lower Bound.

Although these conclusions have been drawn from
inspection of Figures 4 and 5, they can also be inferred from
inspection of the Monte-Carlo simulation results presented
in Section 4.3.

5.3. A Note on SNR
𝑐
Estimation. As the configuration and

tuning of the PLL described here are based on the premise
that the prevailing SNR

𝑐
is reasonably well known, it is worth

briefly commenting on the sensitivity of the PLL tuning
to errors in the estimate of SNR

𝑐
. Here, the experiment

described in Section 5.1 is taken as an example. In this case,
a run-time estimate of SNR

𝑐
was generated using the well-

known estimator described in [8] and further smoothed
by a 1 second moving-average filter. Ideally, the choice of
smoothing applied to the 𝐶/𝑁

0
estimate should reflect a

reasonable trade-off between noise-rejection and the speed of
response to 𝐶/𝑁

0
changes; however, this empirically derived

configuration has proven effective.
Recall that the IF data was digitally attenuated by a precise

factor for each trial. A reference measurement of the original
unattenuated SNR

𝑐
was taken, and being a very high value

of approximately 22 dB, it was considered to be an error-
free estimate. Then, for each attenuated trial, the difference
between this reference SNR

𝑐
value and the run-time SNR

𝑐

estimate, minus the applied attenuation, was recorded. This
represented the error in the run-time SNR

𝑐
estimate. A plot

of the measured standard deviation of the error is shown in
Figure 10, along with the Cramér-Rao Lower Bound standard
deviation for non-data-aided BPSK SNR

𝑐
estimation [22, 23].

In terms of sensitivity to errors in the estimate of SNR
𝑐
,

the expressions for discriminator gain, 𝐾
𝐷
, and tracking

bandwidth, 𝐵
𝜃
, presented in the appendix, can be used

to explore the how accurately the loop bandwidth can be
restored under low-SNR

𝑐
conditions. Assuming a second-

order PLL and the arctangent discriminator, and using (A.3)
and (A.5), the envelope of 𝐵

𝜃
was computed for SNR

𝑐
+

ΔSNR
𝑐
, using the the CRLB shown in Figure 10 as a reference.

These envelopes are shown in Figure 11 along with the
tracking bandwidth for the cases of perfect compensation
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𝑐
, is also

a function of SNR
𝑐
.

and of no compensation. Interestingly, even for very weak-
signal conditions, down to an SNR

𝑐
of 0 dB, the bandwidth

can typically be restored to within one Hertz of its design
value. For lower SNR

𝑐
values, however, the error becomes

noticeable, suggesting that more averaging should be applied
in the signal-to-noise ratio estimator, in order to provide a
less noisy estimate.

5.4. Choosing a Discriminator for Data/Pilot Tracking. This
section examines the problem of carrier tracking for a data-
pilot signal structure, specifically, the Galileo E1 B/C signal
is taken as an example. Of particular interest is the scenario
when the receiver has synchronized with the secondary
code on the pilot component of the signal and is capable
of combining both a Costas (E1-B) and a pure-PLL (E1-C)
estimate of the carrier phase error. The benefits of using the
GNR and linear region analysis presented in Section 3, when
choosing weights for estimate combining, will be illustrated
and some further considerations will be discussed.

A five-minute IF data-set was collected using a roof-
mounted antenna during which time the Galileo Prototype
Flight Model (PFM) satellite was broadcasting on PRN 11. A
complex sample rate of 20MHz was used and data was col-
lected with a fourteen-bit quantizer resolution. The received
signal was observed at a 𝐶/𝑁

0
of approximately 47 dBHz.

Reference carrier phase and frequency trajectories were
extracted from this dataset for use in the following experi-
ments. This was done by processing the data with a standard
pilot-only tracking architecture, comprising a 4Hz PLL
bandwidth operating with an update rate of 20ms, combined
with a 0.1 HzPLL-assistedDLL.As the antennawas stationary
and the reference oscillator was particularly stable, the use of
a low-bandwidth PLL and long coherent integration period
ensured that these reference measurements were of high
accuracy. An attenuated copy of this data was then processed
using different and pilot-only or data/pilot architectures,

using a more typical PLL design. The difference between the
estimated carrier phase and frequency for these architectures
and that of the reference was used as an indication of relative
performance.

When processing a data/pilot signal, a PLL can either
produce phase estimates using the pilot signal alone, or
combine estimates from both the data and the pilot signal
(see, e.g., [10, 14]). When two estimates are combined, they
can beweighted such that the tracking jitter isminimized.The
combined estimate and the associated tracking error variance
for such a combined estimate can be expressed as

𝑒DP = 𝑤D𝑒D + 𝑤P𝑒P, (41)

𝜎
2

𝛿𝜃
= (𝑤
2

DGNR
−1

D + 𝑤
2

PGNR
−1

P ) 𝐵
Design
𝜃

, (42)

where 𝑤 denotes the weight applied to each estimate and the
subscripts D and P denote data and pilot signals, respectively.

Equating the partial derivative of (42) with respect to 𝑤D
to zero and noting that𝑤D +𝑤P = 1, the (rather intuitive) set
of weights which minimize the tracking jitter can be shown
to be

{𝑤D, 𝑤P} = {
GNRD

GNRD + GNRP
,

GNRP
GNRD + GNRP

} . (43)

It is worth commenting that this result differs from
previously reported [10, 14] weighting guidelines which rec-
ommend that weights are chosen based upon discriminator
variance. Variance-based weighting is inappropriate for some
discriminators, such as the arctangent discriminator, as the
variance saturates to a moderate value for low SNR

𝑐
while

the gain continues to reduce. Variance alone, therefore, does
not reflect the true usefulness of the discriminator. GNR-
based weights, as prescribed by (43), consider both gain and
variance and, thus, yield superior performance. Note also
that (43) implicitly considers the coherent integration period,
which does not need to be equal for both the data and the pilot
signals, as the GNR is a direct function of 𝑇

𝐿
.

Thus, a data/pilot architecture employing (43) should
choose the appropriate discriminator for each of the pilot
and data signals separately, based on the prevailing SNR

𝑐
and

using the guidelines presented in Section 5.2. Subsequently,
the combining weights should be calculated based on the
GNR values of each of the chosen discriminators. This
composite phase error estimate can then be passed to the loop
filter.

Note that for very low 𝐶/𝑁
0
conditions the receivers

estimate of SNR
𝑐
can become noisy and unreliable, as shown

in Section 5.3. Thus, in certain cases, it may be beneficial to
consider alternative architectures; for example, the pilot-only
approach which neglects 𝑒D entirely [10]. Alternatively, the
weights can be formed based upon 𝑇

𝐿
. Noting that, under

high-𝐶/𝑁
0
conditions, the GNR becomes approximately

linearly proportional to𝑇
𝐿
, the weights could be computed by

replacing GNR in (43) with the coherent integration period
of the corresponding signal.

To examine their relative performance, the attenuated IF
data was processed with each of a pilot-only PLL and both
a time-based and a GNR-based combining PLL. A critically
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= 8Hz and each of the three
approaches to data-pilot tracking. For this experiment, 𝑇

𝐿
= 4ms

and, therfore, 𝐶/𝑁
0
(dB Hz) ≈ SNR

𝑐
(dB) + 21.

damped, 10Hz loop was employed in all cases, and a coherent
integration period of 4ms was used. The attenuation was
time-varying, beginning at 0 dB and increasing at a rate of
0.1 dB/s to a final value of 30 dB at five minutes. The variance
of the difference between the carrier phase of the attenuated
data and that of the reference was calculated over a 30 second
window for each PLL configuration. A plot of the measured
tracking error variance versus the average SNR

𝑐
over each 30

second window is shown in Figure 12.
It is clear from the measured results that when appro-

priate weighting is employed, the GNR-based data/pilot
PLL outperforms both of the other candidate architectures,
specifically in the range 0 ≤ SNR

𝑐
≤ 10 dB reaching

almost 3 dB. Perhapsmore interesting, however, is the relative
performance of the pilot-only and the time-based data/pilot
schemes. For SNR

𝑐
values higher than 5 dB, the time-based

and GNR-based architectures perform equally well. This is
because the arctangent and four-quadrant arctangent have
equal GNR in this region, and the weights in each case are
equal. Indeed, the divergence in performance at SNR

𝑐
= 5 dB

coincides with the divergence in GNR shown in Figure 4, for
very low SNR

𝑐
values, the respective performance of the pilot-

only and that of the GNR-based PLL converge. At this point,
the difference in GNR between the pure-PLL, used for the
pilot signal, and Costas, used for the data signal, is so large
that 𝑤D is almost zero.

A number of conclusions can be drawn from this experi-
ment. Firstly, it is clear that there may always be an advantage
to utilizing the data-signal for carrier phase estimation,
provided the estimate can be appropriately weighted.

However, it is evident that the incremental benefit dimin-
ishes rapidly for very weak-signals, becoming effectively
useless for SNR

𝑐
values below approximately 0 dB.This obser-

vation is broadly in line with that of [10], which claim that a
pilot-only scheme is optimal under weak-signal conditions.

It is evident, however, that inappropriate weighting can
prove detrimental to receiver performance. Specifically, this
occurs under low-SNR

𝑐
conditions, as evidenced by the

performance of the time-based combining architecturewhich
can perform more poorly than a pilot-only PLL. Secondly,
it is clear that a reasonably well-performing suboptimal
architecturemay be constructed by simply using a time-based
combining data-pilot PLL for strong and moderate signal
strengths and a pilot-only PLL when the signal is weak. An
appropriate threshold may, for example, be SNR

𝑐
≈ 3 dB (i.e.,

𝐶/𝑁
0
≈ 24 dBHz for 𝑇

𝐿
= 4ms).

6. Conclusions

Following a thorough analysis of carrier phase discrim-
inators, it is evident that, under weak-signal conditions,
traditional performance models fail to fully describe PLL
behavior. Both Monte-Carlo simulation and live signal tests
appear to confirm that SNR

𝑐
-induced gain degradation is

prevalent in some of these discriminators and that that has
a significant impact on overall PLL performance. For the
specific case of pedestrian navigation, it appears that the pro-
posed gain-compensation technique can provide substantial
performance improvements in terms of dynamic response
and cycle-slip frequency.

Results pertaining to the closed loop noise performance
of the PLL, when operating in its linear region, illustrated
that the GNR represents a useful metric which can infer the
relative closed loop performance of various discriminators,
based on their respective open loop characteristics. Utilizing
both this metric and the linear region analysis, experiments
have confirmed that the choice of discriminator should
consider the prevailing SNR

𝑐
, via the discriminator-specific

GNR function. Moreover, in terms of the design of data/pilot
tracking architectures the usefulness of the GNR metric
in providing a discriminator weighting scheme appears to
provide a corresponding improvement in tracking accuracy.

It is noteworthy that while the analysis presented here
considered only four discriminators, the metrics, and the
theoretical model employed (𝐾

𝐷
, GNR, and LR), can be

extended to consider and provide a comparative analysis of
a host of carrier phase estimators. Given an expression for
these three metrics as a function of SNR

𝑐
, this analysis could

be extended to consider any memory-less discriminator.

Appendix

As the integral expressions for the statistics of the four-
quadrant arctangent and the arctangent carrier phase dis-
criminators do not appear to yield a closed form, a set of
approximate expressions are presented here. The forms of
the expressions have been chosen by inspection of numerical
evaluations (9) and (10), for each discriminator and the
coefficients (𝑐

1
, 𝑐
2
, 𝑐
3
) have been optimized to minimize the

r.m.s error in the range −15 dB < SNR
𝑐
< 30 dB. Detailed also

are the maximum error, max(err) of the approximate model,
the value of SNR

𝑐
at which this error occurs, and the standard

deviation of the percentage error, denoted by 𝜎Err, calculated
across the entire fit range.
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The gain,𝐾
𝐷
, and variance, Var[𝑛𝜃], of the four-quadrant

arctangent carrier phase discriminator can be well approxi-
mated by

𝐾
𝐷
≈ erf (𝑐

1
√SNR

𝑐
) , (A.1)

where 𝑐
1
= 0.9567 and model errors are 𝜎Err = 2.883%, and

Errmax = 8.192% at SNR
𝑐
= −15 dB and

Var [𝑛𝜃] ≈
(𝑐
1
𝑒
−𝑐2√SNR𝑐 + 1) erf (𝑐

3
SNR
𝑐
)

SNR
𝑐

, (A.2)

where 𝑐
1
= 5.6503, 𝑐

2
= 1.2766, and 𝑐

3
= 0.4682 and

model errors are 𝜎Err = 2.457% and Errmax = 5.969% at
SNR
𝑐
= 4.7 dB. Similarly, the gain,𝐾

𝐷
, and variance, Var[𝑛𝜃],

of the arctangent carrier phase discriminator can be well
approximated by

𝐾
𝐷
≈ 1 − 𝑒

−𝑐1SNR𝑐 , (A.3)

where 𝑐
1
= 0.5 and model errors are 𝜎Err = 3.6𝑒

−8% and
Errmax = 8.4𝑒

−8% at SNR
𝑐
= −15 dB and

Var [𝑛𝜃] ≈
(𝑒
−𝑐1√SNR𝑐 + 1) erf (𝑐

2
SNR
𝑐
)

SNR
𝑐

, (A.4)

where 𝑐
1
= 0.8046 and 𝑐

2
= 0.3977 and model errors

are 𝜎Err = 2.247% and Errmax = 5.530% at SNR
𝑐
=

4 dB. Approximate expressions for the GNR of the arctangent
discriminators can be found by substituting the above expres-
sions into (34). One further interesting result is the solution
to (36), given the filter (8) and 𝑃 = 1. This expresses the
bandwidth of a second-order PLL which uses a proportional
and integral controller and is given by

𝐵
𝜃
=

2𝐴
2

0
𝐾
𝐷
+ 𝐴
1
(2 + 𝐴

0
𝐾
𝐷
𝑇
𝐿
)

𝐴
0
(4 − 𝐾

𝐷
𝑇
𝐿
(2𝐴
0
+ 𝐴
1
𝑇
𝐿
))
. (A.5)

Explicit design equations for seconder-order filters can be
found in, for example, [5, 6].
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