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The erosion of the safe basins and chaoticmotions of a nonlinear vibroimpact oscillator under both harmonic and bounded random
noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic
motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed.The sudden
change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value
may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins,
bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region,
hence making the system become more unsafely and chaotic motions may occur more easily.

1. Introduction

Nonsmooth factors arise naturally in engineering appli-
cations, such as impacts, collisions, and dry frictions [1].
A considerable amount of research activities have focused
on nonsmooth dynamical systems, including vibroimpact
systems, collisions dynamics, chattering dynamics, and stick-
slip motions, in recent years. In practice, engineering struc-
tures are often subjected to time dependent loadings of
stochastic nature, such as the natural phenomena due to wind
gusts, earthquakes, ocean waves, and random disturbance
or noise which always exists in a physical system. The
influence of random excitation on the dynamical behavior of
a vibroimpact dynamical system has caught the attention of
many researchers. Many effective methods have been devel-
oped, for example, linearization method used by Metrikyn
[2], quasistatic approach method used by Stratonovich [3],
exponential polynomial fitting method proposed by Zhu
[4], Markov process method used by Jing and Young [5],
stochastic averaging method used by Xu et al. [6, 7], variable
transformation method used by Zhuravlev [8], energy bal-
ancemethod used by Iourtchenko andDimentberg [9], mean
impact Poincaré mapmethod used by Feng and He [10], path
integration method used by Iourtchenko and Song [11], and

numerical simulation method used by Dimentberg et al. [12].
In [13], the authors tried to review and summarize the existing
methods, results, and literature available for solving problems
of stochastic vibroimpact systems. However, most researches
focused on responses statistics, such as statistic moment and
probability density function of the vibroimpact oscillator, and
few are focused on the bifurcations and chaos of the stochastic
vibroimpact dynamical systems.

It is well known that, by calculating the distance between
the stable and unstable manifold, Melnikov’s method [14]
gives a powerful approximate tool for investigating chaotic
motions in deterministic smooth system. However, classical
Melnikov’s method is not directly appropriate in the nons-
mooth system. Some effective Melnikov’s methods have been
proposed for deterministic piecewise smooth dynamical sys-
tems [15, 16] and nonlinear vibroimpact dynamical systems
[17]. To our knowledge, few Melnikov’s methods are well
developed for the stochastic vibroimpact dynamical systems.

In this paper, the bifurcation of safe basins and chaos
of a nonlinear vibroimpact oscillator under both harmonic
and bounded noise excitation are investigated. The impact
considered here is an instantaneous impact with restitution
factor 𝑒. The paper is organized as follows. In Section 2,
Melnikov’s method is extended to the analysis of homoclinic
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bifurcation in the stochastic vibroimpact system, and the
conditions for the onset of chaos are derived in the mean
square value sense. In Section 3, the variations of safe basins
are presented numerically when one changes the amplitude
of the harmonic excitation both in the deterministic and
stochastic cases. Conclusions are presented in Section 4.

2. The Stochastic Melnikov Function

2.1. Theoretical Analysis. Consider a classical Duffing
vibroimpact oscillator with bilateral constrains under both
harmonic and bounded random noise excitations governed
by the following equation:

𝑥̈ − 𝑥 + 𝛼𝑥
3
= 𝜀 (−𝛽𝑥̇ + 𝑓

1
cos𝜔
1
𝑡 + 𝑓
2
𝜉 (𝑡)) ,

|𝑥| < 1,

𝑥̇
+
= − (1 − 𝜀𝜌) 𝑥̇

−
, |𝑥| = 1,

(1)

where the dot indicates differentiation with respect to time
𝑡, 𝜀 is a small scale, 0 < 𝜀 ≪ 1, 𝛼 represents the
intensity of the nonlinear term, 𝛽 is the damping coefficient,
𝑓
1
and 𝜔

1
are amplitude and frequency of the deterministic

excitation, respectively, and 0 < 𝑒 ≤ 1 is the restitution
factor to be a known parameter of impact losses, 𝑒 = 1 −

𝜀𝜌, whereas subscripts “minus” and “plus” refer to value
of response velocity just before and after the instantaneous
impact. Thus 𝑥̇

+
and 𝑥̇

−
are actually rebound and impact

velocities of the mass, respectively. They have the same
magnitude whenever 𝑒 = 1; therefore this special case is
that of elastic impacts, whereas in case 𝑒 < 1 some impact
losses are observed. 𝑓

2
denotes the intensity of the random

excitation and 𝜉(𝑡) is a bounded noise process, which was
introduced by Stratonovich [18]:

𝜉 (𝑡) = cos (𝜔
2
𝑡 + 𝜎𝑊 (𝑡) + 𝜃) , (2)

where 𝜔
2
> 0 is the frequency of the random excitation,𝑊(𝑡)

is a standard Wiener process, and 𝜃 a uniformly distributed
random number in (0, 2𝜋). 𝜎𝑊̇(𝑡) is the random disorder
which describes random temporal deviations of the excitation
frequency from its expectation or mean 𝜔

2
. The process 𝜉(𝑡)

has the following power spectral density [19]:

𝑆 (𝜔) =

𝜎
2

2𝜋

[

1

4 (𝜔 − 𝜔
2
)
2
+ 𝜎
4

+

1

4 (𝜔 + 𝜔
2
)
2
+ 𝜎
4

] . (3)

Obviously |𝜉(𝑡)| ≤ 𝑓
2
is a bounded randomprocess. Periodic-

in-time excitationwith a “randomdisorder,” or randomphase
modulation appears in structural dynamics with traveling
loadings and/or structures, having certain imperfect spatial
periodicity in certain problems of aeroelasticity [19]. This
process will be assumed to be narrow-band, which is clearly
seen to be in the case provided that 𝜎 → 0. We assume
that 𝜎 ≪ 𝜔

2
in this paper. The bounded noise model

(2) is a suitable model and many researches have been
done on the responses of nonlinear system under bounded
noise excitation [20, 21]. Obviously, bounded noise 𝜉(𝑡) has

continuous sample function; hence Melnikov’s method may
be used in the stochastic system (1).

The physical model of (1) can be viewed as the motion
of a mass with harden stiffness under both harmonic and
bounded random noise external excitations, while two col-
lision obstacles are placed before and after the equilibrium
position with distance 1.

When 𝜀 = 0, system (1) reduces to an unperturbed
deterministic vibroimpact system. Using stability analysis,
one collects two center-type fixed points (√1/𝛼, 0) and
(−√1/𝛼, 0), and a saddle-type fixed point (0, 0). Denotes 𝑦 =
𝑥̇; two homoclinic orbits connecting the two center-type fixed
points and saddle-type fixed point are

(𝑥
𝑢
, 𝑦
𝑢
) = (±√

2

𝛼

sech (𝑡 − 𝑡
0
) ,

∓√
2

𝛼

sech (𝑡 − 𝑡
0
) tanh (𝑡 − 𝑡

0
)) ,

𝑡 ≤ 0,

(𝑥
𝑠
, 𝑦
𝑠
) = (±√

2

𝛼

sech (𝑡 + 𝑡
0
) ,

∓√
2

𝛼

sech (𝑡 + 𝑡
0
) tanh (𝑡 + 𝑡

0
)) ,

𝑡 ≥ 0,

(4)

where 𝑡
0
= arcsech(√𝛼/2).

Equation (4) is exactly the solution of the unperturbed
deterministic system (1) as 𝜀 = 0 without vibroimpact,
and similar system has been discussed in [17] by using the
Melnikov method. Using the results in [17, 22], one obtains
the stochastic Melnikov function for homoclinic orbits of
system (1):

𝑀(𝜃) = 𝜌𝑀
𝑑1
(𝜃) + 𝛽𝑀

𝑑2
(𝜃)

+ 𝑓
1
𝑀
𝑑3
(𝜃) + 𝑓

2
𝑀
𝑟
(𝜃) ,

(5)

where 𝑀
𝑑1
(𝜃),𝑀

𝑑2
(𝜃), and 𝑀

𝑑3
(𝜃) are the deterministic

parts of the random process 𝑀(𝜃); they are caused by the
deterministic harmonic excitation, and𝑀

𝑟
(𝜃) represents the

stochastic term which is caused by the bounded noise 𝜉(𝑡):

𝑀
𝑑1 (
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(6)

According to the dynamic theory, the stable and the
unstable manifolds will intersect transversely with each other
which means chaos will occur when there exist simple zeros
in Melnikov function (5) in the deterministic case 𝑓

2
= 0.

However, in the stochastic case𝑓
2

̸= 0, theMelnikov function
measures the random distance between the stable and the
unstable manifolds. In this case, the threshold value for the
rising of the chaotic motion depends on the property of the
random excitation process and may deviate from the one
for the deterministic case. In order to analyze the simple
zero points of𝑀(𝜃) in the statistics sense, one considers the
following equations:

𝐸 [𝑀 (𝜃) − 𝐸 [𝑀 (𝜃)]]
2
= 𝐸 [𝑓

2
𝑀
𝑟 (
𝜃)]
2
= 𝑓
2

2
𝜎
2

𝑀𝑟
,

𝐸 [0 − 𝐸 [𝑀 (𝜃)]]
2
= 𝐸 [𝑀 (𝜃)]

2
,

(7)

where 𝐸 represents the mathematics expectation. Since
𝐸[𝑀
𝑟
(𝜃)] = 0, the condition for the onset of chaotic motion

in the mean square value sense is

𝑓
2

2
𝜎
2
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= 𝐸
2
[𝑀 (𝜃)]

= (𝜌𝑀
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2
,

(8)
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Figure 1: Chaotic area of system (1), —: theoretical solution and
– – –: numerical solution.
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𝛼

sech (𝑡 + 𝑡
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𝑡0

sech (𝑡) tanh (𝑡) sin (𝜔𝑡 − 𝜔𝑡0) 𝑑𝑡.

(9)

Then, from (8), the condition of the occurrence of chaotic
motions of system (1) is

𝑓
1
> 𝑓
1
=

𝜌𝑀
𝑑1
(𝜃) + 𝛽𝑀

𝑑2
(𝜃) + 𝑓

2
𝜎
𝑀𝑟

𝑀
𝑑3 (

𝜃)

. (10)

2.2. Numerical Results. Now we give some numerical results
to verify the analytic conditions given by (8) and (10). The
parameters of system (1) are given by

𝛼 = 1.4, 𝛽 = 2.4, 𝜀 = 0.1, 𝜌 = 1.8,

𝜔
1
= 1.5, 𝜔

2
= 1.0, 𝜎 = 0.4.

(11)

The variation of the threshold value 𝑓
1
versus the bounded

noise amplitude 𝑓
2
is plotted in Figure 1 for the onset of
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Figure 2: Numerical results of (1) (𝑓
1
= 2.5, 𝑓

2
= 0.0, 𝑥(0) = −0.8, 𝑥̇(0) = −2.5).

chaotic monition in system (1), the solid line represents the
analytic results given by (10), and the dashed line represents
the numerical simulations according the criterion of the
largest Lyapunov exponent using the algorithm presented by
Wolf et al. [23]. Usually, calculating the Lyapunov exponents
is regarded as the simplest method to verify the existence
of chaotic behavior. However, the Melnikov method and the
erosion of the safe basins are mainly discussed in this paper,
while the largest Lyapunov exponent is only used to verify
the efficiency of the above twomethods.The largest Lyapunov
exponent of system (1) is positive in the area above the dashed
line, which means the occurrence of the chaotic motion,
while the largest Lyapunov exponent of system (1) is negative
in the area below the dashed line, whichmeans no occurrence
of the chaoticmotion. It can be seen clearly from Figure 1 that
Melnikov’s condition (10) is only a necessary condition for the
occurrence of chaotic motion in the Lyapunov sense. It can
also be seen that the threshold value 𝑓

1
will decrease when 𝑓

2

increase thus make the chaotic motions occur more easily.
Three different simulation points in Figure 1 are chosen

to compare the analytic results with the numerical results.
One point is (𝑓

1
, 𝑓
2
) = (2.5, 0.0) in the deterministic

case, which is below the analytic critical value 𝑓
1
= 3.41,

Melnikov’s criterion implies that the motion of system (1) is
regular, and numerical simulations show that there are two
coexisting attractors with the same largest exponent −0.351.
The corresponding phase portraits and time history portraits
are shown in Figures 2 and 3 for different initial values. The
response time history of system (1) and the phase plot are
shown in Figure 2 in the case 𝑥(0) = −0.8, 𝑥̇(0) = −2.5.
Clearly, the response is a period onewhile the phase trajectory
is a limit cycle.

The response time history of system (1) and the phase plot
are shown in Figure 3 in the case 𝑥(0) = −0.4, 𝑥̇(0) = 2.5.

Figures 2 and 3 show that the stable steady state solution
of a deterministic vibroimpact system may be different for
different initial values; such interesting phenomenon also

exists for stochastic vibroimpact system. Another simulation
point is (𝑓

1
, 𝑓
2
) = (2.5, 0.05) in the stochastic case, which

is also below the analytic critical value 𝑓
1

= 3.38, and
the largest Lyapunov exponent is −0.337. The corresponding
phase portraits and time history portraits are shown in
Figures 4 and 5 for different initial values. The response time
history of system (1) and the phase plot are shown in Figure 4
in the case 𝑥(0) = −0.8, 𝑥̇(0) = −2.5. Clearly, the response is a
quasiperiod one while the phase trajectory is a diffused limit
cycle.

The response time history of system (1) and the phase plot
are shown in Figure 5 in the case 𝑥(0) = −0.4, 𝑥̇(0) = 2.5.

Figures 4 and 5 show that the stationary response of
system (1) may be different for different initial values in
some parameter area. The random noise 𝜉(𝑡) will change the
steady-state response of system (1) from a period solution
to a quasiperiod solution. In fact, due to the existence of
randomnoise, themotionmay jump from one stable position
to another with some, maybe small, probability. However, it
may take a long time to observe such phenomenon, but the
simulation time is always limited in the practical numerical
simulation, so onemay give the conclusion only base on finite
time observed phenomenon.

It is well known, from the theory of nonlinear oscillation,
that if an oscillator with hardening nonlinear stiffness is
subjected to sinusoidal excitation, the response may exhibit
sharp jumps in amplitude. This jump behavior is associated
with the fact that, over a range of the values of the ratio
of excitation frequency to the natural frequency of the
degenerated linear oscillator, the response amplitude is triple-
valued. Therefore the system should have two stationary
responses which depend on the initial condition. However,
it is a disputable problem whether there are more than one
stationary response if an oscillator with hardening nonlinear
stiffness is subjected to random excitations [24]. Here, it is
found that there are more than one stationary response in a
nonlinear stochastic vibroimpact system.
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Figure 3: Numerical results of (1) (𝑓
1
= 2.5, 𝑓

2
= 0.0, 𝑥(0) = −0.4, 𝑥̇(0) = 2.5).
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Figure 4: Numerical results of (1) (𝑓
1
= 2.5, 𝑓

2
= 0.05, 𝑥(0) = −0.8, 𝑥̇(0) = −2.5).

The third simulation point is (𝑓
1
, 𝑓
2
) = (5.5, 0.05) in the

stochastic case, which is above the analytic critical value 𝑓
1
=

3.38, the largest Lyapunov exponent is 0.062. The response
time history of system (1) and the phase plot are shown in
Figure 6 in the case 𝑥(0) = −0.8, 𝑥̇(0) = −2.5. Clearly, the
response is a chaotic one.

3. Bifurcation of Safe Basins and Chaos

Alternative to theMelnikov function and Lyapunov exponent
method, there is another method to identify the rising of
chaos. One of these is to determine the global structures of
the system and one of these global structures is the boundary
of safe basin. The safe basin boundaries of attractors are

usually fractal and naturally incursive since the coexistence of
period and chaotic attractors. They are related to homoclinic
or heteroclinic intersections of stable and unstable manifolds
of the saddle points in the system and chaos often arises in
such system. The decrease of the safe basin’s area is called
basin erosion and will be discussed in this section.

In some time the limitation of the vibration amplitude
may be more important, since the structure of the system
will be destroyed when the amplitude of the vibration passes
through a critical value and thus leads to the researches of the
safe basins [25, 26].There are some relations between erosion
of safe basins and chaotic motions of the system. When the
safe basin is eroded, the boundary of the sage basin will have
fractal structures, and the motions initial from some points
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Figure 5: Numerical results of (1) (𝑓
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Figure 6: Numerical results of (1) (𝑓
1
= 5.5, 𝑓

2
= 0.05, 𝑥(0) = −0.8, 𝑥̇(0) = −2.5).

within the safe basinwill be chaotic. According to [25, 26], the
safe basins of the systemmay be defined using a bounded area
𝐷 in the space of phase trajectories. The trajectory starting
from the safe basins will be stay in the area𝐷when the time 𝑡
tends to infinity.Otherwise, the trajectory starting beyond the
safe basins will escape the area 𝐷; such trajectory is unstable
and may destroy or collapse the system. The structure of the
safe basins is similar to some attractor basins.The acreage and
shape of the safe basins will changewhen the parameter of the
system changes.

3.1. Bifurcation without Bounded Noises. In this paper,
the evolution of the safe basins of system (1) is studied
numerically when the parameter 𝑓

1
changes its value in the

deterministic case𝑓
2
= 0, firstly. In the numerical simulation,

the parameters in system (1) are chosen as:

𝛼 = 0.8, 𝛽 = 0.9, 𝜀 = 0.1, 𝜌 = 1.8,

𝜔
1
= 1.5, 𝜔

2
= 1.0, 𝜎 = 0.4, 𝑓

2
= 0.

(12)

The bounded area𝐷 is defined as follows:

𝐷 = {(𝑥, 𝑦) : −1 ≤ 𝑥 ≤ 1, −0.8 ≤ 𝑦 ≤ 0.8} ; (13)

then𝐷 is divided into 100 × 100 lattices and the lattice points
are taken as the initial values for the solutions of system (1).
If the solution of system (1) stays in area𝐷 for a long enough
time up to 𝑡 = 2000, such a solution can be approximately
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(i) 𝑓1 = 4.53, 𝑓2 = 0.00, 𝑝 = 0.0024

Figure 7: Erosion of safe basins in system (1): (𝑓
2
= 0).

taken as a safe solution, and the corresponding lattice may
be taken as part of the safe basins; if the solution of system
(1) escapes the area 𝐷, such a solution is taken as an unsafe
solution, and the corresponding lattice is beyond the safe
basins. Governing equation (1) is numerically integrated by
the fourth-order Runge-Kutta algorithm, and the numerical
results are shown in Figure 7(a) to Figure 7(i). The black
region denotes the safe basins while the blank region
represents the unsafe area in Figures 7 and 8.

The safe basins shown in Figure 7(a) are a densely packed,
integral one, while the safe basins shown in Figure 7(b) to
Figure 7(i) are eroded ones. Calculation results show that
in the case when 𝑓

1
≤ 𝑓
𝑠
= 0.21, the boundary of the

safe basins of system (1) are smooth without any erosion as

shown in Figure 7(a), where 𝑝 = 0.7654 is a proportionality
coefficient of the safe basins acreage to the whole acreage
of area 𝐷. It can be seen from Figure 7 that 𝑝 will decease
when 𝑓

1
increase which implies erosion of the safe basins.

In the case when 𝑓
1
> 𝑓
𝑠
, the boundary of the safe basins

are eroded more and more with increase of 𝑓
1
as shown in

Figure 7(b) to Figure 7(i), and in the case when 𝑓
1
> 𝑓
𝑒
=

4.54, the safe basins disappear completely. One may call such
phenomena that happen in the sudden change of the safe
basins, which become from integrated one to eroded one or
from eroded one to nothingness when 𝑓

1
passes through the

critical values 𝑓
𝑠
= 0.21 and 𝑓

𝑒
= 4.54, as deterministic safe

basins bifurcation. Then 𝑓
𝑠
= 0.21 and 𝑓

𝑒
= 4.54 are two

bifurcation points if 𝑓
1
is chosen as bifurcation parameter. In
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Figure 8: Erosion of safe basins in system (1): (𝑓
2
= 2.0).

the case when 𝑓
1
≤ 𝑓
𝑠
, the boundary of the safe basins of

system (1) are smooth; when 𝑓
𝑠
< 𝑓
1
≤ 𝑓
𝑒
the safe basins are

eroded and when 𝑓
1
> 𝑓
𝑒
, the safe basins disappear.

When 𝑓
2
= 0, the threshold value form condition (10) is

𝑓
1
= 4.93, which is close to the second safe basins bifurcation

point 𝑓
𝑒
= 4.54; it shows that there are strong relations

between the erosion of safe basin and chaotic motions in the
deterministic system.

3.2. Bifurcation with Bounded Noises. Next, we consider the
effect of the random noise on the safe basins, the parameters
in system (1) are chosen as

𝛼 = 0.8, 𝛽 = 0.9, 𝜀 = 0.1, 𝜌 = 1.8,

𝜔
1
= 1.5, 𝜔

2
= 1.0, 𝜎 = 0.4, 𝑓

2
= 2.0,

(14)

which are the same as in deterministic case for comparison
except that 𝑓

2
changes from 0 to 2. Then, the erosion of

the safe basin of system (1) is discussed numerically. For the
method of numerical simulation, the reader is referred to Shi-
nozuka and Jan [27], and the method of Monte-Carlo is used
to generate random samples. Here, only 10 random samples
are used in this paper due to the limitation of calculation
capacity. If the solution of system (1) stays in area𝐷 for a long
enough time 𝑡not less than 2000 in all the 10 random samples,
such a solution can be approximately taken as a safe solution,
and then the corresponding lattice may be taken as a part of
the safe basins, which is defined in a similar way as for the
deterministic one; if the solution of system (1) escapes from
area 𝐷, such a solution is taken as an unsafe solution, and
the corresponding lattice is not belonging to the safe basins.
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One may call such safe basins as stochastic safe basins. The
governing equation (1) is numerically integrated by the fourth
order Runge-Kutta algorithm, and the numerical results are
shown in Figure 8(a) to Figure 8(g).

Figures 8(a)–8(g) show that the stochastic safe basins are
eroded more and more with increase of 𝑓

1
, which is similar

to the deterministic case as shown in Figures 7(a)–7(i), yet
with significant differences in 𝑓

𝑠
and 𝑓

𝑒
. Calculation results

show that, in the case when 𝑓
1
> 𝑓
𝑠
= 0.00, the boundary of

the stochastic safe basins begins to be eroded more and more
with increase of 𝑓

1
as shown in Figure 8(b) to Figure 8(g)

and, in the case when 𝑓
1
> 𝑓
𝑒
= 3.43, the stochastic safe

basins disappear completely. One may call such phenomena
that happen in the sudden change of the stochastic safe
basins, which become from integrated one to eroded one or
from eroded one to nothingness when 𝑓

1
passes through the

critical values 𝑓
𝑠
= 0.00 and 𝑓

𝑒
= 3.43, as stochastic safe

basins bifurcation. Then 𝑓
𝑠
= 0.00 and 𝑓

𝑒
= 3.43 are two

bifurcation points if 𝑓
1
is chosen as bifurcation parameter.

In the case when 𝑓
1
≤ 𝑓
𝑠
, the boundary of the stochastic

safe basins of system (1) are smooth; when 𝑓
𝑠
< 𝑓
1
≤ 𝑓
𝑒

the stochastic safe basins are eroded and when 𝑓
1
> 𝑓
𝑒
, the

safe basins disappear. The random disturbance 𝑓
2
𝜉(𝑡) causes

𝑓
𝑠
and 𝑓

𝑒
decrease from 𝑓

𝑠
= 0.21, 𝑓

𝑒
= 4.54 to 𝑓

𝑠
= 0.00,

𝑓
𝑒
= 3.43 and makes the system more unsafe in comparison

with the deterministic case.
When 𝑓

2
= 2.0, the threshold value form condition

(10) is 𝑓
1
= 3.46, which is close to the second safe basins

bifurcation point 𝑓
𝑒
= 3.43; it also shows that there are

strong relations between the erosion of safe basin and chaotic
motions in stochastic dynamical system, which is similar in
the deterministic system.The incursive fractal fingers are also
observed in the stochastic system, which means that chaotic
responses still exist in the stochastic system (1) when 𝑓

2
̸= 0.

From Figure 8, one knows that random noise can aggravate
the erosion of the safe basin.

Overall, random noise may destroy the integrity of the
safe basins boundary, bring forward the occurrence of the
stochastic bifurcation, and hence make the system become
more unsafely. The threshold value of the stochastic dynami-
cal system form condition (10) is 𝑓

1
= 3.46, which is smaller

than the threshold value 𝑓
1
= 4.93 of the deterministic

dynamical system. Obviously, random noises make the para-
metric threshold for chaotic motions vary in a larger region,
hence making the chaotic motions occur more easily.

4. Conclusions and Discussion

The erosion of the safe basins and chaotic motions of
a nonlinear vibroimpact oscillator under harmonic and
bounded random noise is studied. Melnikov’s method in the
deterministic vibroimpact system is extended to the analysis
of homoclinic bifurcations and chaos in the stochastic case.
The results reveal that the threshold amplitude 𝑓

1
for the

onset of chaos decreases as the noise amplitude 𝑓
2
increase.

Although the theory of stochastic bifurcation has been
advanced to a new level in the last decade, there remain a
lot of problems to be solved. Even the definition of stochastic
bifurcation needs to be improved. In this paper, we suggest

an alternative definition for stochastic bifurcation based on
the analysis of the safe basins of a softening Duffing oscillator
subject to deterministic harmonic and bounded randomexci-
tations, which focuses on a sudden change in the character
of the safe basins of the dynamical system as the bifurcation
parameter passes through a critical value. This definition
applies equally well either to the stochastic bifurcation or to
the deterministic bifurcation. However, the application of the
definition for real systems needs more effect. The analysis
shows that the random noise causes the two bifurcation
points 𝑓

𝑠
and 𝑓

𝑒
decrease; the parametric threshold for

chaotic motions varies in a larger region, therefore making
the system more unsafely and making the chaotic motions
occur more easily. From physical point of view, the results
of this paper can help one to better design the system, such
that the system operates in a nonchaotic state and then can
be controlled more easily, meanwhile reducing the erosion of
the safe basins which makes the system more secure.

In the paper, Melnikov’s methods and bifurcation of safe
basins are the main research methods. In the fact, there
are other effective method to verify the chaos, for instance,
topological horseshoes method which has been successfully
applied in many works [28–30].
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