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Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling
strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from
2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation
is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation
of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for
strata construction and sample allocation using theMODIS-derived deforestation hotspots providedmore precise estimations than
simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation
provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block.

1. Introduction

Human-induced and natural forest disturbances change for-
est systems by influencing their composition, structure, and
functional processes [1]. Deforestation is the conversion of
forested areas to nonforest land uses, such as arable land,
urban areas, logged areas, or wasteland [2], and is important
for forest resource management, biodiversity conservation,
climate change, the global carbon cycle, and sustainability
management [3–6]. Research on the accurate monitoring
of deforestation and its influence is a topic of considerable
interest in the context of global warming.

Remotely sensed data with coarse spatial resolution,
such as the Advanced Very High Resolution Radiome-
ter (AVHRR) and Moderate-resolution Imaging Spectrora-
diometer (MODIS), are commonly used over large areas,
such as national, continental, climate zone, or global scales
[6–8]. Because most deforestation occurs at subpixel scales
[9, 10], these data are inadequate for directly and precisely
estimating deforestation [11]. High spatial resolution data,

such as Landsat data, allow for more accurate quantifica-
tion of deforestation areas [12–14]. However, the infrequent
repeat coverage, frequent cloud cover, and data costs often
preclude the use of wall-to-wall mapping approaches with
Landsat data for monitoring long-time deforestation over
large regions [6, 15, 16]. Most research adopts sample-based
methodologies to estimate deforestation with higher spatial
resolution imagery [6, 10, 13, 17]. Based on the estimated
results from the sampling regions, the deforestation area or
even the distribution of deforestation of the entire study area
can be extrapolated.

Sample-based methods that use a probability sampling
design provide a quantitative measure of the precision of
the uncertainty that is attributable to sampling and construct
confidence bounds for the area of deforestation.Theprecision
depends on the number of samples and their locations. Sam-
pling is a cost- and time-efficient alternative if the objective
is to estimate the area of deforestation rather than to map
deforestation. Sample-based methodologies can be classified
as random sampling, stratified sampling, and systematic
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Figure 1: The study area of Mato Grosso (MT) in Brazil.

sampling. The random sampling method randomly selects
complete images or several small blocks within the area
of interest and then analyzes the deforestation [6]. This
technique has been applied by lots of applications [15–19].
Based on parameters such as biome, precipitation, elevation,
dominant forest types, land cover types, disturbance degree,
topography, and soil types, the stratified sampling method
divides the study area into several strata and then selects the
same number of samples or allocates more samples into the
strata with greater expected levels of deforestation [20, 21].
The stratified sampling strategy is the common used method
in areas such as humid tropical forests [10, 22–24]. Systematic
sampling selects samples at a defined spatial interval and is
easily performed compared to the two sampling methods
described above. Systematic sampling designs have been
adopted to monitoring deforestation over large areas by
numerous researchers [13, 14].

Deforestation is a complex phenomenon of forest cover
change that is usually unevenly distributed and often con-
verges within a smaller region [18, 25, 26]. Although some
sampling method has been recommended for operational
assessments of global and regional deforestation rates in
the tropics [27] or has been implemented in several studies
[10, 20, 21, 24], the sampling strategies have both advantages
and disadvantages; sample-based methods for this specific
application has only been the subject of limited evaluation
[6]. Comparisons between different sampling designs are
required to further illustrate the adaptability of the sam-
pling method to various spatial and temporal scales. This
paper compares and discusses the precisions of deforestation
estimated by different sampling strategies using the state of
Mato Grosso in Brazil as an example. Landsat imagery and

a MODIS dataset from nearly the same period are used to
identify areas of deforestation and select sample blockswithin
the forest cover regions.

2. Study Area and Data

2.1. Study Area. The study area of Mato Grosso (MT) is
situated in the midwestern part of Brazil and is one of the
states that have been designated as part of the Legal Amazon
(Figure 1). MT’s total land area is 903,386 km2, of which up
to 67.8% is part of the southern basin of the Amazon River
[28]. The primary vegetation is characterized by latitudinal
variations from forests in the north to mixed zones in the
middle to Cerrado in the south [29]. Deforestation in the
Brazilian Amazon has been monitored for more than two
decades using a variety of satellite sensors. Deforestation
data products have identified periods of increasing (2001–
2004) and decreasing (2005–2007) deforestation rates in
Mato Grosso [30].

2.2. Data and Preprocessing

2.2.1. Landsat TM. Based on the characteristics of the study
area, the high spatial resolution (30m × 30m) multispectral
satellite sensor Landsat Thematic Mapper (TM) is selected
to assess the distribution of deforestation. This deforestation
dataset is used as a reference for evaluating different sampling
strategies. Forty-eight Landsat TM scenes from paths 223 to
231 and rows 65 to 72were obtained during dry periods (times
of vegetation growth) from June, 2005, to August, 2006. All
of the TM image data were preprocessed with radiometric
calibration, atmospheric correction based on the 6S radiant
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transfer model, geometric correction and registration, and
image mosaicking.

2.2.2. MODIS. The MODIS imagery dataset is composed of
the 8-day composite 1 km daytime land surface tempera-
ture (LST) dataset MYD11A2, the 16-day composite 500m
enhanced vegetation index (EVI) dataset MYD13A1, and
the yearly 500m land cover type dataset MCD12Q1 from
2005. The LST data and EVI data were imaged from June
10, 2002, to August 15, 2006, in which the data obtained
from June, 2005, to August, 2006, (the period of being
evaluated for deforestation) corresponded to the same period
as the TM data and the other data were needed as the
reference in the deforestation detection algorithm. The EVI
data were used because saturation levels are avoided, whereas
the normalized difference vegetation index (NDVI) tends to
approach saturation levels in high biomass regions, which
has important consequences for change detection [31]. The
MODIS land cover is used to mask all nonforest pixels,
leaving all forest type pixels classified as evergreen needleleaf
forests, evergreen broadleaf forests, deciduous needleleaf
forests, deciduous broadleaf forests, and mixed forests. All
of the deforestation detection processes are focused on the
forest cover pixels. The preprocessing steps for the MODIS
data include resampling the LST data to a spatial resolution
of 500m, mosaicking, projection conversion, quality control
to remove pixels with cloud contamination or low quality, and
creating subsets using the vector data of MT.

2.2.3. PRODES. The Brazilian National Institute for Space
Research (INPE) PRODES has provided annual wall-to-wall

deforestation maps of the Brazilian Legal Amazon [32] since
2000. These maps are used to evaluate the precision of
the deforestation detected from the Landsat and MODIS
imagery. PRODES employed a linear spectral mixing algo-
rithm to generate vegetation, soil, and shade fraction images.
The soil and shade fraction images were classified using
image segmentation, followed by unsupervised classification,
image editing, andmosaicking. PRODES pixels that had been
interpreted as deforestation by the PRODES analysts between
the study periods were marked as deforestation, and pixels
interpreted as other PRODES classes were labeled as no-
change.

3. Methodology

A flowchart of the research methodology is shown in
Figure 2.

3.1. Deforestation Detection from Landsat TM Data. The
disturbance index (DI) is a simple and effective means of
tracking vegetation disturbance across a variety of forest
ecosystems and is especially useful for identifying complete
forest canopy removal [33, 34]. The DI is based on the
Tasseled-Cap data space. The DI algorithm assumes that a
combination of the greenness and the wetness can highlight
the spectral response characteristics of the vegetation, while
the brightness can express the characteristics of nonvegeta-
tion areas.The brightness values of disturbed areas are higher
than those of nondisturbed forest areas, while the greenness
and wetness values are lower [33].
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At a basic level, the DI records the normalized spectral
distance of any given pixel from a nominal “mature forest”
class to a “bare soil” class. The DI is calculated using the
Tasseled-Cap indices for Landsat TM/ETM+ [34]:

DI = 𝐵󸀠 − (𝐺󸀠 +𝑊󸀠) , (1)

where 𝐵󸀠, 𝐺󸀠, and𝑊󸀠 represent the Tasseled-Cap brightness,
greenness, and wetness indices, respectively, normalized by a
dense forest class for each Landsat scene, such as

𝐵
󸀠
=

𝐵 − 𝑢
𝐵

𝜎
𝐵

, (2)

where 𝜇
𝐵
is the mean of the Tasseled-Cap brightness index

and 𝜎
𝐵
is the standard deviation of brightness within the

dense forest class for a particular scene.
Because the DI values are based on the statistics of the

forest reflectance from individual scenes, the DI metric is
relatively insensitive to the variability in solar geometry or
the bidirectional reflectance distribution function (BRDF)
between scenes and lessens the effect of vegetation phenolog-
ical variability between image dates [34].

The original application by Healey et al. [33] relied on
the absolute value of the DI from individual scenes to assess
the extent of disturbance. Masek et al. [34] used the decadal
change in DI value (ΔDI) as a more robust metric to identify
disturbance and recovery. In this study, we combined the
absolute value of DI

2005
of the initial stage, the change in DI

value, and the change in NDVI to detect deforestation from
the TM imagery. The ΔDI and ΔNDVI were calculated as
the temporal change DI

2006
-DI
2005

and NDVI
2006

-NDVI
2005

,
respectively. DI values greater than 1.0 have a high probability
of being disturbed or nonforest. Large positive values of
ΔDI or ΔNDVI correspond to likely disturbance events, and
ΔDI × ΔNDVI can increase the pixel difference between
deforestation and nondeforestation. Thresholds were applied
to the DI

2005
and ΔDI × ΔNDVI values to identify potential

deforestation (DI
2005
< thresh1 andΔDI×ΔNDVI > thresh2).

3.2. Deforestation Detection from MODIS Data. TheMODIS
global disturbance index (MGDI) algorithm [35, 36] was
adopted for deforestation mapping from the LST and EVI
data. The MGDI algorithm has been successfully tested over
the Western US and North America.

Deforestation caused by instantaneous disturbances, such
as wildfire, results in an immediate departure of the LST/EVI
ratio from the range of natural variability [36], which can be
detected by MGDIInst as defined by

MGDIInst =
(LSTmax/EVImax post)

𝑦

(LSTmax/EVImax post)
𝑦−1

, (3)

where MGDIInst is the instantaneous MGDI value, 𝑦 is the
period (from June, 2005, to August, 2006) being evaluated for
deforestation, (𝑦 − 1) is the period from June, 2002, to May,
2005. LSTmax is the maximum 8-day composite LST for the
computation period and EVImax post is the maximum 16-day

EVI that occurred after the maximum LST during the same
period.

Noninstantaneous disturbance events, such as hurricanes
and insect epidemics, cause departures from the range of
natural variability in the year following the disturbance [36].
The noninstantaneous variant of the MGDI algorithm is
given as follows:

MGDINon-Inst =
(LSTmax/EVImax)𝑦

(LSTmax/EVImax)𝑦−1

, (4)

whereMGDINon-Inst is the noninstantaneousMGDI value and
EVImax is the maximum 16-day composite EVI during the
computation period.

When calculating MGDIInst and MGDINon-Inst, for the
numerator in (3) and (4), LSTmax, EVImax post, and EVImax
during the deforestation evaluated period 𝑦were determined
for each pixel and then the LST/EVI ratio could be calculated.
As for the denominator, the period from June, 2002, to
May, 2005, was averagely divided into three parts and each
subperiod included 12 months (from June to May of the next
year); the LSTmax, EVImax post, and EVImax for each subperiod
were extracted to compute the LST/EVI ratio, and then the
mean LST/EVI ratio for all times (𝑦 − 1) was determined for
each pixel.

The difference between the instantaneous disturbances
and the noninstantaneous disturbances is controlled by the
rate of disturbance event. The MGDI is a dimensionless
value, and a given pixel’s MGDI value will tend toward unity
in the absence of disturbance. When a major disturbance
event, such as wildfire, occurs, LST will increase and EVI
will decrease instantaneously, resulting in a MGDI value
that is much larger than the multiyear mean. MGDIInst
and MGDINon-Inst are combined to be used for continuous
wall-to-wall deforestation detection in the research. Given a
suitable threshold, the deforestation pixels can be determined
based on the MGDI map.

3.3. Sampling Strategies Design. Tucker and Townshend [17]
randomly sampled complete Landsat images and determined
that using whole scenes will result in smaller standard errors
and save little or nothing in acquisition costs. However,
Duveiller et al. [13] suggested that the sampling efficiency can
be increased significantly by using small image extracts as
sampling units and having them systematically (rather than
randomly) distributed over the forest domain. Even if the
standard deviation of a small region is greater than that of
a large region, more samples could compensate for the larger
standard deviation, which means that more sampling units
with small areas might achieve a higher precision [37–39].

Based on these analyses, we sampled small 15 km × 15 km
blocks, and the entire study area was divided into 4081
blocks.The area and proportion of deforestation in each block
corresponding to the Landsat TM and MODIS results could
then be calculated. Three sampling strategies were designed
to select sample sites to estimate the deforestation areas inMT
during the period from 2005 to 2006.The difference between
our sampling designs and those in previously published
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studies is that the selected sample blocks must include some
forest pixels based on the MODIS MCD12Q1 data.

3.3.1. Random Sampling. Two random sampling methods
were used. First, we simply randomly selected samples within
the forest cover region. However, because the deforestation
regions usually distribute densely, sampling sites and the
variation in densities could influence the precision of the
results when using simple random sampling. Thus, we then
selected samples within the regions where the proportion of
deforestation from the MODIS dataset was greater than a
threshold. Various deforestation proportion thresholds were
used to further analyze the differences in the estimation
results.

3.3.2. Stratified Sampling. The stratification was based on the
MODIS-derived deforestation. The resulting low, medium,
high, and very high deforestation strata were defined as
MODIS-derived deforestation proportions of 0-1%, >1–5%,
>5–8%, and >10% per block, respectively. The sample sites
were allocated to the four strata using two different methods.
First, the samples are proportionally distributed. And second,
we selected samples based onNeyman optimal allocation [6].
The optimal allocation was determined using per stratum
variances of the MODIS-derived percentage of deforestation
for all blocks within each stratum.

3.3.3. Systematic Sampling. The systematic sampling design
is based on the number of samples, and fixed intervals were
used to obtain sample blocks. Furthermore, if there were
no forest pixels for a certain selected block, we sampled the
nearest block to the right or down as a substitute.

3.4. Deforestation Extrapolation and Precision Evaluation.
Two methods were used to compare the extrapolation pre-
cision of the deforestation result over the entire study area.
The first simple extrapolation method was based on

𝑦 =

∑
𝑛

𝑖=1
𝑥
𝑖

∑
𝑛

𝑖=1
𝑆
𝑖

× 𝐴, (5)

where 𝑦 is the estimated area of deforestation in the study
area, 𝑥

𝑖
and 𝑆
𝑖
are the deforestation area and the forest area,

respectively, for the 𝑖th sample block, and 𝐴 is the total forest
area of the study area.

Equation (5) can only be used to obtain the total defor-
estation area, but the distribution of deforestation cannot be
spatially determined. To estimate the distribution of defor-
estation within each block, a second extrapolation method
was adopted according to the relationship between the TM
and MODIS deforestations derived from the sample blocks
as in Hansen et al. [10]. A simple linear regression model (6)
was used to estimate the Landsat-scale deforestation area in
each block.The total deforestation in the study area is the sum
of the deforestation in all of the blocks:

𝐷TM = 𝑎 × 𝐷MODIS + 𝑏, (6)

where 𝐷TM and 𝐷MODIS are the corresponding deforestation
areas in each block and 𝑎 and 𝑏 are the coefficients determined
from the sample blocks.

Compared to the deforestation derived from the Landsat
imagery, the relative error (𝜀) of the extrapolated deforesta-
tion results for the entire study area was evaluated with

𝜀 =

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑦

0

󵄨
󵄨
󵄨
󵄨

𝑦
0

× 100%, (7)

where 𝑦 is the estimated deforestation area of the study area
and 𝑦

0
is the TM-derived deforestation area.

4. Results and Discussions

4.1. Deforestation Derived from TM Imagery and MODIS
Data. Based on the PRODES deforestation data as the ref-
erence, by visually interpreting and comparing the TM color
composite images pre- and postdeforestation, the thresholds
used for detecting the deforestation from TM imagery were
determined after several experiment tests. The pixels were
preliminarily classified as deforested if their ΔDI × ΔNDVI
values were greater than 5.0 and the DI

2005
values were less

than 20.0. Furthermore, each pixel was flagged as deforested
using a median filtering method with a 3 × 3 pixel window to
eliminate isolated pixels.

In the TM deforestation results, all of the nondeforesta-
tion and no-data pixels were masked out in white, and the
deforestation pixels were displayed in green. The PRODES
deforestation data were overlaid on the TM deforestation
results to determine the detection precision. In general, the
deforestation detected based on the TM imagery is spatially
consistent with that determined from the PRODES data.
Figure 3 compares the deforestation detected from the TM
imagery (path 226, row 69) and the PRODES deforestation
vector data. The deforestation detected from the Landsat TM
data was consistent with that from the PRODES data, such
as at site 1. Some locations, such as site 2, were only detected
from the TM data, while site 3 was only identified from the
PRODES data.

The MGDI algorithm described above was applied to the
MODIS data for the years 2002–2006 to detect deforestation
during the period from 2005 to 2006. The thresholds for
detecting deforestation from the MGDI map were deter-
mined using the deforestationmap derived from the TMdata
as the reference. We selected six deforestation areas where
the disturbance information could be identified in MODIS
data and tested different thresholds from40% to 80%with the
interval 5% increases from themulti-sub-periodsmean value.
Based on the calculation of total deforestation area across the
selected area at each threshold, any pixels with MGDI values
greater than 70% of the multiyear mean for instantaneous
disturbance or greater than 50% of the multiyear mean for
noninstantaneous disturbance were flagged as deforestation.
The PRODES deforestation data were also overlaid on the
MODIS deforestation results. Figure 4 illustrates the preci-
sion of the MODIS deforestation results compared to the
PRODES results. The large deforestation sites were success-
fully detected based on the MGDI algorithm.
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Figure 3: A comparison of the deforestation detected from the TM imagery (green areas) and the PRODES deforestation data (red polygons).

Figure 4: A comparison of the deforestation detected from the
MODIS data (red areas) and the PRODES deforestation data (green
polygons).

The differences in the deforestation distributions gen-
erated from the TM imagery, MODIS data, and PRODES
data were primarily caused by two factors. First, the TM and
MODIS imagery were not collected at exactly the same time
as the PRODES data. Some of the orbits were more than
onemonth apart, and new deforestationmight have occurred
during the intervening period that could not be detected
in both this study and the PRODES results. Second, the
PRODES deforestation data represent only the loss of intact
forest area (old growth forest), so the target parameter does
not include areas of forest cover change due to degradation,
regeneration, afforestation, regrowth, or clearing of regrowth.
However, several sites in which deforestation occurred before
2005 as well as between 2005 and 2006, such as site 2 in
Figure 3, were detected in this study.

Because of the nearly identical image times of theMODIS
and TM data, the deforestation results derived from the
MODIS dataset and the TM imagery were compared by cal-
culating the deforestation area within 99 15 k × 15 km blocks
(Figure 5). There is a highly linear correlation between the
MODIS-derived and the TM-derived deforestations, though
the area derived from the TM data is slightly larger than that
of MODIS.
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Figure 5: Plot of MODIS-derived versus TM-derived deforestation
per sample block.

4.2. Comparison of Sampling Designs Based on Simple Extrap-
olation. We analyzed the influence of the number of sam-
pling blocks on the estimation of deforestation using (5).
The analysis began with three randomly selected blocks and
increased to the total number of blocks in the study (4081),
and each block could only be used once. The variation of
the estimation error with the number of sampled blocks, as
calculated with (7), is shown in Figure 6.

Figure 6 shows that the sample locations and the sampling
density have a large effect on the estimation results. If the
first sampling blocks are located at a site where a very small
or a very large proportion of deforestation has occurred, the
relative error will fluctuate until it reaches a stable value.
Moreover, the estimation error varies little above a certain
number of sampling blocks. To further illustrate the influence
of the sampling density, we compared various sampling
designs using 100, 350, and 500 sampling blocks.

4.2.1. Error Analysis of Random Sampling Estimation. The
random sampling technique was designed to randomly select
sample blocks across the study area and in the blocks where
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Table 1: Deforestation error 𝜀 (%) estimated based on random sampling.

Sampling blocks Random sampling region
Study area >0.1%∗ >0.5%∗ >1%∗

100 29.43 7.28 9.35 31.17
350 13.52 4.76 24.12 29.33
500 4.40 8.13 26.84 34.10
∗The proportion means the MODIS-derived deforestation proportion in each block.
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Figure 6: The variation of deforestation estimation error with the
number of sample blocks.

MODIS-derived deforestation proportion is greater than
0.1%, 0.5%, and 1%. Table 1 shows the relative estimation
errors extrapolated from the sample blocks corresponding to
the designed random sampling strategies.

The relative error decreases with an increasing number
of sampling blocks when the samples are selected across
the entire study area. The relative error when selecting 500
blocks is 4.40%. Based on the MODIS-derived proportion of
deforestation, the estimation precision improves dramatically
if more than 0.1% of the blocks within the regions are
sampled. Because the study period is approximately one year,
the proportion of deforestation of each block might not be
large, so the small areas of deforestation detected with the
TM imagery most likely cannot be monitored using MODIS
imagery; this changes the variance of the selected samples
and results in larger errors when using a larger deforestation
proportion for the sample blocks. The random sampling
results indicate that the deforestation can be determined with
high precision if a suitable MODIS-derived deforestation
proportion is used to assist in the sampling and extrapolation
from the TM data.

4.2.2. Error Analysis of Stratified Sampling. The relative errors
of the extrapolation results from two sample allocation
methods, proportionally distributed allocation and Neyman
optimal allocation, compared to the TM-derived deforesta-
tion map are given in Table 2.

The extrapolation results of the stratified sampling show
that the precision of the Neyman optimal allocation method
is higher than that of the proportional allocation method.
The precisions of the two methods are similar when large
numbers of samples, such as 350 and 500 blocks, are used.

Table 2: Deforestation error 𝜀 (%) estimated from two methods of
stratified sampling.

Sampling blocks Proportional
allocation

Neyman optimal
allocation

100 14.30 8.34
350 4.14 3.74
500 4.04 3.62

Furthermore, the precisions of the two stratified sampling
methods changed slightly when the number of samples
increased from 350 to 500, which indicates that approxi-
mately 350 samples are sufficient to obtain a reliable estimate
with stratified sampling in this study area.

4.2.3. Error Analysis of Systematic Sampling Estimation. To
compare random sampling and stratified sampling with
systematic sampling using the same number of samples, we
adopted three systematic sampling intervals in which the
sample blocks are located at the intersections of the 1.0∘,
0.5∘, and 0.42∘ lines of latitude and longitude. These intervals
correspond to 83, 355, and 507 sample blocks, respectively.
The relative errors are shown in Table 3. The precision with
the 0.5∘ sampling interval is the highest of the three system-
atic sampling designs. However, because fewer samples are
located in strata with a high deforestation probability (>5%),
the precision decreases when using 507 samples.These results
indicate that both the sample density and the sample locations
influence the precision of the deforestation extrapolation.

4.2.4. Comparison of Sampling Strategies. The estimation
errors shown in Tables 1, 2, and 3 indicate that stratified
sampling with approximately 350 sample blocks, especially
for the Neyman optimal allocation method, provides the
highest precision of estimates of the total deforestation area
in the study area. Random sampling requires 500 samples
to achieve the same level of precision. Furthermore, the
estimation precision is not stable with a change in the sample
density and with few sample blocks. Systematic sampling
can obtain more reliable deforestation results than random
sampling, which also depends on the sample locations.
Sampling blocks with forest cover can provide higher levels
of precision for the entire study area. Based on this analysis,
stratified sampling is recommended as the best method to
combine information from both the low and high spatial
resolutions because the low resolution signal allowed for the
efficient targeting of deforestation hotspots.
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Table 3: Deforestation error 𝜀 (%) estimated from systematic sampling.

Strata One degree interval 0.5 degree interval 0.42 degree interval
Blocks in strata (%)# Relative error (%) Blocks in strata (%)# Relative error (%) Blocks in strata (%)# Relative error (%)

0-1% 68 (82)

15.02

284 (80)

5.56

405 (80)

7.21
1%–5% 10 (12) 55 (15.5) 86 (17)
5%–8% 2 (2.4) 10 (2.8) 12 (2.3)
>8% 3 (3.6) 6 (1.7) 4 (0.7)
Total 83 (100) 355 (100) 507 (100)
#The number in the parentheses is the proportion of the sample blocks in each stratum.

Table 4: Comparison of the relative error 𝜀 (%) extrapolated from two methods.

Sampling blocks# Random sampling Stratified proportional allocation Stratified Neyman optimal allocation Systematic sampling
E1∗ E2∗ E1 E2 E1 E2 E1 E2

100 (83) 29.43 16.51 14.30 9.32 8.34 4.15 15.02 12.14
350 (355) 13.52 12.72 4.14 6.12 3.74 3.36 5.56 6.06
500 (507) 4.40 3.63 4.04 5.16 3.62 2.82 7.21 10.12
#The number in the parentheses is the number of sampling blocks used for the systematic sampling.
∗E1 means the simple extrapolation from (5), and E2 is the regression extrapolation from (6) based on the relationship between the MODIS-derived and TM-
derived deforestation.

4.3. Comparison of Extrapolation Methods. To obtain the
spatial distribution of the deforestation sites, a linear regres-
sion model between the MODIS-derived and TM-derived
deforestation (6) was constructed using the selected sample
blocks. The model was then applied to the MODIS-derived
deforestation map to obtain the corresponding deforestation
area in each block. The deforestation results were evaluated
with the TM-derived results, and the relative errors are
compared with the results of the simple extrapolation in
Table 4.

The relative errors shown in Table 4 lead to several
conclusions. First, the regularity of the precision extrapolated
from (6) is similar to that obtained with (5). The two extrap-
olation methods both provide the highest precision with
the stratified Neyman optimal allocation sampling method
and the lowest precision with random sampling. Second, the
precision extrapolated from the regression model is higher
than that from (5). The regression model (6) fully utilizes the
deforestation data of nonsampled blocks detected from the
MODIS dataset, but they are not considered in (5). While
only the total deforestation area is retrieved by the simple
extrapolation method, the regression extrapolation method
can provide the detailed deforestation proportion in each
block with higher precision. However, the results estimated
from the regression model depend on accurately detected
deforestation in both the MODIS and the TM datasets.

5. Conclusions

Using the PRODES deforestation data as a reference, defor-
estation areas are detected from nearly synchronous TM
imagery and MODIS datasets. Several sampling designs
employing TM-derived and MODIS-derived deforestation
were compared to estimate the deforestation across the
study area from 2005 to 2006. In general, the sampling

approaches merit consideration as timely and cost-effective
components for monitoring deforestation over large areas.
The complete coverage TM-derived deforestation provides
a unique opportunity to assess different sampling designs
because it allows comparisons that are based on wall-to-
wall estimators and are not estimated from single samples. A
stratified sampling method that included strata construction
and sample allocation provided more precise estimates than
both simple random sampling and systematic sampling.
Moreover, regressions between theMODIS-derived and TM-
derived deforestation results provide precise estimates of both
the total deforestation area and the deforestation distribution
in each block.
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