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In recent years Grammatical Evolution (GE) has been used as a representation of Genetic Programming (GP) which has been
applied to many optimization problems such as symbolic regression, classification, Boolean functions, constructed problems, and
algorithmic problems. GE can use a diversity of searching strategies including Swarm Intelligence (SI). Particle SwarmOptimisation
(PSO) is an algorithm of SI that has two main problems: premature convergence and poor diversity. Particle Evolutionary Swarm
Optimization (PESO) is a recent and novel algorithmwhich is also part of SI. PESO uses two perturbations to avoid PSO’s problems.
In this paper we propose using PESO and PSO in the frame of GE as strategies to generate heuristics that solve the Bin Packing
Problem (BPP); it is possible however to apply this methodology to other kinds of problems using another Grammar designed for
that problem. A comparison between PESO, PSO, and BPP’s heuristics is performed through the nonparametric Friedman test.The
main contribution of this paper is proposing a Grammar to generate online and offline heuristics depending on the test instance
trying to improve the heuristics generated by other grammars and humans; it also proposes a way to implement different algorithms
as search strategies in GE like PESO to obtain better results than those obtained by PSO.

1. Introduction

The methodology development to solve a specific problem
is a process that entails the problem study and the analysis
instances from suchproblem.There aremanyproblems [1] for
which there are no methodologies that can provide the exact
solution, because the size of the problem search space makes
it intractable in time, and it makes it necessary to search and
improve methodologies that can give a solution in a finite
time.There aremethodologies based onArtificial Intelligence
which do not yield exact solutions; those methodologies,
however, provide an approximation, and among those we can
find the following methodologies.

Heuristics are defined as “a type of strategy that dramat-
ically limits the search for solutions” [2, 3]. One important
characteristic of heuristics is that they can obtain a result

for an instance problem in polynomialtime [1], although
heuristics are developed for a specific instance problem.

Metaheuristics are defined as “a master strategy that
guides and modifies other heuristics to obtain solutions
generally better that the ones obtained with a local search
optimization” [4]. The metaheuristics can work over several
instances of a given problem or various problems, but it
is necessary to adapt the metaheuristics to work with each
problem.

It has been shown that the metaheuristic Genetic Pro-
gramming [5] can generate a heuristic that can be applied
to an instance problem [6]. There also exist metaheuristics
that are based on Genetic Programming’s paradigm [7]
such as Grammatical Differential Evolution [8], Grammatical
Swarm [9], Particle Swarm Programming [10], and Geometric
Differential Evolution [11].
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Figure 1: An example of a transformation from genotype to phenotype using a BNF Grammar. It begins with the start symbol, if the
production rule for this symbol is only one rule, then the production rule replaces the start symbol, and the process begins choosing the
production rules based on the current genotype. It takes each genotype and the nonterminal symbol from the left to perform the next
production using (1) until all the genotypes are mapped or there are not more nonterminals in the phenotype.

The Bin Packing Problem (BPP) has been widely studied
because of its many Industrial Applications, like wood and
glass cutting, packing in transportation and warehousing
[12], and job scheduling on uniform processors [13, 14].
This is an NP-Hard Problem [1] and due to its complexity
many heuristics have been developed attempting to give an
approximation [15–19]. Some metaheuristics have also been
applied to try to obtain better results than those obtained by
heuristics [20–22]. Some exact algorithms have been devel-
oped [23–25]; however, given the nature of the problem the
time reported by these algorithms grows up and depending
on the instance the time may grow up exponentially.

The contribution of this paper is to propose a generic
methodology to generate heuristics using GE with search
strategies. It has been shown that is possible to use this
methodology to generate BPP heuristics by using PESO
and PSO as search strategies; it was also shown that the
heuristics generated with the proposed Grammar have better
performance than the BPP’s classical heuristics, which were
designed by an expert in Operational Research.Those results
were obtained by comparing the results obtained by the GE
and the BPP heuristics by means of Friedman nonparametric
test [26].

The GE is described in Section 2, including the PSO
and PESO. Section 3 describes the Bin Packing Problem,
the state-of-the-art heuristics, the instances used, and the
fitness function. We describe the experiments performed in
Section 4. Finally, general conclusions about the present work
are presented in Section 5, including future perspectives of
this work.

2. Grammatical Evolution

Grammatical Evolution (GE) [7] is a grammar-based form
of Genetic Programming (GP) [27]. GE joins the principles
of molecular biology, which are used by GP, and the power

of formal grammars. Unlike GP, GE adopts a population of
lineal genotypic integer strings, or binary strings, witch are
transformed into functional phenotypic through a genotype-
to-phenotype mapping process [28]; this process is also
known as Indirect Representation [29]. The genotype strings
evolve with no knowledge of their phenotypic equivalent,
only using the fitness measure.

The transformation is governed through a Backus Naur
Form grammar (BNF), which is made up of the tuple
𝑁,𝑇, 𝑃, 𝑆, where 𝑁 is the set of all nonterminal symbols, 𝑇
is the set of terminals, 𝑃 is the set of production rules that
map 𝑁 → 𝑇, and 𝑆 is the initial start symbol where 𝑆 ∈ 𝑁.
There are a number of production rules that can be applied to
a nonterminal; an “|” (or) symbol separates the options.

Even though the GE uses the Genetic Algorithm (GA)
[7, 28, 30] as a search strategy it is possible to use another
search strategy like the Particle Swarm Optimization, called
Grammatical Swarm (GS) [8].

In GE each individual is mapped into a program using
the BNF, using (1) proposed in [28] to choose the next
production based on the nonterminal symbol. An example
of the mapping process employed by GE is shown in Figure 1.
Consider

Rule = 𝑐%𝑟, (1)

where 𝑐 is the codon value and 𝑟 is the number of production
rules available for the current nonterminal.

The GE can use different search strategies; our proposed
model is shown in Figure 2.This model includes the problem
instance and the search strategy as an input. In [28] the search
strategy is part of the process; however it can be seen as
an additional element that can be chosen to work with GE.
The GE will generate a solution through the search strategy
selected and it will be evaluated in the objective function
using the problem instance.
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Figure 2: GE’smethodology used in the present work: the presented
methodology can be used with different search strategies.

2.1. Particle Swarm Optimization. Particle Swarm Optimiza-
tion (PSO) [31–35] is a metaheuristic bioinspired in the flock
of birds or school of fish. It was developed by Kennedy
and Eberthart based on a concept called social metaphor.
This metaheuristic simulates a society where all individuals
contribute with their knowledge to obtain a better solution.
There are three factors that influence the change of status or
behavior of an individual.

(i) The knowledge of the environment or adaptation: it is
related to the importance given to the experience of
the individual.

(ii) His experience or local memory: it is related to the
importance given to the best result found by the
individual.

(iii) The experience of their neighbors or global memory:
this is related to how important is the best result
obtained by their neighbors or other individuals.

In this metaheuristic each individual is considered as a
particle and moves through a multidimensional space that
represents the social space; the search space depends on the
dimension of space which in turn depends on the variables
used to represent the problem.

For the update of each particle we use the velocity vector
which tells how fast the particle will move in each of the
dimensions; the method for updating the speed of PSO is
given by (2), and its position is updated by (3). Algorithm 1
shows the complete PSO algorithm:

V
𝑖
= 𝑤V
𝑖
+ 𝜙
1
(𝑥
𝑖
− 𝐵global) + 𝜙2 (𝑥𝑖 − 𝐵local) , (2)

𝑥
𝑖
= 𝑥
𝑖
+ V
𝑖
, (3)

where

(i) V
𝑖
is the velocity of the 𝑖th particle,

(ii) 𝑤 is adjustment factor to the environment,
(iii) 𝜙

1
is the memory coefficient in the neighborhood,

(iv) 𝜙
2
is the coefficient memory,

(v) 𝑥
𝑖
is the position of the 𝑖th particle,

(vi) 𝐵global is the best position found so far by all particles,
(vii) 𝐵local is the best position found by the 𝑖th particle.

2.2. Particle Evolutionary Swarm Optimization. Particle Evo-
lutionary Swarm Optimization (PESO) [36–38] is based on
PSO but introduces two perturbations in order to avoid two
problems observed in PSO [39]:

(i) premature convergence,
(ii) poor diversity.

Algorithm 2 shows the PESO Algorithm with two pertur-
bations, Algorithms 3 and 4. The C-Perturbation has the
advantage of keeping the self-organization potential of the
flock as no separate probability distribution needs to be
computed; meanwhile the M-Perturbation helps keeping
diversity into the population.

3. Bin Packing Problem

The Bin Packing Problem (BPP) [40] can be described as
follows: given 𝑛 items that need to be packed in the lowest
possible number of bins, each item has a weight 𝑤

𝑗
, where 𝑗

is the element; the max capacity of the bins 𝑐 is also available.
The objective is to minimize the bins used to pack all the
items, given that each item is assigned only to one bin, and
the sum of all the items in the bin can not exceed the bin’s
size.

This problem has been widely studied, including the
following:

(i) proposing new theorems [41, 42],
(ii) developing new heuristic algorithms based on Oper-

ational Research concepts [18, 43],
(iii) characterizing the problem instances [44–46],
(iv) implementing metaheuristics [20, 47–49].

This problem has been shown to be an NP-Hard opti-
mization problem [1]. A mathematical definition of the BPP
is as follows:

Minimize

𝑧 =

𝑛

∑

𝑖=1

𝑦
𝑖
, (4)

subject to the following constraints and conditions:
𝑛

∑

𝑗=1

𝑤
𝑗
𝑥
𝑖𝑗
≤ 𝑐𝑦
𝑖
, 𝑖 ∈ 𝑁 = {1, . . . , 𝑛} ,

𝑛

∑

𝑖=1

𝑥
𝑖𝑗
= 1, 𝑗 ∈ 𝑁,

𝑦
𝑖
∈ {0, 1} , 𝑖 ∈ 𝑁,

𝑥
𝑖𝑗
∈ {0, 1} , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁,

(5)
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Require: 𝑤 adaptation to environment coefficient, 𝜙
1
neighborhood memory

coefficient, 𝜙
2
memory coefficient, 𝑛 swarm size.

(1) Start the swarm particles.
(2) Start the velocity vector for each particle in the swarm.
(3) while stopping criterion not met do
(4) for 𝑖 = 1 to 𝑛 do
(5) If the 𝑖-particle’s fitness is better than the local best then replace the

local best with the 𝑖-particle.
(6) If the 𝑖-particle’s fitness is better than the global best then replace the

global best with the 𝑖-particle.
(7) Update the velocity vector by (2).
(8) Update the particle’s position with the velocity vector by (3).
(9) end for
(10) end while

Algorithm 1: PSO Algorithm.

Require: 𝑤 adaptation to environment coefficient, 𝜙
1
neighborhood memory

coefficient, 𝜙
2
memory coefficient, 𝑛 swarm size.

(1) Start the swarm particles.
(2) Start the velocity vector for each particle in the swarm.
(3) while stopping criterion not met do
(4) for 𝑖 = 1 to 𝑛 do
(5) If the 𝑖-particle’s fitness is better than the local best then replace the

local best with the 𝑖-particle.
(6) If the 𝑖-particle’s fitness is better than the global best then replace the

global best with the 𝑖-particle.
(7) Update the velocity vector by (2).
(8) Update the particle’s position with the velocity vector by (3).
(9) Apply the C-Perturbation
(10) Apply the M-Perturbation
(11) end for
(12) end while

Algorithm 2: PESO Algorithm.

(1) for all Particles do
(2) Generate 𝑟 uniformly between 0 and 1.
(3) Generate 𝑝1, 𝑝2 and 𝑝3 as random numbers between 1 and the number

of particles.
(4) Generate the 𝑖-new particle using the following equation and applying it

to each particle dimension: 𝑛𝑒𝑤
𝑖
= 𝑝1 + 𝑟 (𝑝2 − 𝑝3).

(5) end for
(6) for all Particles do
(7) If the 𝑖-new particle is better that the 𝑖-particle then replace the 𝑖-particle

with the 𝑖-new particle.
(8) end for

Algorithm 3: C-Perturbation.

where
(i) 𝑤
𝑗
is weight of the 𝑗 item,

(ii) 𝑦
𝑖
is binary variable that shows if the bin 𝑖 has items,

(iii) 𝑥
𝑖𝑗
indicates whether the 𝑗 item is into the 𝑖 bin,

(iv) 𝑛 is number of available bins,
(v) 𝑐 is capacity of each bin.

The algorithms for the BPP instances can be classified as
online or offline [46].We have algorithms considered online if
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(1) for all Particles do
(2) for all Dimension do
(3) Generate 𝑟 uniformly between 0 and 1.
(4) if 𝑟 ≤ 1/𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 then
(5) 𝑛𝑒𝑤

𝑖𝑑
= 𝑟𝑎𝑛𝑑𝑜𝑚(𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑, 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑)

(6) else
(7) 𝑛𝑒𝑤

𝑖𝑑
= 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑑

(8) end if
(9) end for
(10) end for
(11) for all Particles do
(12) If the 𝑖-new particle is better that the 𝑖-particle then replace the 𝑖-particle

with the 𝑖-new particle.
(13) end for

Algorithm 4: M-Perturbation.

we do not know the items before starting the packing process
and offline if we know all the items before starting. In this
research we worked with both algorithms.

3.1. Tests Instances. Beasley [50] proposed a collection of
test data sets, known as OR-Library and maintained by the
Beasley University, which were studied by Falkenauer [21].
This collection contains a variety of test data sets for a variety
of Operational Research problems, including the BPP in
several dimensions. For the one-dimensional BPP case the
collection contains eight data sets that can be classified in two
classes.

(i) Unifor. The data sets from binpack1 to binpack4
consist of items of sizes uniformly distributed in
(20, 100) to be packed into bins of size 150. The
number of bins in the current known solution was
found by [21].

(ii) Triplets. The data sets from binpack5 to binpack8
consist of items from (24, 50) to be packed into bins of
size 100.The number of bins can be obtained dividing
the size of the data set by three.

Scholl et al. [23] proposed another collection of data sets;
only 1184 problems were solved optimally. Alvim et al.
[51] reported the optimal solutions for the remaining 26
problems. The collection contains three data sets.

(i) Set 1. It has 720 instances with items drawn from
a uniform distribution on three intervals [1, 100],
[20, 100], and [30, 100]. The bin capacity is C = 100,
120, and 150 and 𝑛 = 50, 100, 200, and 500.

(ii) Set 2. It has 480 instances with C = 1000 and 𝑛 = 50,
100, 200, and 500. Each bin has an average of 3–9
items.

(iii) Set 3. It has 10 instances with C = 100,000, 𝑛 = 200,
and items are drawn from a uniform distribution on
[20000, 35000]. Set 3 is considered the most difficult
of the three sets.

3.2. Classic Heuristics. Heuristics have been used to solve
the BPP, obtaining good results. Reference [18] shows the
following heuristics as Classical Heuristics; these heuristics
can be used as online heuristics if the items need to be packed
as they come in or offline heuristics if the items can be sorted
before starting the packing process.

(i) Best Fit [17] puts the piece in the fullest bin that has
room for it and opens a new bin if the piece does not
fit in any existing bin.

(ii) Worst Fit [18] puts the piece in the emptiest bin that
has room for it and opens a new bin if the piece does
not fit in any existing bin.

(iii) Almost Worst Fit [18] puts the piece in the second
emptiest bin if that bin has room for it and opens a
new bin if the piece does not fit in any open bin.

(iv) Next Fit [15] puts the piece in the right-most bin and
opens a new bin if there is not enough room for it.

(v) First Fit [15] puts the piece in the left-most bin that
has room for it and opens a new bin if it does not fit
in any open bin.

Even though there are some heuristics having better perfor-
mance than the heuristics shown in the present section [16,
19, 42, 52, 53], such heuristics have been the result of research
of lower and upper bounds to determine theminimal number
of bins.

3.3. FitnessMeasure. There aremany FitnessMeasures used to
discern the results obtained by heuristics and metaheuristics
algorithms. In [54] two fitness measures are shown: the first
measure (see (6)) tries to find the difference between the used
bins and the theorical upper bound on the bins needed; the
second (see (7)) was proposed in [47] and rewards full or
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Require: SS search strategy, FF Fitness Function, BNF-G Grammar, IS
Instances Set.

(1) for all Instance Set into Instances Set do
(2) Select randomly an Instance from the Instance Set
(3) Start an initial population.
(4) while stopping criterion not met do
(5) Apply the mapping process using the Grammar BNF-G, as seen in

the Figure 1, to obtain an heuristic by each element into the population.
(6) Calculate the fitness value, using FF, for each element into the population

applying the heuristic generated to the instance selected.
(7) Apply the search strategy to optimize the elements into the population.
(8) end while
(9) Apply the found heuristic to all instances from the Instance Set.
(10) end for
(11) returnHeuristic for each instance set.

Algorithm 5: Proposed approach.

almost full bins; the objective is to fill each bin, minimizing
the free space:

Fitness = 𝐵 −
∑
𝑛

𝑖=1
𝑤
𝑖

𝐶
, (6)

Fitness = 1 − (

∑
𝑛

𝑖=1
((∑
𝑚

𝑗=1
𝑤
𝑗
𝑥
𝑖𝑗
) /𝐶)
2

𝑛
) , (7)

where

(i) 𝐵 is number of bins used,
(ii) 𝑛 is number of containers,
(iii) 𝑚 is number of pieces,
(iv) 𝑤

𝑗
is 𝑗th’s piece size,

(v) consider

𝑥
𝑖𝑗
= {

1 if the piece 𝑗 is in the container 𝑖
0 otherwise,

(8)

(vi) 𝐶 is bin capacity.

4. Grammar Design and Testing

Algorithm 5 shows the proposed approach; this approach
allows the use of different fitness functions and search
strategies to generate heuristics automatically.

To improve the Bin PackingHeuristics it was necessary to
design a grammar that represents the Bin Packing Problem.
In [55] Grammar 1 is shown to be based on heuristic elements
taken by [6]; however the results obtained in [1] give 10%
of solutions that can not be applied to the instance and for
this reason this approach does not need to be included to be
compared against the results obtained.

That Grammar has been improved in the Grammar 2
[56] to obtain similar results to those obtained by the BestFit
heuristic. However this grammar cannot be applied to Bin

Table 1: PESO and PSO parameters.

Parameter Value
Population size 50
𝑤 1.0
𝜙
1

0.8
𝜙
2

0.5
Function calls 1500

Packing offline Problems because it does not sort pieces.
Grammar 3 is proposed to improve the results obtained by
Grammar 2, given that it can generate heuristics online and
offline:

⟨inicio⟩ ⊨ (⟨expr⟩) <= (⟨expr⟩)

⟨expr⟩ ⊨ (⟨expr⟩ ⟨op⟩ ⟨expr⟩) | ⟨var⟩ | abs (⟨expr2⟩)

⟨expr2⟩ ⊨ (⟨expr2⟩ ⟨op⟩ ⟨expr2⟩) | ⟨var⟩

⟨var⟩ ⊨ 𝐹 | 𝐶 | 𝑆

⟨op⟩ ⊨ + | ∗ | − | /.

(9)

Grammar 1. Grammar based on FirstFit Heuristic was pro-
posed in [55] and we use the Heuristic Components shown
in [57]

⟨inicio⟩ ⊨ ⟨exprs⟩ ⋅ (⟨expr⟩) <= (⟨expr⟩)

⟨exprs⟩ ⊨ Sort (⟨exprk⟩ , ⟨order⟩) | 𝜆

⟨exprk⟩ ⊨ Bin | Content

⟨order⟩ ⊨ Asc | Des
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Table 3: Example of heuristics obtained for each instance set using Grammar 3.

Instance Heuristic generated
dasaset1 Sort(Elements, Des) ⋅ Sort(Bin, Des) ⋅ ((𝐹 + 𝑆)) ≤ (abs(𝐶))
dataset2 Sort(Elements, Des) ⋅ Sort(Cont, Des) ⋅ (abs(𝑆)) ≤ (abs((𝐶 − 𝐹))))
dataset3 Sort(Elements, Des) ⋅ Sort(Cont, Des) ⋅ (𝑆) ≤ ((𝐶 − 𝐹))
binpack1 Sort(Content, Des) ⋅ (abs(𝐹)) ≤ ((𝐶− abs(S)))
binpack2 Sort(Content, Des) ⋅ ((𝐹 + 𝑆)) ≤ (𝐶)
binpack3 Sort(Content, Des) ⋅ (𝐹) ≤ (abs((𝐶 − 𝑆)))
binpack4 Sort(Content, Asc) ⋅ (𝑆) ≤ ((𝐶 − 𝐹))
binpack5 ((𝑆 + 𝐹)) ≤ (𝐶)
binpack6 (𝐹) ≤ ((abs(𝐶) −𝑆))
binpack7 (abs(𝐹)) ≤ (abs((𝑆 − 𝐶)))
binpack8 (abs((𝑆 + 𝐹))) ≤ (𝐶)
hard28 Sort(Cont, Des) ⋅ (𝐹) ≤ (abs((𝐶 − 𝑆)))

⟨expr⟩ ⊨ (⟨expr⟩ ⟨op⟩ ⟨expr⟩) | ⟨var⟩ | abs (⟨expr2⟩)

⟨expr2⟩ ⊨ (⟨expr2⟩ ⟨op⟩ ⟨expr2⟩) | ⟨var⟩

⟨var⟩ ⊨ 𝐹 | 𝐶 | 𝑆

⟨op⟩ ⊨ + | ∗ | − | /.

(10)

Grammar 2. Grammar proposed in [56] was based on Best-
Fist Heuristic:

⟨begin⟩ ⊨ ⟨exproff⟩ ⟨exprsort⟩ (⟨expr⟩) <= (⟨expr⟩)

⟨Exproff⟩ ⊨ Sort (Elements, ⟨order⟩) | 𝜆

⟨exprsort⟩ ⊨ Sort (⟨exprkind⟩ , ⟨order⟩) | 𝜆

⟨exprkind⟩ ⊨ Bins | SumElements

⟨order⟩ ⊨ Asc | Des

⟨expr⟩ ⊨ (⟨expr⟩ ⟨op⟩ ⟨expr⟩) | ⟨var⟩ | abs (⟨expr2⟩)

⟨expr2⟩ ⊨ (⟨expr2⟩ ⟨op⟩ ⟨expr2⟩) | ⟨var⟩

⟨var⟩ ⊨ 𝐹 | 𝐶 | 𝑆

⟨op⟩ ⊨ + | ∗ | − | /.

(11)

Grammar 3. Grammar proposal to generate heuristics online
and offline is based on Grammar 2 , where

(i) 𝑆 is size of the current piece,
(ii) 𝐶 is bin capacity,
(iii) 𝐹 is sum of the pieces already in the bin,
(iv) Elements sorts the elements,
(v) Bin sorts the bins based on the bin number,
(vi) Cont sorts the bins based on the bin contents,
(vii) Asc sorts in ascending order,
(viii) Des sorts in descending order.

In order to generate the heuristics Grammar 3 was used.
The search strategies applied to the GE were PESO and
PSO. The number of function calls was taken from [56],
where it was explained that this number is only 10% from
the number of function calls used by [6]. To obtain the
parameters shown inTable 1 a fine-tuning processwas applied
based on Covering Arrays (CA) [58]; in this case the CA was
generated using the Covering Array Library (CAS) [59] from
The National Institute of Standards and Technology (NIST)
(http://csrc.nist.gov/groups/SNS/acts/index.html).

In order to generate the heuristics, one instance from
each set was used. Once the heuristic was obtained for each
instance set, it was applied to all the sets to obtain the
heuristic’s fitness. The instance sets used were detailed in
Section 3.1. 33 experiments were performed independently
and the median was used to compare the results against
those obtained with the heuristics described in Section 3.The
comparison was implemented through the nonparametric
test of Friedman [26, 60]; this nonparametric test used a
post hoc analysis to discern the performance between the
experiments and gives a ranking of them.

The method to apply the heuristics generated by Gram-
mar 3 for an instance set is described below.

(i) For each instance in the instance set the generated
heuristic will be applied.

(ii) The generated heuristic has the option to sort the
items before starting the packing process, to treat the
instances like offline instances.

(iii) The next part of the generated heuristic says how to
sort the bins; many heuristics require sorting the bins
before packing an item.

(iv) The last part, the inequality, determines the rule to
pack an item.

Sometimes the generated heuristic does not have items
ordered and it makes the heuristic work like an online
heuristic. If it does not have the bins ordered all the items will
be packed into the bins in the order they were created.
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Table 4: Results obtained by each heuristic over the instance set.

Instance Fitness function PSO PESO
Grammar 1 Grammar 2 Grammar 3 Grammar 1 Grammar 2 Grammar 3

bin1data
Equation (7) 316.106020 316.106050 68.167305 316.106020 316.106050 68.090770
Bins used 101097 101097 101097 101097 101097 78660

Leftover bins 22719 22719 22719 22719 22719 282

bin2data
Equation (7) 93.388510 93.025230 44.561455 93.388510 93.007030 44.560112
Bins used 23094 23156 23583 23097 23156 20994

Leftover bins 2848 2910 3337 2851 2910 748

bin3data
Equation (7) 1.885825 1.885825 1.390289 1.885825 1.885825 1.390289
Bins used 613 622 650 613 622 596

Leftover bins 51 60 88 51 60 34

binpack1
Equation (7) 2.604965 2.425894 0.914034 2.604965 2.425894 0.913949
Bins used 1044 1131 1372 1044 1131 995

Leftover bins 63 150 391 63 150 14

binpack2
Equation (7) 2.396851 2.259154 0.706004 2.396851 2.259154 0.705970
Bins used 2162 2342 2851 2162 2342 2062

Leftover bins 130 310 819 130 310 30

binpack3
Equation (7) 2.133326 2.014334 0.591543 2.133326 2.014334 0.591541
Bins used 4255 4614 5647 4255 4614 4078

Leftover bins 231 590 1623 231 590 54

binpack4
Equation (7) 1.935710 1.838669 0.495522 1.935710 1.838669 0.495512
Bins used 8430 9154 11253 8430 9154 8108

Leftover bins 419 1143 3242 419 1143 97

binpack5
Equation (7) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Bins used 400 400 400 400 400 400

Leftover bins 0 0 0 0 0 0

binpack6
Equation (7) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Bins used 800 800 800 800 800 800

Leftover bins 0 0 0 0 0 0

binpack7
Equation (7) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Bins used 1660 1660 1660 1660 1660 1660

Leftover bins 0 0 0 0 0 0

binpack8
Equation (7) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Bins used 3340 3340 3340 3340 3340 3340

Leftover bins 0 0 0 0 0 0

hard28
Equation (7) 0.655350 0.655480 0.655350 0.655350 0.655480 0.655480
Bins used 1995 2024 2755 1995 2024 1995

Leftover bins 23 52 783 23 52 23
Remaining bins 26484 27934 33002 26487 27934 1282

5. Results

In Table 2 the results obtained with online and offline heuris-
tics (described in Section 3.2) are shown. Results obtained by
an exact algorithm were included, the MTP algorithm [40],
and results from the fitness function from Section 3.3 are
shown as well with the number of bins used. A rowwas added
where the difference of containers regarding the optimal is
shown.These results were obtained by applying the heuristics
to each instance; all the results from an instance set were
added.

Table 3 shows examples of heuristics generated using the
proposed Grammar with GE for each instance set; some
heuristics can be reduced but this is not part of the present
work.

The results obtained by the PSO and PESO with the
Grammars are shown in Table 4; these results are the median
from 33 individual experiments. Using the results obtained by
the heuristics and the GE with PESO and PSO the Friedman
nonparametric test was performed to discern the results.
The value obtained by the Friedman nonparametric test is
85.789215 and the 𝑃 value 6.763090E-11; this means that the
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Table 5: Rankings of the algorithms.

Algorithm Ranking
Friedman

Exact 2.666667
PESO-Grammar 3 4.375000
PSO-Grammar 3 4.791667
BestFit-Offline 6.916667
FirstFit-Offline 7.250000
PESO-Grammar 2 8.666667
BestFit 8.791667
PSO-Grammar 2 8.791667
FirstFit 8.958333
PESO-Grammar 1 9.083333
PSO-Grammar 1 9.083333
WorstFit-Offline 9.541667
AlmostWorstFit-Offline 10.625000
WorstFit 10.791667
NextFit 12.250000
AlmostWorstFit 14.291667
NextFit-Offline 16.125000

tested heuristics have different performance. Due to this it
was necessary to apply a post hoc procedure to obtain the
Heuristics Ranking shown in Table 5.

Both Tables 2 and 4 have an extra row at the bottom with
the total remaining bins. The results obtained by PESO using
Grammar 3 show that this heuristic which has been deployed
automatically has less bins than the other classic heuristics.

6. Conclusions and Future Works

In the present work a Grammar was proposed to generate
online and offline heuristics in order to improve heuristics
generated by other grammars and by humans. It also was
proposed using PESO as a search strategy based on Swarm
Intelligence to avoid the problems observed in PSO.

Through the results obtained in Section 5, it was con-
cluded that it is possible to generate good heuristics with
the proposed Grammar. Additionally it can be seen that the
quality of these heuristics strongly depends on the grammar
used to evolve.

The grammar proposed in the present work shows that
is possible to generate heuristics with better performance
that the well-known BestFit, FirstFit, NextFit, WorstFit,
and Almost WorstFit heuristics from Section 3.2 regardless
of heuristics being online or offline. While the heuristics
are designed to work with all the instances sets, the GE
adjusts heuristics automatically to work with one instance
set and it makes it possible for GE to generate offline or
online heuristics. The GE can generate as many heuristics as
instances sets that have beenworking and try to adapt the best
heuristic that can be generated with the used Grammar.

The results obtained by PESO are better than those
obtained by PSO by using Grammars 2 and 3, but with
Grammar 1 PESO and PSO have the same performance.

The current investigation is based on the one-
dimensional bin packing problem but this methodology can
be used to solve other problems, due to the generality of
the approach. It is necessary to apply heuristic generation
to other problems and investigate if the GE with PESO as
search strategy gives better results than the GP or GE with
other search strategies.

It will be necessary to find a methodology to choose the
instance or instances for the training process as well as to
determine if the instances are the same or to classify the
instances in groups with the same features to generate only
one heuristic by group.

It will also be necessary to research other metaheuristics
that do not need the parameter tuning because the meta-
heuristics shown in the present paper were tuned using
Covering Arrays.
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