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This paper is concerned with the design and stability of networked predictive control for uncertain systems with multiple
forward channels. The delays and packet dropouts are distributed such that the classic networked predictive control (NPC) needs
modifications to be implemented. An improved control signal selection scheme with distributed prediction length is proposed to
increase the prediction accuracy and hence achieve better control performance. Moreover, stability analysis results are obtained
for both constant and random cases. Interestingly, it is shown that the stability of the closed-loop NPC system is not related to the
distributed delays when they are constant and the system model is accurate. Finally, a two-axis milling machine example is given
to illustrate the effectiveness of the proposed method.

1. Introduction

Asmodern control systems becomemore andmore complex,
traditional point-to-point control architecture is no longer
suitable under certain circumstances. Meanwhile, the tech-
nology of computer network improved significantly in the
past decades and a new networked architecture emerges and
attracts increasing attention. This kind of control systems
are called networked control systems (NCSs), in which the
control loops are closed via a network, for example, Field
bus, Ethernet, and Internet [1–3]. Major advantages of NCSs
include reduced cost, easy installation and maintenance, and
high efficiency. However, the insertion of a network into
the control loops introduces some challenging problems for
NCSs such as network-induced delay, packet dropout, and
quantization [4–7]. Moreover, beside the control problem for
NCSs, state estimation or filtering forNCSs also attractsmuch
attention [8–10].Thus, NCSs have become a hot research area
in the control and signal processing communities.

Among these problems, network-induced delay and
packet dropout are two major issues that degrade the sys-
tem performance or even cause instability [1]. Up to date,
both network-induced delay and packet dropout issues have
received extensive research attention and fruitful results were
obtained. Toname a few, timedelaymethod [11, 12], stochastic

systemmethod [13], switched systemmethod [14], and robust
control method [15] were proposed to deal with the delay.
Switched system method [16] and stochastic system method
[17] were presented to handle the packet dropout. These
methods commonly model the delay or/and packet dropout
into the closed-loop NCS and the corresponding controller
were then designed based on conditions thatmake the closed-
loop NCS stable. Most of the conditions are only sufficient
and thus the design is conservative. Moreover, essentially,
they all passively compensate for the negative effects of the
delay and packet dropout after accepting them. Alternatively,
a novel actively compensating method called networked pre-
dictive control (NPC) was presented in [18, 19]. In NPC,
future control sequences are generated and transmitted in a
packet through the network. At the plant side, appropriate
control signals from the sequences are selected to control the
plant based on delay measurements.

With accurate system model and delay measurements,
NPC was shown to have the ability to achieve desired
control performance and the stability of the closed-loop
NPC system is not related to the delay and packet dropout
in the constant case [20]. In [21], an event driven NPC
was presented to avoid the practical problem that delay
measurements are inaccurate. In [22], a switched controller
structure was proposed and the controllers were designed
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according to the delay based on switched systemmethod. For
more research results on NPC, see [23–28] and the references
therein. However, two issues of NPC are not fully considered
in the existing literature, which are themodel uncertainty and
multiple communication channels. The NPC for uncertain
system with multiple distributed delays and packet dropouts
in the feedback channels was studied in [29]. In [30],
stability analysis was carried out for NPC systems with
model uncertainty. In [31], a data reconstruction method was
presented for NPC system with distributed delays in the
feedback channels.

For a practical system, it is very difficult to obtain an
accurate model. A nonlinear system is always linearized to
be simplified. Thus, model uncertainty is an important issue
to be investigated. On the other hand, when the plant to be
controlled is spatially distributed, the corresponding NCSs
have to be multiple communication channels. Obviously, for
a NPC system with model uncertainty, larger input delay
results in longer prediction length and thus leads to larger
prediction error. Hence, the control performance becomes
worse. In the case of multiple communication channels,
delays and packet dropouts are distributed, whichmeans that
delays and packet dropout process may be different for each
channel, while such case was not taken into account in classic
NPC such as [18–20]. Introducing the queuingmethod in [32]
can make the input delays the same for each channel, which
makes the classic NPC applicable for the case without modi-
fication. However, input delays are actually enlarged in this
way and the control performance will hence be degraded.
Thus, this paper presents a modified control signal selection
scheme such that the control signals which are predicted
with distributed prediction length can be applied to control
the plant. Such treatment essentially uses the most recent
data and hence reduces the prediction length and improves
the system performance. Only multiple forward channels are
considered since the compensation scheme in the forward
channels is different from the one in the feedback channels.

2. Design of NPC for Systems with Multiple
Forward Channels

2.1. Structure of the NPC System. The structure of NPC
systems with multiple forward channels is shown in Figure 1.
The feedback channels are assumed to be ideal such that the
plant outputs are transmitted to the predictive controller (PC)
side without any delays or packet dropouts. The task of PC is
to generate future control prediction sequences and transmit
them to the control signal selector (CSS). The sequences are
subjected to distributed delays and packet dropouts effects
since the system has multiple forward channels. CSS receives
the distributed prediction sequences and select proper con-
trol signal from them according to themeasured input delays.
The selected control signal is then used to control the plant.

The control performance of NPC systems highly depends
on the prediction accuracy, which is related to both the
discrepancy between the adopted model and real system
dynamic and the prediction length. On the other hand, larger
input delay results in longer prediction length. Based on the

NPC in [19, 30], it is known that larger modeling error and
larger delay lead to larger prediction errors andhence degrade
the control performance. Thus, intuitively, it can be inferred
that two ways to improve the control performance of NPC
systems are to reduce the modeling error and to make the
prediction length shorter.

For the NPC systems with multiple forward channels,
the delays and packet dropouts process are distributed. If we
use the classic NPC, which assumes single communication
channel, the input delays of all the channels should be the
same and equal to a value which is the largest one of the
distributed input delays. This can be done by the queuing
method. However, with this treatment it can be seen that the
prediction length is enlarged for the channels except the one
with largest input delays. Based on the thought that shorter
prediction length leads to better prediction accuracy, another
way is to use an improved CSS with distributed prediction
length, which makes the prediction length shorter than using
classic NPC. This is the main idea of the paper.

The plant is represented by the following uncertain linear
discrete-time state space system model:

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑥 (𝑘) + (𝐵 + Δ𝐵) 𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥 ∈ 𝑅
𝑛, 𝑢 ∈ 𝑅

𝑚, and 𝑦 ∈ 𝑅
𝑝 are the state, input,

and output vectors of the plant, respectively, and 𝐴, 𝐵, and 𝐶
are the nominal systemmatriceswith compatible dimensions.
Δ𝐴 and Δ𝐵 represent the system uncertainties and it is
assumed that Δ𝐴 and Δ𝐵 satisfy the following structure:

[Δ𝐴 Δ𝐵] = 𝐸𝐹 (𝑘) [𝐺
1
𝐺
2
] , (2)

where 𝐹(𝑘)𝑇𝐹(𝑘) ≤ 𝐼, and 𝐸, 𝐺
1
and 𝐺

2
are matrices with

compatible dimensions.
The prediction sequences are designed based on the

following standard state observer:

𝑥 (𝑘 + 1 | 𝑘)

= 𝐴𝑥 (𝑘 | 𝑘 − 1) + 𝐵𝑢 (𝑘) + 𝐿 (𝑦 (𝑘) − 𝐶𝑥 (𝑘 | 𝑘 − 1)) ,

(3)

where 𝑥(𝑘 | 𝑘 − 1) is the state of the observer, and 𝐿 is
the observer gain matrix which can be designed by standard
methods such as pole placement. The state feedback con-
troller is as follows:

𝑢 (𝑘) = −𝐾𝑥 (𝑘 | 𝑘 − 1) , (4)

where 𝐾 is the controller gain matrix which can be designed
by Lyapunov method and so on.

2.2. Assumptions and Notations. Before proceeding further,
we need to introduce some reasonable assumptions and some
notations.

(1) Without loss of generality, it is assumed that there
are 𝑚 forward channels in the system and they are
denoted by channel 1 to channel 𝑚, respectively. 𝑢

𝑗

are transmitted through channel 𝑗, 𝑗 ∈ 𝑀 =

{1, 2, . . . , 𝑚}, respectively.
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Figure 1: Structure of NPC systems with multiple forward channels.

(2) The distributed delays are bounded.The upper bound
for the delays is denoted by 𝑛

𝑑
and the lower bound is

assumed to be 1 step without loss of generality.
(3) The number of consecutive packet dropouts for chan-

nels 1 to 𝑚 is bounded and the upper bound is
denoted by 𝑛

𝑝
. The lower bound is assumed to be 0

steps, which means no packet dropout.
(4) The transmitted packets are time-stamped and the

clocks of the receiving sides and the transmitting sides
are synchronized such that the input delays can be
calculated.

At any time instant, it is probable that more than one
packet are received or no packet is received because of packet
dropouts or packet disorder. In both cases, the data in the
most recent packet will be used. The input delays then can
always be calculated by the time stamp.

Since the case random delays and packet dropouts are
considered, the input delay for channel 𝑖 at instant 𝑘 is
denoted by 𝜏

𝑖
(𝑘) and it is clear that the lower and upper bound

for the input delays are 1 and 𝑛
𝑓
, respectively, where 𝑛

𝑓
= 𝑛
𝑑
+

𝑛
𝑝
. It can be seen that input delays may be of the same value

for certain channels. That is to say, 𝜏
𝑖
(𝑘) = 𝜏

𝑗
(𝑘), 𝑖, 𝑗 ∈ 𝑀.

Thus, we denote the number of different values for the input
delays as 𝑑(𝑘). The corresponding values for the input delays
are denoted by 𝜌

1
(𝑘), 𝜌
2
(𝑘), . . . , 𝜌

𝑑(𝑘)
(𝑘), respectively, where

𝜌
𝑖
(𝑘) < 𝜌

𝑗
(𝑘) for any 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝑀. The set of the indexes

of the channels in which 𝜌
𝑖
(𝑘) = 𝜏

𝑗
(𝑘) is denoted by 𝑄

𝑖
(𝑘).

Introduce selection matricesΠ
𝑗
, ∀𝑗 ∈ 𝑀, which is defined by

Π
𝑗
= diag {𝛿 (𝑗 − 1) , 𝛿 (𝑗 − 2) , . . . , 𝛿 (𝑗 − 𝑚)} , (5)

where diag{∙} represents a diagonal matrix and 𝛿(𝑗) =

{
1, 𝑗=0

0, 𝑗 ̸= 0.

An example is given to make these notations clear.
Assume that the system has 3 forward channels, whichmeans
𝑚 = 3. At instant 𝑘, it is measured that 𝜏

1
(𝑘) = 3 and

𝜏
2
(𝑘) = 𝜏

3
(𝑘) = 2. Then, it can be seen that there are two

different values for the distributed delays; that is, 𝑑(𝑘) = 2
and𝜌
1
(𝑘) = 2,𝜌

2
(𝑘) = 3. Furthermore, we have𝑄

1
(𝑘) = {2, 3}

and 𝑄
2
(𝑘) = {1}, respectively.

For the constant delays case, the notations can be simply
used by removing the index 𝑘 of the ones for the random
delays and packet dropouts case.

2.3. Predictive Controller. At the PC side, the state of the
observer 𝑥(𝑘 + 1 | 𝑘) is obtained at instant 𝑘 according to (3).
Since future system outputs 𝑦(𝑘+𝑖) and 𝑖 = 1, 2, . . . , 𝑛

𝑓
−1 are

not available at instant 𝑘, the prediction sequences are
generated as follows:

𝑥 (𝑘 + 2 | 𝑘) = 𝐴𝑥 (𝑘 + 1 | 𝑘) + 𝐵𝑢 (𝑘 + 1 | 𝑘)

𝑥 (𝑘 + 3 | 𝑘) = 𝐴𝑥 (𝑘 + 2 | 𝑘) + 𝐵𝑢 (𝑘 + 2 | 𝑘)

...

𝑥 (𝑘 + 𝑛
𝑓
| 𝑘) = 𝐴𝑥 (𝑘 + 𝑛

𝑓
− 1 | 𝑘) + 𝐵𝑢 (𝑘 + 𝑛

𝑓
− 1 | 𝑘) .

(6)

The prediction is up to 𝑛
𝑓
steps to meet the worst case of

delays and packet dropouts, that is, 𝑛
𝑑
steps delays and 𝑛

𝑝

consecutive packet dropouts. For the prediction procedure
(6), it can be seen that the prediction accuracy at each instant
depends on two factors. The first is how accurate (𝐴, 𝐵, 𝐶)
represents the system dynamic.The second is how close 𝑢(𝑘+
𝑖 | 𝑘) to 𝑢(𝑘+𝑖), ∀𝑖 ∈ 𝑁 = {1, 2, . . . , 𝑛

𝑓
}. It is interesting to see

that 𝑢(𝑘 + 𝑖 | 𝑘) are fundamentally different for the random
and constant cases.

For the constant delays case, even though the future
control input 𝑢(𝑘 + 𝑖) is not applied, it can be inferred what
control signal will be applied at instant 𝑘 + 𝑖 and the control
signal is already available at the PC side.That is to say, PC can
use 𝑢(𝑘 + 𝑖) instead of 𝑢(𝑘 + 𝑖 | 𝑘) in (6). For the random
case, PC cannot determine what control signal will be used at
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instant 𝑘 + 𝑖, ∀𝑖 ∈ 𝑁. Thus, 𝑢(𝑘 + 𝑖 | 𝑘) can be approximated
by (4) such that

𝑢 (𝑘 + 𝑖 | 𝑘) = −𝐾𝑥 (𝑘 + 𝑖 | 𝑘) . (7)

This will also lead to different techniques used for the stability
analysis of random and constant cases.

In classic NPC, the future control sequence is transmitted
in a packet to the CSS as follows:

[

[

[

[

[

𝑢 (𝑘 + 1 | 𝑘)

𝑢 (𝑘 + 2 | 𝑘)

...
𝑢 (𝑘 + 𝑛

𝑓
| 𝑘)

]

]

]

]

]

. (8)

However, this paper considers the multiple forward channels
case and thus the packet that contains 𝑢(𝑘 + 𝑖 | 𝑘), ∀𝑖 ∈ 𝑁,
is transmitted separately via 𝑚 channels. The packets trans-
mitted through channel 𝑖 contains the following information,
respectively. Consider

[

[

[

[

[

𝑢
1
(𝑘 + 1 | 𝑘)

𝑢
1
(𝑘 + 2 | 𝑘)

...
𝑢
1
(𝑘 + 𝑛

𝑓
| 𝑘)

]

]

]

]

]

,

[

[

[

[

[

𝑢
2
(𝑘 + 1 | 𝑘)

𝑢
2
(𝑘 + 2 | 𝑘)

...
𝑢
2
(𝑘 + 𝑛

𝑓
| 𝑘)

]

]

]

]

]

. . . ,

[

[

[

[

[

𝑢
𝑚
(𝑘 + 1𝑘)

𝑢
𝑚
(𝑘 + 2𝑘)

...
𝑢
𝑚
(𝑘 + 𝑛

𝑓
𝑘)

]

]

]

]

]

.

(9)

2.4. Control Signal Selector. Subjected to the distributed
delays and packet dropouts effects, the packets are received
by the CSS in a distributed delayed manner. Specifically, the
following data are received by CSS at instant 𝑘:

[

[

[

[

[

𝑢
𝑖
(𝑘 − 𝜏

𝑖
(𝑘) + 1 | 𝑘 − 𝜏

𝑖
(𝑘))

𝑢
𝑖
(𝑘 − 𝜏

𝑖
(𝑘) + 2 | 𝑘 − 𝜏

𝑖
(𝑘))

...
𝑢
𝑖
(𝑘 − 𝜏

𝑖
(𝑘) + 𝑛

𝑓
| 𝑘 − 𝜏

𝑖
(𝑘))

]

]

]

]

]

, ∀𝑖 ∈ 𝑀. (10)

As mentioned, classic NPC with using queuing method can
be used and in this case the selected control signal is

𝑢 (𝑘) = 𝑢 (𝑘 | 𝑘 − 𝜏 (𝑘)) , (11)

where 𝜏(𝑘) = max
𝑖∈𝑀
𝜏
𝑖
(𝑘).

Alternatively, a modified CSS scheme is presented here.
We can see that for channel 𝑖, ∀𝑖 ∈ 𝑀, the predicted control
signal with minimal prediction length is

𝑢
𝑖
(𝑘) = 𝑢

𝑖
(𝑘 | 𝑘 − 𝜏

𝑖
(𝑘)) . (12)

Then, it follows by using the notations in the second subsec-
tion of this section that

𝑢
𝑖
(𝑘) = ∑

𝑗∈𝑄𝑖(𝑘)

Π
𝑗
𝑢 (𝑘 | 𝑘 − 𝜌

𝑖
(𝑘)) . (13)

It can be seen that the modified CSS selects control signal
with distributed prediction length. Then, we can see that the
following control signal to control the plant:

𝑢 (𝑘) = −

𝑑(𝑘)

∑

𝑖=1

∑

𝑗∈𝑄𝑖(𝑘)

Π
𝑗
𝐾𝑥 (𝑘 | 𝑘 − 𝜌

𝑖
(𝑘)) . (14)

As a special case, if 𝜌
𝑖
(𝑘) = 𝜌

𝑗
(𝑘), ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀/{𝑖}, which

means that the length of the delays are all the same for each
channel, then it can be seen that the control input (14) equals
the control input (11).

3. Stability Analysis of
the Closed-Loop NPC System

The last section designed a modified NPC strategy to control
uncertain systems with multiple forward channels. Since
stability is crucial for a control system, the stability of the
closed-loop NPC system is studied in this section. Two cases
are considered, which are the random distributed delays and
packet dropouts case and the constant distributed delays case.
As mentioned in the above section, the analysis techniques
are different for the two cases.

3.1. Model of the Closed-Loop NPC System: Random Case. By
(6) and (7), it follows that

𝑥 (𝑘 + 𝑖 | 𝑘) = (𝐴 − 𝐵𝐾)
𝑖−1

𝑥 (𝑘 + 1 | 𝑘) . (15)

Then, by (14) and (15) we have

𝑢 (𝑘) = −

𝑑(𝑘)

∑

𝑖=1

∑

𝑗∈𝑄𝑖(𝑘)

Π
𝑗
𝐾(𝐴 − 𝐵𝐾)

𝜌𝑖(𝑘)−1

∙ 𝑥 (𝑘 − 𝜌
𝑖
(𝑘) + 1 | 𝑘 − 𝜌

𝑖
(𝑘)) .

(16)

Define an augmented vector to be

𝜉 (𝑘) =

[

[

[

[

[

[

[

𝑥 (𝑘)

𝑥 (𝑘 | 𝑘 − 1)

𝑥 (𝑘 − 1 | 𝑘 − 2)

...
𝑥 (𝑘 − 𝑛

𝑓
+ 1 | 𝑘 − 𝑛

𝑓
)

]

]

]

]

]

]

]

, (17)

then the closed-loop NPC systems with random distributed
delays and packet dropouts can be obtained by (1), (3), and
(16) as follows:

𝜉 (𝑘 + 1) = (Ω (𝑘) + ΔΩ (𝑘)) 𝜉 (𝑘) , (18)

where

Ω (𝑘) = [

Ω
11
𝐵Ω
12
(𝑘)

Ω
21

Ω
22

] ,

Ω
11
= [

𝐴

𝐿𝐶
] ,

Ω
21
= [0
(𝑛𝑓−2)𝑛×𝑛

] ,

Ω
22
= [𝐼(𝑛𝑓−2)𝑛×(𝑛𝑓−2)𝑛

0
(𝑛𝑓−2)𝑛×𝑛

] ,
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Ω
12
(𝑘) = Ω

121
+ Ω
122
(𝑘) ,

Ω
121
= [

0
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

. . . 0
𝑛×𝑛

𝐴 − 𝐿𝐶 0
𝑛×𝑛

0
𝑛×𝑛

. . . 0
𝑛×𝑛

] ,

Ω
122
(𝑘)

= [

Ω
1221

(𝑘) Ω
1222

(𝑘) . . . Ω
122𝑑(𝑘)

(𝑘) 0
𝑛×(𝑛𝑓−𝑑(𝑘))𝑛

Ω
1221

(𝑘) Ω
1222

(𝑘) . . . Ω
122𝑑(𝑘)

(𝑘) 0
𝑛×(𝑛𝑓−𝑑(𝑘))𝑛

] ,

Ω
1221

(𝑘) = [0(𝜌1(𝑘)−1)𝑛×(𝜌1(𝑘)−1)𝑛
Ω
12212

(𝑘)] ,

Ω
1222

(𝑘) = [0(𝜌2(𝑘)−1)𝑛×(𝜌2(𝑘)−1)𝑛
Ω
12222

(𝑘)] ,

...

Ω
122𝑑(𝑘)

(𝑘) = [0(𝜌𝑑(𝑘)(𝑘)−1)𝑛×(𝜌𝑑(𝑘)(𝑘)−1)𝑛
Ω
122𝑑(𝑘)2

(𝑘)] ,

Ω
12212

(𝑘) = ∑

𝑗∈𝑄1(𝑘)

Π
𝑗
𝐾(𝐴 − 𝐵𝐾)

𝜌1(𝑘)−1

,

Ω
12222

(𝑘) = ∑

𝑗∈𝑄2(𝑘)

Π
𝑗
𝐾(𝐴 − 𝐵𝐾)

𝜌2(𝑘)−1

,

...

Ω
122𝑑(𝑘)2

(𝑘) = ∑

𝑗∈𝑄𝑑(𝑘)(𝑘)

Π
𝑗
𝐾(𝐴 − 𝐵𝐾)

𝜌𝑑(𝑘)(𝑘)−1

,

ΔΩ (𝑘) = [

Δ𝐴 Δ𝐵ΔΩ
12
(𝑘)

0
𝑛𝑓𝑛×𝑛

0
𝑛𝑓𝑛×𝑛𝑓𝑛

] ,

ΔΩ
12
= [

𝐼
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

] ∗ Ω
122
(𝑘) .

(19)

Note that the dynamics of the closed-loop NPC system
(18) is related to the input delays vector ⃗𝜌(𝑑(𝑘), 𝑘) =

[𝜌
1
(𝑘) 𝜌

2
(𝑘) ⋅ ⋅ ⋅ 𝜌

𝑑(𝑘)
(𝑘)]; denote the set of all the possible

values of ⃗𝜌(𝑑(𝑘), 𝑘) as 𝑉. When ⃗𝜌(𝑑(𝑘), 𝑘) takes a value in 𝑉,
system (18) resides in the corresponding subsystem, which
means that system (18) is a switched system. For simplicity of
notation, introduce a one-to-one mapping that maps the set
of ⃗𝜌(𝑑(𝑘), 𝑘) to a set with numbers. For example, [1, 1, . . . , 1]
is mapped to 1, [1, 1, . . . , 2] is mapped to 2, and so on. Denote
the set of the numbers by 𝐶. Moreover, the system has model
uncertainties. Thus, system (18) can be transformed into the
following uncertain switched system:

𝜉 (𝑘 + 1) = (Φ
𝑠
+ ΔΦ
𝑠
) 𝜉 (𝑘) , 𝑠 ∈ 𝐶, (20)

where

Φ
𝑠
= [

Ω
11
Φ
12𝑠

Ω
21

Ω
22

] ,

ΔΦ
𝑠
= [

Δ𝐴 ΔΦ
12𝑠

0
𝑛𝑓𝑛×𝑛

0
𝑛𝑓𝑛×𝑛

] ,

(21)

and Φ
12𝑠

and ΔΦ
12𝑠

are 𝐵Ω
12
(𝑘) and Δ𝐵ΔΩ

12
(𝑘) with

⃗𝜌(𝑑(𝑘), 𝑘) is mapped by 𝑠, ∀𝑠 ∈ 𝐶.

3.2. Stability Results: Random Case. The closed-loop NPC
system with random distributed delays and packet dropouts
in the multiple forward channels is modeled as the switched
uncertain system (20). A sufficient condition for the stability
of the closed-loop NPC system (20) is presented in this
subsection. A lemma is first given as follows.

Lemma 1. For given appropriate matrices Υ
1
, Υ
2
, and Υ

3
, with

Υ
𝑇

1
= Υ
1
,

Υ
1
+ Υ
2
𝐹 (𝑘) Υ

3
+ Υ
𝑇

3
𝐹
𝑇

(𝑘) Υ
𝑇

2
< 0 (22)

holds for all 𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼 if and only if there exists a scalar
𝛽 > 0 such that

Υ
1
+ 𝛽Υ
2
Υ
𝑇

2
+ 𝛽
−1

Υ
𝑇

3
Υ
3
< 0. (23)

Theorem 2. For the NPC system (20) with random dis-
tributed delays and packet dropouts, given all possible values
of ⃗𝜌(𝑑(𝑘), 𝑘), and controller gain matrix 𝐾 and observer gain
matrix 𝐿, if there exists a matrix 𝑋 and a scalar 𝛽 > 0 such
that the following matrix inequalities

[

[

[

−𝑋 𝑋Φ
𝑇

𝑠
𝑋𝐺

𝑇

𝑠

Φ
𝑠
𝑋 −𝑋 + 𝛽𝐸𝐸

𝑇

0

𝐺
𝑠
𝑋 0 −𝛽𝐼

]

]

]

< 0, ∀𝑠 ∈ 𝐶 (24)

hold, then the closed-loop NPC system (20) is stable.

Proof. It can be obtained by (2) that ΔΩ
𝑠
has the structure

ΔΦ
𝑠
= 𝐸𝐹(𝑘)𝐺

𝑠
, where

𝐸 = [

𝐸

0
𝑛𝑓𝑛×𝑛

] , 𝐺
𝑠
= [𝐺
1
𝐺
2
Φ
12𝑠
] . (25)

By the stability result of switched system with arbitrary
switching in [10], if there exists a matrix 𝑃 > 0 such that the
following

(Φ
𝑠
+ ΔΦ
𝑠
)
𝑇

𝑃 (Φ
𝑠
+ ΔΦ
𝑠
) − 𝑃 < 0 (26)

holds, then the closed-loop NPC system (20) is stable. Then,
by Schur complement and some matrix operations, we have

[

−𝑃 Φ
𝑇

𝑠

Φ
𝑠
−𝑃
−1
] + [

0

𝐸

]𝐹 [𝐺
𝑠
0] + [

𝐺

𝑇

𝑠

0

]𝐹
𝑇

[0 𝐸

𝑇

] < 0. (27)

Then, by Lemma 1 it can be obtained that

[

[

[

−𝑃 Φ
𝑇

𝑠
𝐺

𝑇

𝑠

Φ
𝑠
−𝑃
−1

+ 𝛽𝐸𝐸

𝑇

0

𝐺
𝑠

0 −𝛽𝐼

]

]

]

< 0. (28)

Pre- and postmultiplying of (28) by [𝑃−1 𝐼 𝐼] and letting
𝑋 = 𝑃

−1 lead to (24). The proof is completed.

It should be pointed out that (24) is linear inmatrix𝑋 and
scalar 𝛽 and thus can be conveniently solved by LMI toolbox
in Matlab for example. This means that the stability of the
closed-loop NPC system with random distributed delays and
packet dropouts can be readily checked. However, a common
Lyapunov function is used in the proof, which leads to some
conservatism. One possible way to reduce conservatism is to
use multiple Lyapunov function method.
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3.3. Stability Results: Constant Case. In this section, the con-
stant case is considered. Different from the random case, a
necessary and sufficient condition is obtained. Define the
state error as

𝑒 (𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘 | 𝑘 − 1) . (29)

Subtracting (3) from (1) leads to the following state error
equation:

𝑒 (𝑘 + 1) = (𝐴 − 𝐿𝐶) 𝑒 (𝑘) + Δ𝐴𝑥 (𝑘) + Δ𝐵𝑢 (𝑘) . (30)

For an integer 𝜏 ≥ 2, it can be seen by (6) that the following
two equalities hold:

𝑥 (𝑘 | 𝑘 − 𝜏) = 𝐴
𝜏−1

𝑥 (𝑘 − 𝜏 + 1 | 𝑘 − 𝜏)

+

𝜏−1

∑

𝑖=1

𝐴
𝑖

𝐵𝑢 (𝑘 − 𝑖) ,

(31)

𝑥 (𝑘 | 𝑘 − 𝜏 + 1) = 𝐴
𝜏−2

𝑥 (𝑘 − 𝜏 + 2 | 𝑘 − 𝜏 + 1)

+

𝜏−2

∑

𝑖=1

𝐴
𝑖

𝐵𝑢 (𝑘 − 𝑖) .

(32)

By shifting (3) backward for 𝜏 steps, it can be obtained that

𝑥 (𝑘 − 𝜏 + 2 | 𝑘 − 𝜏 + 1)

= 𝐴𝑥 (𝑘 − 𝜏 + 1 | 𝑘 − 𝜏)

+ 𝐵𝑢 (𝑘 − 𝜏 + 1) + 𝐿𝐶𝑒 (𝑘 − 𝜏 + 1) .

(33)

Then, by (33) and subtracting (31) from (32) we have the
following:

𝑥 (𝑘 | 𝑘 − 𝜏 + 1) − 𝑥 (𝑘 | 𝑘 − 𝜏) = 𝐴
𝜏−2

𝐿𝐶𝑒 (𝑘 − 𝜏 + 1) .

(34)

Applying (34) recursively results in the following equation
that holds for any integer 𝜏 ≥ 2:

𝑥 (𝑘 | 𝑘 − 1) = 𝑥 (𝑘 | 𝑘 − 𝜏) +

𝜏−1

∑

𝑖=1

𝐴
𝑖−1

𝐿𝐶𝑒 (𝑘 − 𝑖) . (35)

We now have by (14) and (35)

𝑢 (𝑘) = −𝐾𝑥 (𝑘 | 𝑘 − 1)

+

𝑑

∑

𝑖=1

∑

𝑗∈𝑄𝑖

Π
𝑗
𝐾

𝜌𝑖−1

∑

𝑙=1

𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙) .

(36)

For convenience of the representation of the closed-loopNPC
system, 𝑢(𝑘) is transformed as follows:

𝑢 (𝑘) = −𝐾𝑥 (𝑘 | 𝑘 − 1) +

𝜌1−1

∑

𝑙=1

𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙)

+

𝑑−1

∑

𝑖=1

∑

𝑗∈𝑊𝑖

Π
𝑗
𝐾

𝜌𝑖+1−1

∑

𝑙=𝜌𝑖

𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙) ,

(37)

where𝑊
𝑖
= 𝑄
𝑖+1
∪𝑄
𝑖+2
∪ ⋅ ⋅ ⋅∪𝑄

𝑑
, 𝑖 = 1, 2, . . . , 𝑑. Substituting

𝑢(𝑘) in (1) and (30), respectively, by (26) yields

𝑥 (𝑘 + 1)

= (𝐴 − 𝐵𝐾 + Δ𝐴 − Δ𝐵𝐾) 𝑥 (𝑘) + (𝐵 + Δ𝐵𝐾) 𝑒 (𝑘)

+

𝜌1−1

∑

𝑙=1

(𝐵 + Δ𝐵)𝐾𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙)

+

𝑑−1

∑

𝑖=1

∑

𝑗∈𝑊𝑖

𝐵Π
𝑗
𝐾

𝜌𝑖+1−1

∑

𝑙=𝜌𝑖

𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙)

+

𝑑−1

∑

𝑖=1

∑

𝑗∈𝑊𝑖

Δ𝐵Π
𝑗
𝐾

𝜌𝑖+1−1

∑

𝑙=𝜌𝑖

𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙) ,

𝑒 (𝑘 + 1)

= (𝐴 − 𝐿𝐶) 𝑒 (𝑘) + (Δ𝐴 − Δ𝐵𝐾) 𝑥 (𝑘) − Δ𝐵𝐾𝑒 (𝑘)

+

𝜌1−1

∑

𝑙=1

Δ𝐵𝐾𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙)

+

𝑑−1

∑

𝑖=1

∑

𝑗∈𝑊𝑖

Δ𝐵Π
𝑗
𝐾

𝜌𝑖+1−1

∑

𝑙=𝜌𝑖

𝐴
𝑙−1

𝐿𝐶𝑒 (𝑘 − 𝑙) .

(38)

Define an augmented vector as

𝜂 (𝑘) = [𝑥
𝑇

(𝑘) 𝑒
𝑇

(𝑘) 𝜂
𝑇

1
(𝑘) 𝜂

𝑇

2
(𝑘) ⋅ ⋅ ⋅ 𝜂

𝑇

𝑑
(𝑘)]

𝑇

,

𝜂
1
(𝑘) =

[

[

[

[

[

𝑒 (𝑘 − 1)

𝑒 (𝑘 − 2)

...
𝑒 (𝑘 − 𝜌

1
+ 1)

]

]

]

]

]

,

𝜂
𝑖
(𝑘) =

[

[

[

[

[

𝑒 (𝑘 − 𝜌
𝑖−1
)

𝑒 (𝑘 − 𝜌
𝑖−1
− 1)

...
𝑒 (𝑘 − 𝜌

𝑖
+ 1)

]

]

]

]

]

, 𝑖 = 2, 3, . . . , 𝑑.

(39)

Then, the closed-loop NPC system with constant distributed
delays is as follows:

𝜂 (𝑘 + 1) = (Γ + ΔΓ) 𝜂 (𝑘) , (40)

where

Γ = [

Γ
11
𝐵Γ
12

Γ
21

Γ
22

] ,

Γ
11
= Ω
11
, Γ

21
= [

0
𝑛×𝑛

𝐼
𝑛×𝑛

0
(𝑑−2)𝑛×𝑛

0
(𝑑−2)𝑛×𝑛

] ,

Γ
22
= [

0
𝑛×(𝑑−2)𝑛

0
𝑛×𝑛

𝐼
(𝑑−2)𝑛×(𝑑−2)𝑛

0
(𝑑−2)𝑛×𝑛

] ,
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Γ
12
= [

Γ
121

Γ
122

⋅ ⋅ ⋅ Γ
12𝑑

0
𝑛×𝑛

0
𝑛×𝑛

⋅ ⋅ ⋅ 0
𝑛×𝑛

] ,

Γ
121
= [𝐾𝐿𝐶 𝐾𝐴𝐿𝐶 ⋅ ⋅ ⋅ 𝐾𝐴

𝜌1−2

𝐿𝐶] ,

Γ
12𝑖
= [Γ
12𝑖1

Γ
12𝑖2

⋅ ⋅ ⋅ Γ
12𝑖(𝜌𝑖−1)

]

𝑖 = 2, 3, . . . , 𝑑,

Γ
12𝑖1

= ∑

𝑗∈𝑊𝑖

Π
𝑗
𝐾𝐴
𝜌𝑖−1−1

𝐿𝐶,

Γ
12𝑖2

= ∑

𝑗∈𝑊𝑖

Π
𝑗
𝐾𝐴
𝜌𝑖−1
𝐿𝐶,

...

Γ
12𝑖(𝜌𝑖−1)

= ∑

𝑗∈𝑊𝑖

Π
𝑗
𝐾𝐴
𝜌𝑖−2

𝐿𝐶,

ΔΓ = [

ΔΓ
11

Δ𝐵Γ
12

0
(𝑑−1)𝑛×2𝑛

0
(𝑑−1)𝑛×(𝑑−1)𝑛

] ,

ΔΓ
11
= ΔΩ

11
.

(41)

It is clear that system (40) is a standard uncertain system and
the stability result is as follows.

Theorem3. For theNPC system (40)with constant distributed
delays, given 𝜌

𝑖
, 𝑖 ∈ 𝐷, and controller 𝐾 and observer 𝐿, if and

only if there exists a matrix 𝑌 and a scalar 𝛾 > 0 such that the
following matrix inequality

[

[

−𝑌 𝑌Γ
𝑇

𝑌𝐻
𝑇

Γ𝑌 −𝑌 + 𝐽𝐽
𝑇

0

𝐻𝑌 0 −𝛾𝐼

]

]

< 0 (42)

holds, then the closed-loop NPC system (40) is stable, where

𝐽 =
[

[

𝐸

𝐸

0
(𝑛𝑓−1)×𝑛

]

]

,

𝐻 = [𝐺
1
− 𝐺
2
𝐾 𝐺
2
𝐾 𝐺
2
Γ
12
] .

(43)

Proof. It can be obtained by (2) thatΔΓ has the structureΔΓ =
𝐽𝐹(𝑘)𝐻. Following the robust control system results such as
[33], it can be obtained that system (40) is stable if and only
if there exists a matrix 𝑃 such that the following inequality
holds:

(Γ + ΔΓ)
𝑇

𝑃 (Γ + ΔΓ) − 𝑃 < 0. (44)

Then, similar to the procedure in Theorem 2, the stability
result can be obtained readily. The rest of the proof is thus
omitted.

Assume that there are no model uncertainties; that is,
Δ𝐴 = 0 and Δ𝐵 = 0, and then closed-loop NPC system (40)
with constant distributed delays can be represented in a more
concise form as follows:

𝜂 (𝑘 + 1) = Λ𝜂 (𝑘) , (45)

where

Λ = [

𝐴 − 𝐵𝐾 Λ
12

0 Λ
22

] ,

Λ
12
= 𝐵Γ
12
,

Λ
22
= diag {𝐴 − 𝐿𝐶,𝐴 − 𝐿𝐶, . . . , 𝐴 − 𝐿𝐶} .

(46)

Clearly, a necessary and sufficient condition for the stability
of the system (45) is the eigenvalues of𝐴−𝐵𝐾 and𝐴−𝐿𝐶 that
are within the unit circle, whichmeans that the stability of the
closed-loop NPC system (45) is not related to the distributed
delays.This extends the results in [20] to themultiple forward
channels case.

4. Illustrative Example

To illustrate the effectiveness of the modified NPC with
multiple forward channels, we consider the two-axis example
of a three-axismillingmachine.More details about the exam-
ple can be referred to [34]. The parameters of the nominal
model and the uncertain parts for the system are chosen
as follows:

𝐴 =

[

[

[

[

1.0000 0.0461 0 0

0 0.1624 0 0

0 0 1.0000 0.0466

0 0 0 0.1676

]

]

]

]

,

𝐵 =

[

[

[

[

1.5287 0

23.7463 0

0 1.5458

0 24.0982

]

]

]

]

, 𝐶 = [

1 0 0 0

0 0 1 0
] ,

𝐸 =

[

[

[

[

ℎ
1
0

ℎ
2
0

0 ℎ
3

0 ℎ
4

]

]

]

]

, 𝐹 (𝑘) = [

sin 𝑘 0

0 sin 𝑘] ,

𝐺
1
= [

0 𝑔
1
0 0

0 0 0 𝑔
2

] , 𝐺
2
= [

𝑔
3
0

0 𝑔
4

] ,

(47)

where ℎ
1
= ℎ
3
= 0.05, ℎ

2
= ℎ
4
= 0.3, 𝑔

1
= 𝑔
2
= 1, and

𝑔
3
= 𝑔
4
= 40. The sampling period is chosen as 0.1 s. Clearly,

𝐹
𝑇

(𝑘)𝐹(𝑘) ≤ 𝐼.The observer gainmatrix 𝐿 and state feedback
control gain matrix 𝐾 are calculated by pole placement
method and Lyapunov method, respectively. They are given
as follows:

𝐿 = [

0.4715 5.1526 0.1413 −0.4592

−0.0093 −1.3443 0.4585 5.0377
]

𝑇

,

𝐾 = [

0.0401 0.0083 0 0

0 0 0.0395 0.0084
] .

(48)
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Figure 2: Trajectory of 𝑦
1
without NPC compensation.

In the simulation, the system model for the plant and the
initial condition are chosen to be

𝐴 + Δ𝐴 =

[

[

[

[

1.0000 0.0627 0 0

0 0.3613 0 0

0 0 1.0000 0.0636

0 0 0 0.3731

]

]

]

]

,

𝐵 + Δ𝐵 =

[

[

[

[

2.1060 0

33.0988 0

0 2.1313

0 36.6922

]

]

]

]

,

𝑥 (0) = [0.8 0.8 1 1] .

(49)

We can see from the structure of the system matrices that 𝑦
1

and 𝑦
2
are independent of each other. It is assumed that there

are 2 forward channels for the system and that 𝑦
1
and 𝑦

2
are

transmitted via channels 1 and 2, respectively.
First, the effects of NPC for uncertain NCSs with delays

in the forward channels are considered. Let the delays in
both channel 1 and channel 2 be equal and constant and see
the system performance. Take 𝑦

1
for example, as shown in

Figure 2; the system performance becomes worse with larger
delay and the system is unstablewithmore than 6 steps delays.
The trajectory of 𝑦

1
with NPC is shown in Figure 3, from

which we can see that the delays are effectively compensated.
By applying Theorem 3, the closed-loop NPC system is still
stable with 10 steps delay.

Then, we consider the effectiveness of the modified
NPC with distributed delays and packet dropouts. In this
simulation of constant case, the delays in channel 1 and
channel 2 are chosen to be 4 steps and 3 steps, respectively. By
Theorem 3 it can be obtained that the corresponding closed-
loop system is stable. From the analysis, it can be inferred that
the trajectory of 𝑦

1
will be the same by using modified and
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Figure 3: Trajectory of 𝑦
1
with NPC compensation.
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Figure 4: Comparison ofmodified and classicNPCwith distributed
constant delays.

classic NPC since the delay in channel 1 is always the largest.
While the performance of 𝑦

2
will be better by using modified

NPC than classic one. Figure 4 show the trajectory of 𝑦
2
with

modified and classic NPC, supporting the theory.
Finally, the case of random distributed delays and packet

dropouts is simulated. 𝑛
𝑑
and 𝑛

𝑝
are chosen to be 4 and 2,

respectively. That is to say, the delays in channels 1 and 2 are
both random between 1 step and 4 steps, and the number of
consecutive packet dropouts in both channels is up to 2 steps.
By Theorem 2, it follows that the closed-loop system is
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Figure 6: Random distributed packet dropouts process.

stable. The simulated distributed random delays and packet
dropouts process are shown in Figures 5 and 6, respectively.
The corresponding trajectories of 𝑦

1
and 𝑦

2
are shown in

Figures 7 and 8, respectively. Clearly, we can see that the
modified NPC achieves better performance than classic NPC
method for this example.

5. Conclusions

This paper studied the design and stability analysis of uncer-
tain networked predictive control systems with distributed
delays and packet dropouts in the forward channels. Amodi-
fiedNPCwas proposed, inwhich the key point is an improved
control signal selection scheme. The CSS with distributed
prediction length uses the most recent data and hence can
make modified NPC achieve better control performance.
Stability analysis results are obtained for both constant
and random cases. They are formulated as linear matrix
inequalities and can be readily checked.Moreover, it is shown
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Figure 7: Trajectory of 𝑦
1
with modified and classic NPC with

distributed random delays and packet dropouts.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Comparison of modified and classic NPC with 

Modified NPC
Classic NPC

random distributed delays and packet dropouts

y
2

t

Figure 8: Trajectory of 𝑦
2
of modified and classic NPC with
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that the stability of the closed-loop NPC system is not related
to the distributed delays when they are constant and system
model is accurate. An example was given to show that the
modified NPC method achieves better performance than
classic NPC in the case of distributed delays and packet
dropouts in the forward channels.
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