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Two modified three-term type conjugate gradient algorithms which satisfy both the descent condition and the Dai-Liao type
conjugacy condition are presented for unconstrained optimization. The first algorithm is a modification of the Hager and Zhang
type algorithm in such away that the search direction is descent and satisfiesDai-Liao’s type conjugacy condition.The second simple
three-term type conjugate gradient method can generate sufficient decent directions at every iteration; moreover, this property is
independent of the steplength line search. Also, the algorithms could be considered as a modification of the MBFGS method, but
with different 𝑧𝑘. Under some mild conditions, the given methods are global convergence, which is independent of the Wolfe line
search for general functions. The numerical experiments show that the proposed methods are very robust and efficient.

1. Introduction

We will consider the following optimization problem:

min𝑓 (𝑥) , 𝑥 ∈ 𝑅
𝑛
, (1)

where 𝑓(𝑥) : 𝑅𝑛 → 𝑅 is continuously differentiable function
whose gradient is ∇𝑓(𝑥), and ∇𝑓(𝑥) is denoted by 𝑔(𝑥).

Conjugate gradientmethod is very efficient for large-scale
optimization problems. Generally, this method generates a
sequence of iterations:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼𝑘𝑑

𝑘
, 𝑘 = 0, 1, . . . , (2)

where the step size 𝛼𝑘 is obtained by carrying out some line
search rules.The line search in conjugate gradient algorithms
is often based on the following Wolfe conditions:

𝑓 (𝑥
𝑘
+ 𝛼𝑘𝑑

𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼𝑘𝑔

𝑘𝑇
𝑑
𝑘
,

𝑔 (𝑥
𝑘
+ 𝛼𝑘𝑑

𝑘
)

𝑇

𝑑
𝑘
≥ 𝜎𝑔
𝑘𝑇
𝑑
𝑘
,

(3)

where 0 < 𝛿 ≤ 𝜎 < 1. The direction 𝑑𝑘 is defined by

𝑑
𝑘
= {

−𝑔
𝑘 if 𝑘 = 0,

−𝑔
𝑘
+ 𝛽𝑘𝑑

𝑘−1 if 𝑘 > 0,
(4)

where 𝛽𝑘 is conjugate gradient parameter.
Some conjugate gradient methods include the Fletcher-

Reeves method (FR), the Hestenes-Stiefel method (HS), the
Polak-Ribiere-Polyak method (PRP), the conjugate descent
method (CD), the Liu-Storey method (LS), and the Dai-
Yuan method (DY) [2–8]. In these methods, the difference
is parameter 𝛽𝑘; the parameters 𝛽𝑘 of these methods are
specified as follows:

𝛽
FR
𝑘
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩

2
, 𝛽

DY
𝑘

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

𝑦
𝑘𝑇
𝑑
𝑘
,

𝛽
CD
𝑘

= −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

𝑔
𝑘𝑇
𝑑
𝑘
, 𝛽

HS
𝑘

=

𝑔
𝑘+1𝑇

𝑦
𝑘

𝑦
𝑘𝑇
𝑑
𝑘
,
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𝛽
PRP
𝑘

=

𝑔
𝑘+1𝑇

𝑦
𝑘

󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩

2
, 𝛽

LS
𝑘
=

−𝑔
𝑘+1𝑇

𝑦
𝑘

𝑔
𝑘𝑇
𝑑
𝑘

,

(5)

where 𝑠𝑘 = 𝑥
𝑘+1

− 𝑥
𝑘
= 𝛼𝑘𝑑

𝑘, 𝑔𝑘 = ∇𝑓(𝑥
𝑘
), and 𝑦𝑘 = 𝑔

𝑘+1
−

𝑔
𝑘. Throughout this paper, we always use ‖ ⋅ ‖ to mean the

Euclidean norm.

2. Motivation

In this paper, the motivation will be described as follows.
Firstly, we will introduce some modified three-term conju-
gate gradient methods. One of the first three-term conjugate
gradient methods was proposed by Beale [9] as

𝑑
𝑘+1

= −𝑔
𝑘+1

+ 𝛽𝑘𝑑
𝑘
+ 𝛾𝑘𝑑
𝑡
, (6)

where 𝛽𝑘 = 𝛽
HS
𝑘
(𝛽

FR
𝑘
, 𝛽

DY
𝑘

etc.),

𝛾𝑘 =

{
{

{
{

{

0, if 𝑘 = 𝑡 + 1,
𝑔
𝑘+1𝑇

𝑦
𝑡

𝑑
𝑡𝑇
𝑦
𝑡
, if 𝑘 > 𝑡 + 1,

(7)

and𝑑𝑡 is a restart direction.McGuire andWolfe [10] andPow-
ell [11] made further study on Beale’s three-term conjugate
gradientmethod.Dai andYuan [12] studied the general three-
term conjugate gradient method:

𝑑
𝑘+1

= −𝑔
𝑘+1

+ 𝛽𝑘𝑑
𝑘
+ 𝛾𝑘𝑑
𝑡(𝑝)

, (8)

where 𝑡(𝑝) is the number of the 𝑝th restart iteration, showing
that under some mild conditions the algorithm was global
convergence. As we know, Dai and Liao [13] extended the
classical conjugate condition 𝑦

𝑘𝑇
𝑑
𝑘+1

= 0, suggesting the
following one:

𝑦
𝑘𝑇
𝑑
𝑘+1

= −𝑡𝑠
𝑘𝑇
𝑔
𝑘+1
, (9)

where 𝑡 ≥ 0 is a scalar. Recently, Andrei [14, 15] devel-
oped two simple three-term conjugate gradient methods for
unconstrained optimization problems. In [14], for the descent
condition andDai-Liao’s type conjugacy condition, the three-
term conjugate gradient algorithm was satisfied at every step.
The direction 𝑑𝑘+1 was computed as

𝑑
𝑘+1

= −𝑔
𝑘+1

− 𝛿𝑘𝑠
𝑘
− 𝜂𝑘𝑦

𝑘
,

𝛿𝑘 = (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑦
𝑘𝑇
𝑠
𝑘
)

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑦
𝑘𝑇
𝑠
𝑘
−

𝑦
𝑘𝑇
𝑔
𝑘+1

𝑦
𝑘𝑇
𝑠
𝑘
,

𝜂𝑘 =

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑦
𝑘𝑇
𝑠
𝑘
,

(10)

where 𝛿𝑘 and 𝜂𝑘 were parameters. Similarly, Andrei [15]
presented another project three-term conjugate gradient
algorithm. The search direction of the algorithms from this
class had three terms and was computed as modifications
of the classical conjugate gradient algorithms. The search

direction also satisfied both descent property and Dai-Liao’s
type conjugacy conditions. Yao and Qin [16] proposed a
hybrid of DL and WYL conjugate gradient methods. The
given method [17] possessed the sufficient descent condition
under theWolfe-Powell line search and is global convergence
for general functions.Thereafter, they proposed a new conju-
gacy condition and nonlinear conjugate gradientmethod; the
given method [17] was global convergence under the strong
Wolfe-Powell line search. By modifying the HS method or
Hager and Zhang method [18], the above methods with
satisfying the conjugacy condition type were concluded.

In this paper, we present two modified simple three-term
type conjugate gradient methods which are obtained by a
modified BFGS (MBFGS) updating scheme of the inverse
approximation of the Hessian of the function 𝑓(𝑥) restart
as the identity matrix at every step. Firstly, in order to
interpret the idea of this paper, it is necessary to introduce
the MBFGS method [1]. If the objective function 𝑓(𝑥) is
nonconvex, the classical Newton direction may not be a
descent direction of 𝑓(𝑥) at 𝑥𝑘 since the Hessian matrix 𝐵𝑘 is
not necessarily positive definite. To overcome this drawback,
Li and Fukushima [1] generated a direction from

(𝐵𝑘 + 𝑟𝑘𝐼) 𝑑
𝑘
+ 𝑔
𝑘
= 0, (11)

where 𝐼 was the unit matrix and a positive constant 𝑟𝑘 was
chosen so that 𝐵𝑘 + 𝑟𝑘𝐼 was a positive definite matrix. In
order to obtain the global convergence, the sequence {𝑟𝑘}was
bounded above. For the sake of the superlinear convergence,
the positive constants 𝑟𝑘 should satisfy 𝑟𝑘 → 0 as 𝑘 →

∞. If the MBFGS method was quadratic convergence, the
positive constants 𝑟𝑘 should meet 𝑟𝑘 ≤ 𝐶‖𝑔

𝑘
‖ for all 𝑘.

In other words, the global and superlinear convergence of
MBFGS method depends on the choice of {𝑟𝑘}. Therefore,
it was important to select {𝑟𝑘} appropriately so that it was
practicable and satisfied the above conditions. How to select
the optimal {𝑟𝑘} is very difficult for us. Actually, the MBFGS
methodwas amodified quasi-Newtonmethod for nonconvex
unconstrained optimization problems. In order to better
introduce our method, let us simply recall the MBFGS quasi-
Newton method. The direction 𝑑𝑘 in the MBFGS method is
given by

𝑑
𝑘
= − (𝐵𝑘 + 𝑟𝑘𝐼)

−1
𝑔
𝑘
, (12)

where 𝐵𝑘 is obtained by the MBFGS formula:

𝐵𝑘+1 = 𝐵𝑘 −

𝐵𝑘𝑠
𝑘
𝑠
𝑘𝑇
𝐵𝑘

𝑠
𝑘𝑇
𝐵𝑘𝑠
𝑘

+

𝑧
𝑘
𝑧
𝑘𝑇

𝑧
𝑘𝑇
𝑠
𝑘
. (13)

From the above MBFGS formula, 𝑧𝑘 is computed as the
following two cases. On the one hand,

𝑧
𝑘
= 𝑦
𝑘
+ 𝑟𝑘𝑠
𝑘
, (14)

where 𝑠𝑘 = 𝑥
𝑘+1

− 𝑥
𝑘 and 𝑟𝑘 ∈ [0, 𝐶]; 𝐶 is a constant. On the

other hand,

𝑧
𝑘
= 𝑦
𝑘
+ 𝑡𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩
𝑠
𝑘
, (15)

where 𝑟𝑘 = 𝑡𝑘‖𝑔
𝑘
‖ and 𝑡𝑘 = 1 +max{0, −(𝑦𝑘𝑇𝑠𝑘/‖𝑠𝑘‖2)}.
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The MBFGS updating of the inverse approximate of the
Hessian of function 𝑓(𝑥) is

𝐵𝑘+1 = 𝐵𝑘 +

(𝑠
𝑘
− 𝐵𝑘𝑧

𝑘
) 𝑠
𝑘𝑇
+ 𝑠
𝑘
(𝑠
𝑘
− 𝐵𝑘𝑧

𝑘
)

𝑇

𝑠
𝑘𝑇
𝑧
𝑘

−

𝑧
𝑘𝑇
(𝑠
𝑘
− 𝐵𝑘𝑧𝑘)

(𝑠
𝑘𝑇
𝑧
𝑘
)
2

𝑠
𝑘
𝑠
𝑘𝑇

= (𝐼 −

𝑠
𝑘
𝑧
𝑘𝑇

𝑠
𝑘𝑇
𝑧
𝑘
)𝐵𝑘 (𝐼 −

𝑧
𝑘
𝑠
𝑘𝑇

𝑠
𝑘𝑇
𝑧
𝑘
) +

𝑠
𝑘
𝑠
𝑘𝑇

𝑠
𝑘𝑇
𝑧
𝑘

= 𝐵𝑘 −

𝑠
𝑘
𝑧
𝑘𝑇
𝐵𝑘 + 𝐵𝑘𝑧

𝑘
𝑠
𝑘𝑇

𝑧
𝑘𝑇
𝑠
𝑘

+ (1 +

𝑧
𝑘𝑇
𝐵𝑘𝑧
𝑘

𝑧
𝑘𝑇
𝑠
𝑘
)

𝑠
𝑘
𝑠
𝑘𝑇

𝑠
𝑘𝑇
𝑧
𝑘
.

(16)

In order to compass our object we take a little modifica-
tion of the inverse MBFGS matrix 𝐵𝑘, namely, 𝐵𝑘 = 𝐼; then
(16) will be formulated as

𝑄𝑘 = 𝐼 −

𝑠
𝑘
𝑧
𝑘𝑇
+ 𝑧
𝑘
𝑠
𝑘𝑇

𝑧
𝑘𝑇
𝑠
𝑘

+ (1 +

𝑧
𝑘𝑇
𝑧
𝑘

𝑧
𝑘𝑇
𝑠
𝑘
)

𝑠
𝑘
𝑠
𝑘𝑇

𝑠
𝑘𝑇
𝑧
𝑘
, (17)

but with different 𝑧𝑘. In this paper, we compute 𝑧𝑘 as follows:

𝑧
𝑘
= 𝑦
𝑘
+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

𝑟

𝑠
𝑘
+max{0, −

𝑦
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩

2
} 𝑠
𝑘
. (18)

From the above formula, we can see that it does not include
the 𝑟𝑘, so we need not choose the parameters {𝑟𝑘}. Fur-
thermore, there is more information in 𝑧𝑘, for instance, the
gradient of 𝑓(𝑥) at 𝑥𝑘, that is, 𝑔𝑘 and the constants 𝐶, 𝑟. The
most important property of 𝑧𝑘 is that 𝑧𝑘 satisfies the Dai-Liao
condition; that is,

𝑧
𝑘𝑇
𝑑
𝑘+1

= −𝑡𝑘𝑠
𝑘𝑇
𝑔
𝑘+1
, (19)

where 𝑡𝑘 = 1 + 2(‖𝑧
𝑘
‖
2
/𝑧
𝑘𝑇
𝑠
𝑘
) > 0. Moreover, 𝑧𝑘 also satisfies

the following inequality:

𝑧
𝑘𝑇
𝑠
𝑘
> 0. (20)

However, Li and Fukushima [1] proved that the 𝑧𝑘 could
satisfy the following inequality:

𝑧
𝑘𝑇
𝑠
𝑘
≥

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

≥ 0. (21)

The purpose of this paper is to overcome these drawbacks.
Observe that the direction 𝑑𝑘+1 can be written as

𝑑
𝑘+1

= −𝑄𝑘𝑔
𝑘+1
; (22)

therefore, the three-term type conjugate gradient algorithm
is given by (2), where the direction is computed as

𝑑
𝑘+1

= {

−𝑔
𝑘+1
, if 𝑘 = 0,

−𝑔
𝑘+1

− 𝜆𝑘𝑠
𝑘
− 𝜇𝑘𝑧

𝑘
, if 𝑘 > 0,

(23)

where

𝜆𝑘 = (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘
−

𝑧
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘
, 𝜇𝑘 =

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘
.

(24)

We organize the paper as follows. In the next section,
we describe the three-term type conjugate gradient method
and its global convergence. In Section 4, we discuss another
modified sufficient descent three-term type conjugate gradi-
ent method for unconstrained optimization problems and its
global convergence withWolfe line search. In Section 5, some
numerical results are given. Some conclusions and future
works will be proposed in the last section.

3. Three-Term Conjugate Gradient Method
and Its Global Convergence

In this section, we will introduce the three-term type conju-
gate gradient method.

Algorithm 1.
Step 1 (initialization and date). Given 𝑥0 ∈ 𝑅𝑛, 0 < 𝛿 ≤ 𝜎 < 1.
Let 𝑘 := 0.
Step 2. Test a criterion for stopping the iterations. If the
test criterion ‖𝑔

𝑘
‖ ≤ 𝜖 is satisfied, then STOP! Otherwise,

continue with Step 3.

Step 3.The direction 𝑑𝑘 is computed as follows:

𝑑
𝑘+1

= {

−𝑔
𝑘+1
, if 𝑘 = 0,

−𝑔
𝑘+1

− 𝜆𝑘𝑠
𝑘
− 𝜇𝑘𝑧

𝑘
, if 𝑘 > 0,

(25)

where 𝜆𝑘 = (1+‖𝑧
𝑘
‖
2
/𝑧
𝑘𝑇
𝑠
𝑘
)(𝑠
𝑘𝑇
𝑔
𝑘+1
/𝑧
𝑘𝑇
𝑠
𝑘
)−𝑧
𝑘𝑇
𝑔
𝑘+1
/𝑧
𝑘𝑇
𝑠
𝑘,

𝜇𝑘 = 𝑠
𝑘𝑇
𝑔
𝑘+1
/𝑧
𝑘𝑇
𝑠
𝑘, and

𝑧
𝑘
= 𝑦
𝑘
+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

𝑟

𝑠
𝑘
+max{0, −

𝑦
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩

2
} 𝑠
𝑘
, (26)

𝐶, 𝑟 > 0 are constants.
Step 4.TheWolfe line search is to find a stepsize

𝛼𝑘 = max {𝜌𝑗 | 𝑗 = 0, 1, 2, . . .} (27)

satisfying

𝑓 (𝑥
𝑘
+ 𝛼𝑘𝑑

𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼𝑘𝑔

𝑘𝑇
𝑑
𝑘
,

𝑔 (𝑥
𝑘
+ 𝛼𝑘𝑑

𝑘
)

𝑇

𝑑
𝑘
≥ 𝜎𝑔
𝑘𝑇
𝑑
𝑘
,

(28)

where 𝜌 ∈ (0, 1) are constants.
Step 5. Update the variables:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼𝑘𝑑

𝑘
, (29)

and then go to Step 2.
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3.1. Global Convergence. Throughout this section, we assume
that
(H1) the level setΩ = {𝑥 ∈ 𝑅

𝑛
| 𝑓(𝑥) ≤ 𝑓(𝑥

0
)} is bounded;

(H2) in a neighborhood 𝑁 of Ω the function 𝑓(𝑥) is
continuously differentiable. Its gradient is Lipschitz
continuous; namely, there exists a constant 𝐿 > 0,
such that
󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑥) − ∇𝑓 (𝑦)

󵄩
󵄩
󵄩
󵄩
≤ 𝐿

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑥, 𝑦 ∈ 𝑁. (30)

Since {𝑓(𝑥𝑘)} is decreasing, it is clear that the sequence {𝑥𝑘}
generated by Algorithm 1 is contained in Ω. In addition, we
can obtain fromAlgorithm 1 that there is constant 𝜅, such that

󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑥)

󵄩
󵄩
󵄩
󵄩
≤ 𝜅, ∀𝑥 ∈ Ω. (31)

Lemma2. Let assumptions (H1) and (H2) hold; the line search
satisfies the Wolfe conditions (28); then one has

𝑧
𝑘𝑇
𝑠
𝑘
> 0. (32)

Proof. By direct computation,

𝑧
𝑘𝑇
𝑠
𝑘
= 𝑦
𝑘𝑇
𝑠
𝑘
+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

𝑟

𝑠
𝑘𝑇
𝑠
𝑘
+max{0, −

𝑦
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩

2
} 𝑠
𝑘𝑇
𝑠
𝑘

= 𝑦
𝑘𝑇
𝑠
𝑘
+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

𝑟 󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

+max{0, −
𝑦
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩

2
}

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

≥ 𝑦
𝑘𝑇
𝑠
𝑘
> 0.

(33)

Lemma 3. Let assumptions (H1) and (H2) hold; the line
search satisfies the Wolfe conditions (28); the search direction
is computed by (25); then one has

𝑔
𝑘+1𝑇

𝑑
𝑘+1

≤ 0. (34)

Proof. We will divide (25) into two cases as follows.
Case 1. If 𝑘 = 0, then Lemma 3 is true.
Case 2. If 𝑘 > 0, combined with Lemma 2, then we have

𝑔
𝑘+1𝑇

𝑑
𝑘+1

= 𝑔
𝑘+1𝑇

(−𝑔
𝑘+1

− 𝜆𝑘𝑠
𝑘
− 𝜇𝑘𝑧

𝑘
)

= −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

− (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)

(𝑠
𝑘𝑇
𝑔
𝑘+1
)

2

𝑧
𝑘𝑇
𝑠
𝑘

≤ 0.

(35)

The proof of Lemma 3 is completed.

Lemma 4. Let assumptions (H1) and (H2) hold; the line
search satisfies the Wolfe conditions (28); the search direction
is computed by (25); then one has Dai-Liao’s type conjugate
condition

𝑧
𝑘𝑇
𝑑
𝑘+1

= −𝑡𝑘𝑠
𝑘𝑇
𝑔
𝑘+1
, (36)

where 𝑡𝑘 > 0.

Proof. By direct computation, we get

𝑧
𝑘𝑇
𝑑
𝑘+1

= 𝑧
𝑘𝑇
(−𝑔
𝑘+1

− 𝜆𝑘𝑠
𝑘
− 𝜇𝑘𝑧

𝑘
)

= −𝑧
𝑘𝑇
𝑔
𝑘+1

− (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)𝑠
𝑘𝑇
𝑔
𝑘+1

+ 𝑧
𝑘𝑇
𝑔
𝑘+1

−

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

= −(1 + 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)𝑠
𝑘𝑇
𝑔
𝑘+1

= −𝑡𝑘𝑠
𝑘𝑇
𝑔
𝑘+1
,

(37)

where

𝑡𝑘 = 1 + 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
> 0,

(38)

since 𝑧𝑘𝑇𝑠𝑘 > 0.

Remark 5. Observe that the direction 𝑑
𝑘+1 satisfies descent

property. Besides, the direction 𝑑𝑘+1 satisfies Dai-Liao’s type
conjugacy condition, where 𝑡𝑘 > 0 at every iteration.

Theorem 6. Let assumptions (H1) and (H2) hold; the line
search satisfies the Wolfe conditions (28); the search direction
is computed by (25); then one has

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩
≤ ]1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝜆𝑘

󵄩
󵄩
󵄩
󵄩
≤ ]2,

󵄩
󵄩
󵄩
󵄩
𝜇𝑘

󵄩
󵄩
󵄩
󵄩
≤ ]3. (39)

Proof. By direct computation, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘󵄩󵄩
󵄩
󵄩
󵄩
+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

𝑟 󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

+max{0, −
𝑦
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩

2
}

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

≤ 𝐿

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩
+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

𝑟 󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩
+ 𝐿

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩

= (2𝐿 + 𝐶𝜅
𝑟
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩
= ]1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩
,

(40)

where ]1 = 2𝐿 + 𝐶𝜅
𝑟. Consider

󵄩
󵄩
󵄩
󵄩
𝜆𝑘

󵄩
󵄩
󵄩
󵄩
≤ (1 +

󵄩
󵄩
󵄩
󵄩
𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑧
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (1 +

󵄩
󵄩
󵄩
󵄩
𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

𝑦
𝑘𝑇
𝑠
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑦
𝑘𝑇
𝑠
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑧
𝑘𝑇
𝑔
𝑘+1

𝑦
𝑘𝑇
𝑠
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ [1 +

󵄩
󵄩
󵄩
󵄩
𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

(1 − 𝜎)
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩

2
]

1

(1 − 𝜎)

+

]1
(1 − 𝜎)

≤ [1 +

𝜅
2

(1 − 𝜎)

]

1

(1 − 𝜎)

+

]1
(1 − 𝜎)

= ]2,

(41)
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where ]2 = [1 + 𝜅
2
/(1 − 𝜎)](1/(1 − 𝜎)) + ]1/(1 − 𝜎). Consider

󵄩
󵄩
󵄩
󵄩
𝜇𝑘

󵄩
󵄩
󵄩
󵄩
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑦
𝑘𝑇
𝑠
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

1 − 𝜎

= ]3, (42)

where ]3 = (1/(1 − 𝜎)). The proof is completed.

Theorem 7. Let assumptions (H1) and (H2) hold; the line
search satisfies the Wolfe conditions (28); the search direction
is computed by (25); then one has

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
≤ 𝜔

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
. (43)

Proof. According to Algorithm 1, we will divide (28) into two
cases as follows.
Case 1. If 𝑘 = 0, we get 𝑑𝑘+1 = −𝑔𝑘+1, and then

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
, (44)

where 𝜔 = 1.

Case 2. If 𝑘 > 0, we have

𝑑
𝑘+1

= −𝑔
𝑘+1

− 𝜆𝑘𝑠
𝑘
− 𝜇𝑘𝑧

𝑘
, (45)

and then
󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝜆𝑘

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝜇𝑘

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑧
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑠
𝑘𝑇
𝑔
𝑘+1

𝑧
𝑘𝑇
𝑠
𝑘
𝑧
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

+ (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

𝑧
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

𝑧
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

𝑧
𝑘𝑇
𝑠
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

= 𝜔

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩
.

(46)

The proof is true.

Theorem 8. Let assumption (H1) hold and let {𝑥𝑘} and {𝑑𝑘}
be generated by the three-term conjugate gradient method. If
stepsize 𝛼𝑘 is obtained by the Wolfe line search, then one has

lim
𝑘→∞

inf 󵄩󵄩󵄩󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩
= 0. (47)

Proof. By the use of Theorem 7 and the same argument as
Theorem 4.1 in [19], we will omit the proof here.

4. Another Modified Three-Term
Type Conjugate Gradient Method
and Its Global Convergence

Recently, Zhang et al. proposed a sufficient descent modified
PRP conjugate gradient method with three terms [20] as

𝑑
𝑘+1

= −𝑔
𝑘+1

+

𝑔
𝑘+1𝑇

𝑦
𝑘

󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩

2
𝑑
𝑘
−

𝑔
𝑘+1𝑇

𝑑
𝑘

󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩

2
𝑦
𝑘 (48)

and a sufficient descent modified HS conjugate gradient
method with three terms [21] as

𝑑
𝑘+1

= −𝑔
𝑘+1

+

𝑔
𝑘+1𝑇

𝑦
𝑘

𝑠
𝑘𝑇
𝑦
𝑘
𝑠
𝑘
−

𝑔
𝑘+1𝑇

𝑠
𝑘

𝑠
𝑘𝑇
𝑦
𝑘
𝑦
𝑘
. (49)

A property of these methods is that they produce sufficient
direction; that is,

𝑔
𝑘𝑇
𝑑
𝑘
= −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

. (50)

In the same context, Sun et al. proposed another sufficient
conjugate gradient [22, 23] as

𝑑
𝑘
= {

−𝑔
𝑘
, if 𝑘 = 0,

−𝑔
𝑘
+ 𝛽𝑘1𝑑

𝑘−1
− 𝜗𝑘𝑦

𝑘
, if 𝑘 > 0,

(51)

where 𝛽𝑘1 = 𝑔
𝑘𝑇
(𝑔
𝑘
−𝑔
𝑘−1
)/((1−𝜇)‖𝑔

𝑘−1
‖
2
−𝜇𝑔
𝑘−1𝑇

𝑑
𝑘−1
) and

𝑑
𝑘
= {

−𝑔
𝑘
, if 𝑘 = 0,

−𝜃𝑘𝑔
𝑘
+ 𝛽

VDY
𝑘

𝑑
𝑘−1 if 𝑘 > 0,

(52)

where

𝜃𝑘 = 1 +

𝜇1𝑔
𝑘𝑇
𝑑
𝑘−1

𝜇2

󵄨
󵄨
󵄨
󵄨
𝑔
𝑘𝑇
𝑑
𝑘−1󵄨󵄨
󵄨
󵄨
+ 𝜇3𝑑

𝑘−1𝑇
𝑦
𝑘−1

. (53)

Similar to Zhang and Sun’s methods, in order to obtain
the sufficient descent property, we will propose a modified
three-term type conjugate gradient method; that is,

𝑑
𝑘+1

= {

−𝑔
𝑘+1
, if 𝑘 = 0,

−𝜉𝑘𝑔
𝑘+1

− 𝜆𝑘𝑠
𝑘
− 𝜇𝑘𝑧

𝑘
, if 𝑘 > 0,

(54)

where

𝜉𝑘 =

𝜆𝑘𝑔
𝑘+1𝑇

𝑠
𝑘
+ 𝜇𝑘𝑔

𝑘+1𝑇
𝑧
𝑘
−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩

2
. (55)

Algorithm9 (a sufficient decent three-termconjugate gradient
method).

Step 1. Step 1 is initialization and date.

Step 2 (termination condition and computation 𝑑
𝑘). The

direction 𝑑𝑘 is computed by (54).
Step 3.TheWolfe line search is to find a stepsize 𝛼𝑘.

Step 4.Update the variables, 𝑥𝑘+1 = 𝑥𝑘 +𝛼𝑘𝑑𝑘, and then go to
Step 2.
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Lemma 10. Suppose that 𝑥0 is a starting point for which
assumptions hold. Let {𝑥𝑘} be generated by Algorithm 9; then
one has

𝑔
𝑘+1𝑇

𝑑
𝑘+1

= −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

< 0. (56)

Proof. According to Algorithm 9, we will divide (54) into two
cases as follows.
Case 1. If 𝑘 = 0, then Lemma 10 is true.
Case 2. If 𝑘 > 0, we get

𝑔
𝑘+1𝑇

𝑑
𝑘+1

= 𝑔
𝑘+1𝑇

(−𝜉𝑘𝑔
𝑘+1

− 𝜆𝑘𝑠
𝑘
− 𝜇𝑘𝑧

𝑘
)

= −𝜉𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

− (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

𝑧
𝑘𝑇
𝑠
𝑘
)

(𝑠
𝑘𝑇
𝑔
k+1
)

2

𝑧
𝑘𝑇
𝑠
𝑘

−

(𝑠
𝑘𝑇
𝑔
𝑘+1
)

2

𝑧
𝑘𝑇
𝑠
𝑘

= −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

< 0.

(57)

Lemma 10 is true.The sufficient descent property is indepen-
dent of the line search.

Lemma 11. Suppose that 𝑥0 is a starting point for which
assumptions hold. Let {𝑥𝑘} be generated by Algorithm 9. In
addition, there are constants 𝜅1, 𝜅2, such that

𝜅1 ≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩
≤ 𝜅2, ∀𝑥 ∈ Ω; (58)

then one has
󵄨
󵄨
󵄨
󵄨
𝜉𝑘

󵄨
󵄨
󵄨
󵄨
≤ 𝜓. (59)

Proof. By direct computation, we get

𝜉𝑘 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜆𝑘𝑔
𝑘+1𝑇

𝑠
𝑘
+ 𝜇𝑘𝑔

𝑘+1𝑇
𝑧
𝑘
−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

2

󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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≤ 1 +

󵄨
󵄨
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󵄨
󵄨
󵄨
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󵄩
󵄩
󵄩
󵄩
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𝑔
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󵄩
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󵄩

󵄩
󵄩
󵄩
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𝑠
𝑘󵄩󵄩
󵄩
󵄩
󵄩
+
󵄨
󵄨
󵄨
󵄨
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󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑘󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑔
𝑘+1󵄩󵄩
󵄩
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2

≤ 1 +

]2𝜅2
󵄩
󵄩
󵄩
󵄩
󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩
+ ]3𝜅2𝐿

󵄩
󵄩
󵄩
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󵄩
𝑑
𝑘󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝜅1

󵄩
󵄩
󵄩
󵄩

2

≤ 1 +

]2𝜅
2

2
𝜔 + ]3𝜅

2

2
𝐿𝜔

󵄩
󵄩
󵄩
󵄩
𝜅1

󵄩
󵄩
󵄩
󵄩

2
= 𝜓,

(60)

where

𝜓 = 1 +

]2𝜅
2

2
𝜔 + ]3𝜅

2

2
𝐿𝜔

󵄩
󵄩
󵄩
󵄩
𝜅1

󵄩
󵄩
󵄩
󵄩

2
. (61)

Theorem 12. Let assumption (H1) hold and let {𝑥𝑘} and {𝑑𝑘}
be generated by the three-term conjugate gradient Algorithm 9.
If stepsize 𝛼𝑘 is obtained by the Wolfe line search, then one has

lim
𝑘→∞

inf 󵄩󵄩󵄩󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩
= 0. (62)

Proof. By the use of Lemmas 10 and 11 and the same argument
as Theorem 4.1 in [19], we will omit the proof here.

5. Numerical Experiments

Now, let us report some numerical results attained by our
sufficient descent conjugate gradient methods. We compare
the performance of Algorithms 1 and 9 withMBFGSmethod.
The algorithm is implemented by MATLAB 7.0 code in
double precision arithmetic.The tests are performed on a PC
computer with CPU Pentium 4, 2.40GHz, and Windows XP
operation system.

On the one hand, the type of objective function and the
character of the problems being tested are listed in Tables 1,
2, and 3. In the experiments, for easily comparing with other
codes, we use the gradient errors tomeasure the quality of the
solutions; that is, we force the iteration to stop when

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘󵄩󵄩
󵄩
󵄩
󵄩
≤ 10
−6
, (63)

where 𝑔
𝑘 is the gradient of objective function. 𝑛 repre-

sents the number of dimensions. 𝑚 represents the number
of functions. Nf represents the number of function 𝑓(𝑥)

evaluations. Ng represents the number of gradient 𝑔(𝑥)
evaluations. 𝑆 represents the actual CPU-time costed in pro-
cedure operation. 𝑓∗ represents the problems approximate
solutions which are allowed in error range region. 𝑃 repre-
sents the problems in [24]. First, we compare Algorithm 1,
Algorithm 9, and MBFGS method and the numerical test
reports and the results of comparison are listed in Tables 1–
3. We choose some test problems as our numerical examples
and numerical results can be seen in Tables 1–3. The test
problems with the given initial points can be found at
http://camo.ici.ro/neculai/ansoft.htm which were collected
by Neculai Andrei. We can see that the problems of [22] are
solved by our method. Table 1 shows the numerical results of
the three-term conjugate gradient Algorithm 1. In Table 2, by
adopting Algorithm 9, these problems have better solutions.
Table 3 shows the numerical results of theMBFGSmethod. In
Table 2, the CPU-time is less than 130 seconds and lots of the
problems are less than 70 seconds. In Table 1, the iterations of
the Penalty function II and Power singular are more than 110,
but, in Table 2, the Penalty function II and Power singular can
be solved in less than 86 iterations and the time is less than
72 seconds. Table 3 shows the performance of the MBFGS
method relative to CPU-time, the number of iterations, the
number of function evaluations, and the number of gradient
evaluations, respectively. From Table 1 to Table 3, as can be
easily seen, Table 3 is better than Table 1 but worse than
Table 2 with respect to the number of iterations and CPU-
time. Tables 1 and 2 show that the three-term type conjugate
gradient methods also have better performance with respect
to the number of iterations and gradient evaluations. From
Tables 1, 2, and 3, a conclusion is made that Algorithm 9
is better than Algorithm 1 and MBFGS method; that is,
the sufficient descent direction is most important for the
unconstrained optimization.
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Table 1: The numerical results of Algorithm 1.

𝑃 𝑛 𝑚 Nf Ng 𝑆 𝑓
∗

Rosenbrock 2 2 184 183 29.6 5.38𝑒 − 006

Freudenstein and Roth 2 2 77 78 96.2 5.72𝑒 − 006

Brown badly scaled 2 3 106 108 453.1 1.48𝑒 − 006

Beale 2 3 98 100 62.8 7.31𝑒 − 006

Brown and Dennis 4 20 77 79 100.1 85822.2
Trigonometrix 100 100 10 12 45.3 5.72𝑒 − 006

Trigonometrix 1000 1000 35 38 55.4 5.72𝑒 − 006

Trigonometrix 5000 5000 74 78 103.3 5.72𝑒 − 006

Broyden tridiagonal 100 100 56 56 89.2 9.54𝑒 − 006

Broyden tridiagonal 1000 1000 79 80 145.5 9.54𝑒 − 006

Broyden tridiagonal 5000 5000 82 86 170.2 9.54𝑒 − 006

Broyden banded 100 100 11 11 78.2 9.94𝑒 − 006

Broyden banded 500 500 46 46 90.3 9.94𝑒 − 006

Power singular 4 4 113 116 77 9.38𝑒 − 006

Brown almost linear 100 100 25 28 46.5 9.85𝑒 − 006

Brown almost linear 1000 1000 55 58 79.2 9.85𝑒 − 006

Watson 31 31 17 17 99.5 8.98𝑒 − 006

Discrete boundary value 100 100 42 42 36.2 9.54𝑒 − 006

Penalty function I 100 101 135 136 89.6 7.11𝑒 − 007

Penalty function II 100 200 56 56 70.2 5.69𝑒 − 007

Penalty function II 500 1000 102 105 144.6 5.69𝑒 − 007

Penalty function II 1000 2000 256 256 403.4 5.69𝑒 − 007

Table 2: The numerical results of Algorithm 9.

𝑃 𝑛 𝑚 Nf Ng 𝑆 𝑓
∗

Rosenbrock 2 2 18 18 10 5.38𝑒 − 006

Freudenstein and Roth 2 2 47 48 28.3 5.72𝑒 − 006

Brown badly scaled 2 3 106 108 301.4 1.48𝑒 − 006

Beale 2 3 40 40 31 7.31𝑒 − 006

Brown and Dennis 4 20 23 23 36.4 85822.2
Trigonometrix 100 100 5 5 25 5.72𝑒 − 006

Trigonometrix 1000 1000 20 21 40.3 5.72𝑒 − 006

Trigonometrix 5000 5000 35 35 53.4 5.72𝑒 − 006

Power singular 4 4 45 45 63.2 9.38𝑒 − 006

Broyden tridiagonal 100 100 40 40 68 9.54𝑒 − 006

Broyden tridiagonal 1000 1000 54 54 85.4 9.54𝑒 − 006

Broyden tridiagonal 5000 5000 72 75 130.1 9.54𝑒 − 006

Broyden banded 100 100 7 7 60.7 9.94𝑒 − 006

Broyden banded 500 500 31 35 84.5 9.94𝑒 − 006

Brown almost linear 100 100 25 28 33.5 9.85𝑒 − 006

Brown almost linear 1000 1000 50 50 65.8 9.85𝑒 − 006

Watson 31 31 14 17 75.6 8.98𝑒 − 006

Discrete boundary value 100 100 42 42 30.4 9.54𝑒 − 006

Penalty function I 100 101 55 56 69.1 7.11𝑒 − 007

Penalty function II 100 200 41 41 64.3 5.69𝑒 − 007

Penalty function II 500 1000 56 56 68 5.69𝑒 − 007

Penalty function II 1000 2000 86 86 70.1 5.69𝑒 − 007
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Table 3: The numerical results of the MBFGS method [1].

𝑃 𝑛 𝑚 Nf Ng 𝑆 𝑓
∗

Rosenbrock 2 2 30 30 32 6.14𝑒 − 006

Freudenstein and Roth 2 2 45 46 45.8 5.13𝑒 − 006

Brown badly scaled 2 3 120 113 317.6 0.48𝑒 − 007

Beale 2 3 56 56 45 5.33𝑒 − 006

Brown and Dennis 4 20 23 34 39.7 85856.2

Trigonometrix 100 100 23 20 53 5.72𝑒 − 006

Trigonometrix 1000 1000 34 38 121 5.72𝑒 − 006

Trigonometrix 5000 5000 45 45 135 5.72𝑒 − 006

Broyden tridiagonal 100 100 60 69 77 9.24𝑒 − 006

Broyden tridiagonal 1000 1000 90 91 186.4 9.06𝑒 − 006

Broyden tridiagonal 5000 5000 122 123 140.7 0.54𝑒 − 007

Broyden banded 100 100 22 33 100 0.91𝑒 − 007

Broyden banded 500 500 22 22 90 0.94𝑒 − 007

Power singular 4 4 56 85 78 0.34𝑒 − 008

Brown almost linear 100 100 56 55 143.3 0.87𝑒 − 006

Brown almost linear 1000 1000 50 58 128.8 0.85𝑒 − 007

Watson 31 31 22 22 86.5 8.98𝑒 − 006

Discrete boundary value 100 100 55 55 42.3 9.54𝑒 − 006

Penalty function I 100 101 60 60 88 7.11𝑒 − 007

Penalty function II 100 200 157 159 185.6 0.69𝑒 − 008

Penalty function II 500 1000 256 257 200.4 0.19𝑒 − 008

Penalty function II 1000 2000 287 287 210.4 0.69𝑒 − 008

On the other hand, some of the test problems are from
the CUTE collection established by Bongartz, Conn, Gould,
and Toint. In Figure 1, we adopt the performance profiles
proposed by Dolan and Moré [25] to compare the CPU-time
of Algorithm 1, Algorithm 9, MBFGS method, Dai’s method,
and MPRP method. That is, for each method, we plot the
fraction P of problems for which the method is within a
factor 𝑡 of the best time. The left side of the figure gives
the percentage of the test problems for which method is the
fastest.The right side gives the percentage of the test problems
that are successfully solved by each of the methods. The top
curve is the method that solved most of the problems in a
time that is within a factor 𝑡 of the best time. From Figure 1,
we can see that Algorithm 1method andAlgorithm 9method
perform better than the MBFGS method and Dai’s method
and MPRP method in [1, 19, 20]. Hence, the proposed
methods not only possess better global convergence but
also are superior to the three-term type conjugate gradient
methods [1, 19, 20] in the numerical performance.

6. Conclusions

In this paper, on the one hand, we improve a three-term type
conjugate gradient method which is obtained by a MBFGS.
On the other hand, we show another sufficient decent three-
term type conjugate gradient method. In addition, under
appropriate conditions, we indicate that the two methods
are global convergence. Finally, some numerical experiments
manifest the efficiency of the proposed methods.
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Figure 1: Performance based on CPU-time.

Certainly, we should further investigate more useful,
powerful, and practical algorithms for solving large-scale
unconstrained optimization problems, for instance, the
hybrid conjugate gradient-GA and conjugate gradient-PSO
methods and so on.
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