
Hindawi Publishing Corporation
Journal of Discrete Mathematics
Volume 2013, Article ID 270424, 12 pages
http://dx.doi.org/10.1155/2013/270424

Research Article
Classification of Boolean Functions Where Affine Functions Are
Uniformly Distributed

Ranjeet Kumar Rout,1 Pabitra Pal Choudhury,1 and Sudhakar Sahoo2

1 Applied Statistics Unit, Indian Statistical Institute, Kolkata 700108, India
2 Institute of Mathematics and Applications, Bhubaneswar 751003, India

Correspondence should be addressed to Ranjeet Kumar Rout; ranjeetkumarrout@gmail.com

Received 17 May 2013; Revised 22 August 2013; Accepted 11 September 2013

Academic Editor: Pantelimon Stǎnicǎ

Copyright © 2013 Ranjeet Kumar Rout et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Thepresent paper on classification of 𝑛-variable Boolean functions highlights the process of classification in a coherentway such that
each class contains a single affine Boolean function. Two unique and different methods have been devised for this classification.The
first one is a recursive procedure that uses the Cartesian product of sets starting from the set of one variable Boolean functions. In
the secondmethod, the classification is done by changing some predefined bit positionswith respect to the affine function belonging
to that class. The bit positions which are changing also provide us information concerning the size and symmetry properties of the
classes/subclasses in such a way that the members of classes/subclasses satisfy certain similar properties.

1. Introduction

Classification of non-linear Boolean functions has been a
long standing problem in the field of theoretical computer
science. A systematic classification of Boolean functions with
𝑛-variable having a representative in each class is a welcomed
step in this area of study. It has been very accurately consid-
ered as vital and meaningful because of two important well-
defined reasons: (a) equivalent functions in each class possess
similar properties and (b) the number of representatives in
each class is much less than that of Boolean functions.

Earlier, when two Boolean functions of 𝑛-variable differ
only by permutation or complementation of their variables,
they fall into equivalence classes. The formula for counting
the number of such equivalence classes is given in [1]. Further,
it has also been elaborated in [2] about the procedures of
selection of a representative assembly, with one member from
each equivalence class. In [3], the linear group and the affine
Boolean function group of transformations have been defined
and an algorithmhas been proposed for counting the number
of classes under both groups. The classification of the set
of 𝑛-input functions is specifically based on three criteria:
the number of functions, the number of 𝑃 classes, and the

number of NPN classes, which are first introduced in [4].
Classification of the affine equivalence classes of cosets of
the first order Reed-Muller code with respect to crypto-
graphic properties such as correlation immunity, resiliency,
and propagation characteristics has been discussed in [5–
8]. Heuristic design of cryptographically strong balanced
Boolean function was envisaged in [9]. In [10], three variable
Boolean functions in the name of 3-neighborhood cellular
automata rules have been classified on the basis of hamming
distance with respect to linear rules. The characterization of
3-variable non-linear Boolean functions has been undertaken
in three different ways, by Boolean derivatives, by deviant
states, and by matrices as elaborated in the papers [10–12],
respectively.

In this paper, two methods have been proposed for
generating equivalence classes of Boolean functions with a
specific objective in our mind that, in each class, exactly
one affine Boolean function is present. The first method is a
recursive approach to classify 𝑛-variable Boolean functions
starting from 1-variable to higher variables. In the second
method, the classification is done through changing some
variable bit positions with respect to the affine function
belonging to that class.



2 Journal of Discrete Mathematics

In the following sections, the paper is organized in
a precise methodical manner. In Section 2, the literature
of Boolean functions of different variables relevant to our
work is reviewed. In Section 3, the method of recursive
classification of 𝑛-variable Boolean functions is introduced
and the properties of these classes are discussed. Based on
these properties another efficient method has also been pro-
posed for generating the same classes of 𝑛-variable Boolean
functions. In Section 4, we have studied the behavior of
those classes by using different binary operations such as
Hamming distance (HD), XOR operation, and Carry value
transformation (CVT) [13]. Section 5 deals with concluding
remarks emphasizing the key factors of the entire analysis.

2. Relevant Review

An 𝑛-variable Boolean function 𝑓 is a mapping from the set
of all possible 𝑛-bit strings {0, 1}𝑛 into {0, 1}. The number
of different 𝑛-variable Boolean functions is 22

𝑛

, where each
function can be represented by a truth table output as a binary
string of length 2𝑛.Thedecimal equivalent of the binary string
starting from bottom to top (least significant bit) in the truth
table is called the rule number of that function [14]. The
complement of 𝑓 is denoted as 𝑓.

A Boolean function with algebraic expression, where the
degree is at most one is called an affine Boolean function.The
general form for 𝑛-variable affine function is

𝑓affine (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛)

= 𝑘
𝑛
𝑥
𝑛
⊕ 𝑘
𝑛−1
𝑥
𝑛−1

⊕ ⋅ ⋅ ⋅ ⊕ 𝑘
2
𝑥
2
⊕ 𝑘
1
𝑥
1
⊕ 𝑘
0
,

(1)

where the coefficients are either zero or one.
If the constant term 𝑘

0
of an affine function is zero

then the function is called a linear Boolean function. Thus,
affine Boolean functions are either linear Boolean functions
or their complements. The number of different 𝑛-variable
affine Boolean functions is 2𝑛+1 out of which 2𝑛 are linear.
As an example, the 16 affine Boolean functions in 3-variables
are 0, 60, 90, 102, 150, 170, 204, 240, 15, 51, 85, 105, 153,
165, 195, and 255 out of which the first eight are linear
and the remaining Boolean functions are their corresponding
complements [3].

The concatenation of the Boolean function 𝑓 with itself
and the concatenation of 𝑓 with its complement 𝑓 are
denoted as 𝑓𝑓 and 𝑓𝑓, respectively. For example,

if 𝑓 = (0
0
) , then 𝑓𝑓 = (

0

0

0

0

) , 𝑓𝑓 = (

0

0

1

1

) . (2)

Note that if 𝑓 is a Boolean function of 𝑛-variable, then 𝑓𝑓
and 𝑓𝑓 are Boolean functions of (𝑛 + 1)-variable.

Theorem 1. 𝑓 is linear if and only if 𝑓𝑓 and 𝑓𝑓 are linear.

Apart from the above concatenations as stated in
Theorem 1, all other concatenations give non-linear Boolean
functions [15].

Corollary 2. 𝑓 is an affine Boolean function if and only if 𝑓𝑓,
𝑓𝑓, 𝑓𝑓, and 𝑓𝑓 are affine Boolean functions.

Proof. The proof of the corollary easily follows from
Theorem 1 as affine Boolean functions are either linear
Boolean functions or their complements.

3. Proposed Methods for Classification of
Boolean Functions

In this section, two different methods have been proposed
to classify the set of all possible 𝑛-variable Boolean functions
such that each class is of equal cardinality and contains only
a single affine function.

3.1. A Recursive Procedure to Classify 𝑛-Variable Boolean
Functions. Let 𝑆

1
= {{00}, {10}, {11}, {01}} be a set of all 1-

variable Boolean functions. Here all the Boolean functions
are affine. Let 𝑆󸀠

1
= {{00}, {10}} be a set containing all linear

Boolean functions of 1-variable, and 𝑆󸀠󸀠
1
= {{11}, {01}} is the

complement of the set 𝑆󸀠
1
. The Cartesian product of the sets

𝑆
1
with 𝑆󸀠

1
and 𝑆󸀠󸀠
1
is defined successively as follows:

𝑆
1
× 𝑆
󸀠

1
= {{0000, 0010} , {1000, 1010} ,

{1100, 1110} , {0100, 0110}} ,

𝑆
1
× 𝑆
󸀠󸀠

1
= {{0011, 0001} , {1011, 1001} ,

{1111, 1101} , {0111, 0101}} .

(3)

Note that, 𝑆
1
contains four classes each containing a 1-

variable Boolean functions whereas, the set (𝑆
1
× 𝑆
󸀠

1
) ∪ (𝑆
1
×

𝑆
󸀠󸀠

1
) contains eight disjoint classes of all 2-variable Boolean

functions. Here, each class contains exactly one 2-variable
affine Boolean function as highlighted above in (3). This
process is repeated for the next higher variable, using the
recursive formula of the following.

(i) Base case: (for 𝑛 = 1)

𝑆
󸀠

1
= {{00} , {10}} , 𝑆

󸀠󸀠

1
= {{11} , {01}} ,

𝑆
1
= (𝑆
󸀠

1
∪ 𝑆
󸀠󸀠

1
) = {{00} , {10} , {11} , {01}} .

(4)

(ii) Recursion: (for 𝑛 ≥ 2)

𝑆
󸀠

𝑛
= (𝑆
𝑛−1

× 𝑆
󸀠

𝑛−1
) , 𝑆

󸀠󸀠

𝑛
= (𝑆
𝑛−1

× 𝑆
󸀠󸀠

𝑛−1
) ,

𝑆
𝑛
= (𝑆
󸀠

𝑛−1
∪ 𝑆
󸀠󸀠

𝑛−1
) ,

(5)

where 𝑆
𝑛
contains the classes of all 𝑛-variable Boolean

functions, where each class contains exactly one 𝑛-variable
affine function. Here both the sets 𝑆󸀠

𝑛
and 𝑆󸀠󸀠
𝑛
are complement

to each other.

Theorem 3. The recursive procedure of (4) and (5), when
repeated up to (𝑛 − 1) times, classifies the set of all 𝑛-variable
Boolean functions into 2𝑛+1 number of disjoint classes. such that
each class contains exactly one 𝑛-variable affine Boolean func-
tion along with some 𝑛-variable non-linear Boolean functions.



Journal of Discrete Mathematics 3

Proof. Theresult follows because of the fact that (𝑆
𝑛−1
×𝑆
󸀠

𝑛−1
)∪

(𝑆
𝑛−1

× 𝑆
󸀠

𝑛−1
) = 𝑆
𝑛−1

× (𝑆
󸀠

𝑛−1
∪ 𝑆
󸀠󸀠

𝑛−1
) = 𝑆
𝑛−1

× 𝑆
𝑛−1

= 𝑆
𝑛
and

(𝑆
𝑛−1
×𝑆
󸀠

𝑛−1
)∩ (𝑆
𝑛−1
×𝑆
󸀠󸀠

𝑛−1
) = 𝑆
𝑛−1
×(𝑆
󸀠

𝑛−1
∩𝑆
󸀠󸀠

𝑛−1
) = 𝑆
𝑛−1
×𝜙 =

𝜙. And the property that each class contains exactly one 𝑛-
variable affine Boolean function can be ascertained on using
Corollary 2 of Section 2.

Illustration (from 2-variable classes to 3-variable classes).
From (4) and (5) the set

𝑆
2

= {

{0000, 0010} ,{1000, 1010} , {1100, 1110} , {0100, 0110}
{0011, 0001} ,{1011, 1001} , {1111, 1101} , {0111, 0101}},

(6)

and this set contains the classes of all 2-variable Boolean
functions. The set 𝑆󸀠

2
= {{0000, 0010}, {1000, 1010}, {1100,

1110}, {0100, 0110}} is the first four classes of 𝑆
2
and 𝑆󸀠󸀠

2
=

{{0011, 0001}, {1011, 1001}, {1111, 1101}, {0111, 0101}} is the
set containing the remaining classes of 𝑆

2
and complement of

the set 𝑆󸀠
2
. Now, the classes of 3-variables are generated using

the formula as 𝑆󸀠
3
= (𝑆
2
×𝑆
󸀠

2
), 𝑆󸀠󸀠
3
= (𝑆
2
×𝑆
󸀠󸀠

2
), and 𝑆

3
= (𝑆
󸀠

3
∪𝑆
󸀠󸀠

3
).

Some of the class members are shown in the following:

𝑆
󸀠

3
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

00000000,
00000010,

00001000,

00001010,

00001100,

00001110,

00000100,

00000110, Class 2, . . . ,Class 8
00100000,

00100010,

00101000,

00101010,

00101100,

00101110,

00100100,

00100110

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}

,

𝑆
󸀠󸀠

3
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

00000011,

00000001,

00001011,

00001001,

00001111,
00001101,

00000111,

00000101, Class 10, . . . ,Class 16
00100011,

00100001,

00101011,

00101001,

00101111,

00101101,

00100111,

00100101

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}

.

(7)

The naming of the classes is given as class 1, class 2, . . ., class
2
𝑛+1 such that the complement of class 𝑘 is the class (2𝑛 + 𝑘)
where 𝑘 = 1, 2, 3, . . . , 2𝑛. In (7), only the members of 1 and 13
are shown and other classes of Boolean functions are shown
in Appendix A.

Theorem 4. The number of different classes in the above
classification is 2𝑛+1.

Proof. As each class contains exactly one affine Boolean
function, the number of classes of 𝑛-variable is the same as the
number of affine Boolean functions and equals to 2𝑛+1.

Theorem 5. The classes are of equal size and the cardinality of
each class is equal to 22

𝑛

−(𝑛+1).

Proof. The equal size of the classes easily follows from the
cardinality of the two sets 𝑆󸀠

𝑛
and 𝑆󸀠󸀠

𝑛
. On using Theorem 4,

the cardinality of each class = (total number of 𝑛 −

variable Boolean functions)/(total number of 𝑛 − variable
affine Boolean functions) = (22

𝑛

)/(2
𝑛+1

) = 2
2
𝑛

−(𝑛+1).

Theorem 6. The least significant bit of all the Boolean func-
tions in 𝑆󸀠

𝑛
is 0, whereas in 𝑆󸀠󸀠

𝑛
it is 1.

Proof. When 𝑛 = 1, that is for the base case of the recursion,
the least significant bit position of all the Boolean functions in
the set 𝑆󸀠

1
is 0 and for the set 𝑆󸀠󸀠

1
it is 1.Therefore, the recursive

procedure using the Cartesian product also preserves the
same property for the next higher variable.

Interestingly, the relation defined in the recursive pro-
cedure is operating on the set of (𝑛 − 1)-variable Boolean
functions, but the partition is obtained in the set of 𝑛-variable
Boolean functions. Therefore, an equivalence relation must
exist on the set of 𝑛-variable Boolean functions, which divides
the set into disjoint equivalence classes.

Theorem 7. For each class of 𝑛-variable, the length of a
Boolean function is 2𝑛, out of which (𝑛 + 1) bits are fixed and
the remaining (2𝑛−(𝑛+1)) bits are changing with respect to the
affine Boolean function of that class. The (𝑛 + 1) bit positions
of a Boolean function which are fixed in a class are calculated
using the formula 𝑃

𝑛
− 2
𝑘, where 𝑃

𝑛
= (2
𝑛

+ 1) and the values
of 𝑘 = 0, 1, 2, . . . , 𝑛.

Proof (using mathematical induction).

Basis. For 𝑛 = 1, each class contains a single Boolean function
of length 2. Hence both the first and second bit positions are
fixed and it satisfies the formula 𝑃

1
− 2
𝑘

= (2
1

+ 1) − 2
𝑘 for

𝑘 = 0 and 1. So, the bit positions are 3−20 = 2 and 3−21 = 1.
Hence the formula is valid for 𝑛 = 1.

Induction Hypothesis. Assume that the formula is valid for
the classes of (𝑛 − 1)-variable Boolean functions, 𝑆

𝑛−1
. From

recursive definition, the formula is also valid for all the classes
of 𝑆󸀠
𝑛−1

and 𝑆󸀠󸀠
𝑛−1

. Thus, by induction hypothesis, the invariant



4 Journal of Discrete Mathematics

bit positions of a class of 𝑆
𝑛−1

is calculated using the formula
as given below:

𝑃
𝑛−1

− 2
𝑘

, where 𝑃
𝑛−1

= 2
𝑛−1

+ 1, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1.

(8)

Induction. Here we have to prove that the formula is true for
all classes in 𝑆

𝑛
. According to the recursive formula 𝑆

𝑛
= (𝑆
󸀠

𝑛
∪

𝑆
󸀠󸀠

𝑛
)where 𝑆󸀠

𝑛
= (𝑆
𝑛−1
×𝑆
󸀠

𝑛−1
) and 𝑆󸀠󸀠

𝑛
= (𝑆
𝑛−1
×𝑆
󸀠󸀠

𝑛−1
). Consider

a particular class of 𝑆
𝑛−1

and let it be 𝐶
1
. The corresponding

classes of 𝑆󸀠
𝑛
which will be generated using (𝐶

1
× 𝑆
󸀠

𝑛−1
) must

contain the Boolean functions of length 2𝑛, where the first
2
𝑛−1 (starting from most significant bit) bit positions are
from a single class 𝐶

1
. And hence by induction hypothesis,

𝑛 number of bit positions is fixed and satisfies (9). From
Theorem 6, the least significant bit position of the remaining
string of length 2𝑛−1 is 0 for all the members of the classes of
𝑆
󸀠

𝑛
. Therefore, the bit positions of a Boolean function, which

are fixed in a class of 𝑆󸀠
𝑛
is calculated by adding 2𝑛−1 to all

the numbers generated from (9). Along with this, we have to
include the least significant bit position (or the first position)
in the formula, which gives (𝑛 + 1) invariant positions of a
class in 𝑆

𝑛
. Thus for 𝑆

𝑛
, the formula is calculated as follows:

for 𝑘 = 0, 1, 2, . . . , 𝑛 − 1,

{𝑃
𝑛−1

− 2
𝑘

} + 2
𝑛−1

= {(2
𝑛−1

+ 1) − 2
𝑘

} + 2
𝑛−1

= {2
𝑛

+ 1} − 2
𝑘

= 𝑃
𝑛
− 2
𝑘

;

(9)

for 𝑘 = 𝑛, the value is 1:

1 = (2
𝑛

+ 1) − 2
𝑛

= 𝑃
𝑛
− 2
𝑛

= 𝑃
𝑛
− 2
𝑘

. (10)
So the formula is true for all the values of 𝑘 = 0, 1, 2, . . . , 𝑛.

The above formula is also true for all the classes of 𝑆
𝑛
, as any

class in 𝑆
𝑛
is either generated using the formula (𝑆

𝑛−1
× 𝑆
󸀠

𝑛−1
)

or (𝑆
𝑛−1

× 𝑆
󸀠󸀠

𝑛−1
). Hence, by the principle of mathematical

induction, we conclude that 𝑃
𝑛
− 2
𝑘 is true for all positive

integers 𝑛.

Illustration. For every 1-variable Boolean function, all the bit
positions are fixed and the bit positions are (21 + 1) − 20 = 2
and (21 +1) − 21 = 1. For every 2-variable Boolean function,
three bit positions are fixed and the bit positions are (22+1)−
2
0

= 4, (22 + 1) − 21 = 3, and (22 + 1) − 22 = 1. Similarly, for
every 3-variable Boolean function, four bit positions are fixed
and the bit positions are (23 + 1) − 20 = 8, (23 + 1) − 21 = 7,
(2
3

+1)−2
2

= 5, and (23+1)−23 = 1. For 3-variable functions,
all classes and their subclasses are given in Appendix A.

The set of bit positions which are changing in a class can
be calculated by subtracting the set of invariant bit positions
from the set {1, 2, 3, . . . , 2𝑛}.

Corollary 8. The bit positions which are fixed or changing are
invariant for all classes with respect to the concerned affine
function of that class.

Proof. The formula given in Theorem 7 is used to calculate
the bit positions which are fixed or changing and valid for an
arbitrary class. Hence, it is also valid for all classes.

Table 1: Different subclasses of class 1.

Boolean functions Decimal
value

HD wrt affine
Boolean function

No. of Boolean
function

00000000 (Affine) 0 0 1
00000010 2

1 4
00100000 32
00001000 8
00000100 4
00100010 34

2 6

00001010 10
00101000 40
00001100 12
00000110 4
00100100 36
00101010 42

3 4
00001110 14
00101100 44
00001100 12
00100110 38
00101110 36 4 1

Using the result of Theorem 7, an equivalence relation
has been defined on the set of all possible 𝑛-variable Boolean
functions by which the same class or classes can be generated
without using recursion.

Let 𝑓 and 𝑔 be two 𝑛-variable Boolean functions, and
𝑅 is a binary relation on the set of 𝑛-variable Boolean
functions defined as 𝑓𝑅𝑔 if and only if “there exist (𝑛 + 1) bit
positions calculated on using Theorem 7 and the calculated
bit positions are the same for the functions 𝑓 and 𝑔.” Clearly,

(1) 𝑓𝑅𝑓∀𝑓. So, 𝑅 is reflexive.
(2) If 𝑓𝑅𝑔 then 𝑔𝑅𝑓. So, 𝑅 is symmetric.
(3) If 𝑓𝑅𝑔 and 𝑔𝑅ℎ then 𝑓𝑅ℎ. So, 𝑅 is transitive.

Hence, 𝑅 is an equivalence relation. The next procedure uses
the above equivalence relation and can efficiently generate the
same class or classes without using the recursive procedure.

3.2. Procedure to Generate the Same Class without Using
Recursion. Let𝑓 be an 𝑛-variable affineBoolean function. Let
𝐵 be an array which is used to store the bit positions, which
are fixed for a Boolean function with respect to the affine
function. Array 𝐵 can be calculated using Algorithm 9. The
worst case time complexity of the Algorithm is 𝑂(𝑛).

Algorithm 9 (fixed-bit positions (𝑓)).

(1) Initialize𝑋 = 2
𝑛

(2) for (𝑖 = 0 to 𝑛)
(3) {
(4) 𝐵[𝑖] =𝑋
(5) 𝑋 = 𝐵[𝑖] − 2𝑖

(6) }
(7) return 𝐵.



Journal of Discrete Mathematics 5

Table 2: XOR values of class 1 of 3-variable Boolean functions.

XOR 0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
0 0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
2 2 0 6 4 10 8 14 12 34 32 38 36 42 40 46 44
4 4 6 0 2 12 14 8 10 36 38 32 34 44 46 40 42
6 6 4 2 0 14 12 10 8 38 36 34 32 46 44 42 40
8 8 10 12 14 0 2 4 6 40 42 44 46 32 34 36 38
10 10 8 14 12 2 0 6 4 42 40 46 44 34 32 38 36
12 12 14 8 10 4 6 0 2 44 46 40 42 36 38 32 34
14 14 12 10 8 6 4 2 0 46 44 42 40 38 36 34 32
32 32 34 36 38 40 42 44 46 0 2 4 6 8 10 12 14
34 34 32 38 36 42 40 46 44 2 0 6 4 10 8 14 12
36 36 38 32 34 44 46 40 42 4 6 0 2 12 14 8 10
38 38 36 34 32 46 44 42 40 6 4 2 0 14 12 10 8
40 40 42 44 46 32 34 36 38 8 10 12 14 0 2 4 6
42 42 40 46 44 34 32 38 36 10 8 14 12 2 0 6 4
44 44 46 40 42 36 38 32 34 12 14 8 10 4 6 0 2
46 46 44 42 40 38 36 34 32 14 12 10 8 6 4 2 0

Table 3: CVT patterns of class 1 of 3-variable Boolean functions.

CVT 0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
4 0 0 8 8 0 0 8 8 0 0 8 8 0 0 8 8
6 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12
8 0 0 0 0 16 16 16 16 0 0 0 0 16 16 16 16
10 0 4 0 4 16 20 16 20 0 4 0 4 16 20 16 20
12 0 0 8 8 16 16 24 24 0 0 8 8 16 16 24 24
14 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
32 0 0 0 0 0 0 0 0 64 64 64 64 64 64 64 64
34 0 4 0 4 0 4 0 4 64 68 64 68 64 68 64 68
36 0 0 8 8 0 0 8 8 64 64 72 72 64 64 72 72
38 0 4 8 12 0 4 8 12 64 68 72 76 64 68 72 76
40 0 0 0 0 16 16 16 16 64 64 64 64 80 80 80 80
42 0 4 0 4 16 20 16 20 64 68 64 68 80 84 80 84
4 0 0 8 8 16 16 24 24 64 64 8 8 80 80 72 72
46 0 4 8 12 16 20 24 28 64 68 72 76 80 84 88 92
4

By invoking the above function in an algorithm, we can get
other non-linear functions in a class. For this purpose, one
has to put all possible binary sequences of length 2𝑛 − (𝑛 + 1),
except those fixed bit positions of 𝑓. Taking different affine
functions as input, different classes can be generated.

3.3. List of Inferences Drawn from the above Classification
Method

(1) The method of keeping some of the bit positions
fixed and varying other bit positions with respect
to a Boolean function will be a handle to find out
equivalence classes of equal cardinality.

(2) The number of equivalence classes is equal to 2𝑘,
where 𝑘 is the number of fixed positions.

(3) Different set of fixed positions generates different
classes of Boolean functions.

(4) The number of members in a particular class is 2𝑙 for
0 ≤ 𝑙 ≤ 2

𝑛

− 𝑘, where 𝑙 is the number of changing bit
positions.

(5) How to select the set of representative functions
that generate disjoint equivalence classes of equal
cardinality? The generators are all possible 𝑘 bit
sequences in the fixed positions and the rest of
the positions are arbitrarily filled up by 0/1. Any
Boolean function generated through this procedure



6 Journal of Discrete Mathematics

Table 4

Class 1
BF DV HD No. of BF
00000000 0 0 1
00000010 2

1 400100000 32
00001000 8
00000100 4
00100010 34

2 6

00001010 10
00101000 40
00001100 12
00000110 6
00100100 36
00101010 42

3 400001110 14
00101100 44
00100110 38
00101110 46 4 1

Class 2
BF DV HD No. of BF
10101010 170 0 1
10100010 162

1 410101000 168
10001010 138
10101110 174
10100000 160

2 6

10000010 130
10001000 136
10101100 172
10001110 142
10100110 166
10000000 128

3 410001100 140
10100100 164
10000110 134
10000100 132 4 1

Class 3
BF DV HD No. of BF
11001100 204 0 1
11001000 200

1 411001110 206
11101100 236
11000100 196
11000000 192

2 6

11001010 202
11101000 232
11101110 238
11000110 198
11100100 228

Table 4: Continued.

11000010 194

3 411100000 224
11101010 234
11100110 230
11100010 226 4 1

Class 4
BF DV HD No. of BF
01100110 102 0 1
01100010 98

1 401101110 110
01100100 100
01000110 70
01100000 96

2 6

01000010 66
01101010 106
01101100 108
01001110 78
01000100 68
01000000 64

3 401101000 104
01001010 74
01001100 76
01001000 72 4 1

Class 5
BF DV HD No. of BF
11110000 240 0 1
11110010 242

1 411010000 208
11111000 248
11110100 244
11010010 210

2 6

11111010 250
11011000 216
11111100 252
11110110 246
11010100 212
11011010 218

3 411111110 254
11011100 220
11010110 214
11011110 222 4 1

Class 6
BF DV HD No. of BF
01011010 90 0 1
01010010 82

1 401011000 88
01111010 122
01011110 94



Journal of Discrete Mathematics 7

Table 4: Continued.

01010000 80

2 6

01110010 114
01111000 120
01011100 92
01111110 126
01010110 86
01110000 112

3 401111100 124
01010100 84
01110110 118
01110100 116 4 1

Class 7
BF DV HD No. of BF
00111100 60 0 1
00111000 56

1 400111110 62
00011100 28
00110100 52
00110000 48

2 6

00111010 58
00011000 24
00011110 30
00110110 54
00010100 20
00110010 50

3 400010000 16
00011010 26
00010110 22
00010010 18 4 1

Class 8
BF DV HD No. of BF
10010110 150 0 1
10010010 146

1 410011110 158
10010100 148
10110110 182
10010000 144

2 6

10110010 178
10011010 154
10011100 156
10111110 190
10110100 180
10110000 176

3 410011000 152
10111010 186
10111100 188
10111000 184 4 1

Table 4: Continued.

Class 9
BF DV HD No. of BF
11111111 255 0 1
11111101 253

1 411011111 223
11110111 247
11111011 251
11011101 221

2 6

11110101 245
11010111 215
11110011 243
11111001 249
11011011 219
11010101 213

3 411110001 241
11010011 211
11011001 217
11010001 209 4 1

Class 10
BF DV HD No. of BF
01010101 85 0 1
01011101 93

1 401010111 87
01110101 117
01010001 81
01011111 95

2 6

01111101 125
01110111 119
01010011 83
01110001 113
01011001 89
01111111 127

3 401110011 115
01011011 91
01111001 121
01111011 123 4 1

Class 11
BF DV HD No. of BF
00110011 51 0 1
00110111 55

1 400110001 49
00010011 19
00111011 59
00111111 63

2 6

00110101 53
00010111 23
00010001 17
00111001 57
00011011 27



8 Journal of Discrete Mathematics

Table 4: Continued.

00111101 61

3 400011111 31
00010101 21
00011001 25
00011101 29 4 1

Class 12
BF DV HD No. of BF
10011001 153 0 1
10011101 157

1 410010001 145
10011011 155
10111001 185
10011111 159

2 6

10111101 189
10010101 149
10010011 147
10110001 177
10111011 187
10111111 191

3 410010111 151
10110101 181
10110011 179
10110111 183 4 1

Class 13
BF DV HD No. of BF
00001111 15 0 1
00001101 13

1 400101111 47
00000111 7
00001011 11
00101101 45

2 6

00000101 5
00100111 39
00000011 3
00001001 9
00101011 43
00100101 37

3 400000001 1
00100011 35
00101001 41
00100001 33 4 1

Class 14
BF DV HD No. of BF
10100101 165 0 1
10101101 173

1 410100111 167
10000101 133
10100001 161

Table 4: Continued.

10101111 175

2 6

10001101 141
10000111 135
10100011 163
10000001 129
10101001 169
10001111 143

3 410000011 131
10101011 171
10001001 137
10001011 139 4 1

Class 15
BF DV HD No. of BF
11000011 195 0 1
11000111 199

1 411000001 193
11100011 227
11001011 203
11001111 207

2 6

11000101 197
11100111 231
11100001 225
11001001 201
11101011 235
11001101 205

3 411101111 239
11100101 229
11101001 233
11101101 237 4 1

Class 16
BF DV HD No. of BF
01101001 105 0 1
01101101 109

1 401100001 97
01101011 107
01001001 73
01101111 111

2 6

01001101 77
01100101 101
01100011 99
01000001 65
01001011 75
01001111 79

3 401100111 103
01000101 69
01000011 67
01000111 71 4 1
BF: Boolean function, DV: decimal value, HD: Hamming distance, and No.
BF: number of Boolean functions.



Journal of Discrete Mathematics 9

Table 5

(a)

XOR 0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
0 0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
2 2 0 6 4 10 8 14 12 34 32 38 36 42 40 46 44
4 4 6 0 2 12 14 8 10 36 38 32 34 44 46 40 42
6 6 4 2 0 14 12 10 8 38 36 34 32 46 44 42 40
8 8 10 12 14 0 2 4 6 40 42 44 46 32 34 36 38
10 10 8 14 12 2 0 6 4 42 40 46 44 34 32 38 36
12 12 14 8 10 4 6 0 2 44 46 40 42 36 38 32 34
14 14 12 10 8 6 4 2 0 46 44 42 40 38 36 34 32
32 32 34 36 38 40 42 44 46 0 2 4 6 8 10 12 14
34 34 32 38 36 42 40 46 44 2 0 6 4 10 8 14 12
36 36 38 32 34 44 46 40 42 4 6 0 2 12 14 8 10
38 38 36 34 32 46 44 42 40 6 4 2 0 14 12 10 8
40 40 42 44 46 32 34 36 38 8 10 12 14 0 2 4 6
42 42 40 46 44 34 32 38 36 10 8 14 12 2 0 6 4
44 44 46 40 42 36 38 32 34 12 14 8 10 4 6 0 2
46 46 44 42 40 38 36 34 32 14 12 10 8 6 4 2 0

(b)

XOR 128 130 132 134 136 138 140 142 160 162 164 166 168 170 172 174
128 0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
130 2 0 6 4 10 8 14 12 34 32 38 36 42 40 46 44
132 4 6 0 2 12 14 8 10 36 38 32 34 44 46 40 42
134 6 4 2 0 14 12 10 8 38 36 34 32 46 44 42 40
136 8 10 12 14 0 2 4 6 40 42 44 46 32 34 36 38
138 10 8 14 12 2 0 6 4 42 40 46 44 34 32 38 36
140 12 14 8 10 4 6 0 2 44 46 40 42 36 38 32 34
142 14 12 10 8 6 4 2 0 46 44 42 40 38 36 34 32
160 32 34 36 38 40 42 44 46 0 2 4 6 8 10 12 14
162 34 32 38 36 42 40 46 44 2 0 6 4 10 8 14 12
164 36 38 32 34 44 46 40 42 4 6 0 2 12 14 8 10
166 38 36 34 32 46 44 42 40 6 4 2 0 14 12 10 8
168 40 42 44 46 32 34 36 38 8 10 12 14 0 2 4 6
170 42 40 46 44 34 32 38 36 10 8 14 12 2 0 6 4
172 44 46 40 42 36 38 32 34 12 14 8 10 4 6 0 2
174 46 44 42 40 38 36 34 32 14 12 10 8 6 4 2 0

(c)

XOR 192 194 196 198 200 202 204 206 224 226 228 230 232 234 236 238
192 0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
194 2 0 6 4 10 8 14 12 34 32 38 36 42 40 46 44
196 4 6 0 2 12 14 8 10 36 38 32 34 44 46 40 42
198 6 4 2 0 14 12 10 8 38 36 34 32 46 44 42 40
200 8 10 12 14 0 2 4 6 40 42 44 46 32 34 36 38
202 10 8 14 12 2 0 6 4 42 40 46 44 34 32 38 36
204 12 14 8 10 4 6 0 2 44 46 40 42 36 38 32 34
206 14 12 10 8 6 4 2 0 46 44 42 40 38 36 34 32
224 32 34 36 38 40 42 44 46 0 2 4 6 8 10 12 14
226 34 32 38 36 42 40 46 44 2 0 6 4 10 8 14 12
228 36 38 32 34 44 46 40 42 4 6 0 2 12 14 8 10



10 Journal of Discrete Mathematics

(c) Continued.

XOR 192 194 196 198 200 202 204 206 224 226 228 230 232 234 236 238
230 38 36 34 32 46 44 42 40 6 4 2 0 14 12 10 8
232 40 42 44 46 32 34 36 38 8 10 12 14 0 2 4 6
234 42 40 46 44 34 32 38 36 10 8 14 12 2 0 6 4
236 44 46 40 42 36 38 32 34 12 14 8 10 4 6 0 2
138 46 44 42 40 38 36 34 32 14 12 10 8 6 4 2 0

can be a representative for the class. The number of
generators for the proposed classification is 2𝑘.

(6) Any Boolean function of a class can be a represen-
tative of that class. In fact, taking affine function as
the representative of a class will provide us with the
guarantee of the inclusion of that affine function in
that class.

4. Different Operations in Classes

In this section, classes are divided into several subclasses
on using the Hamming distance (HD) between the Boolean
functions and the affine function in that class. Also, the classes
are analyzed on performingXORandCVToperations among
the functions of a class.

4.1. Subclassification. Hamming distance (HD) between two
Boolean functions is denoted as HD (𝑓, 𝑔) = 𝑘, where 𝑘 can
be 0, 1, 2, . . . , 2𝑛 − (𝑛 + 1) where 𝑓 is a Boolean function
and 𝑔 is an affine Boolean function and both belong to
the same class of 𝑛-variable. Further, Boolean functions in
a class having HD = 𝑘 with respect to the corresponding
affine Boolean function form subclasses whose cardinality is
binomial coefficients of the form 2

𝑛

−(𝑛+1)

𝐶
𝑘
, where 𝑘 = 0,

1, 2, . . . , 2
𝑛

− (𝑛 + 1).

Illustration. Table 1 shows the 3-variable Boolean functions
belonging to class 1, where the affine Boolean function is
0 = (00000000). There are five subclasses having cardinality
1, 4, 6, 4, and 1 with Hamming distance (HD) 0, 1, 2, 3, and
4, respectively. For 3-variables all classes and their subclasses
are given in Appendix A.

4.2. XOROperation in Classes. Let 𝑎 = (𝑎
2
𝑛 , 𝑎
2
𝑛
−1
, . . . , 𝑎

1
) and

𝑏 = (𝑏
2
𝑛 , 𝑏
2
𝑛
−1
, . . . , 𝑏

1
) be two 𝑛-variable Boolean functions

belonging to a particular class. The XOR operation of all the
classes when arranged in a table only gives those entries given
by class 1 functions, as (𝑎 + 𝑘) ⊕ (𝑏 + 𝑘) = (𝑎 ⊕ 𝑏) + (𝑘 ⊕ 𝑘) =
(𝑎 ⊕ 𝑏), where, the XOR operation of 𝑎 and 𝑏 is defined as
𝑎 ⊕ 𝑏 = (𝑎

2
𝑛 ⊕ 𝑏
2
𝑛 , 𝑎
2
𝑛
−1
⊕ 𝑏
2
𝑛
−1
, . . . , 𝑎

1
⊕ 𝑏
1
).

Illustration. Suppose we want the XOR operation of (44)
10
=

(00101100)
2
and (34)

10
= (00100010)

2
both belonging to class

1 of 3-variables. And 44 ⊕ 34 =(00101100) ⊕ (00100010) =
(00001110)= 14. Table 2 is constructed for all classes of 𝑛-
variable Boolean functions that contain only the XOR values
of all the functions in a class. The functions are arranged in
ascending order in both rows and columns of the table. It

can be proved that the content of each table remain invariant
under the XOR operation and the decimal values of the
content in the table are same as in class 1. For 3-variables the
XOR operation of other classes are given in Appendix B.

4.3. CVT Operation in Classes. Let 𝑎 = (𝑎
𝑘
, 𝑎
𝑘+1
, . . . , 𝑎

1
) and

𝑏 = (𝑏
𝑘
, 𝑏
𝑘+1
, . . . , 𝑏

1
) be two Boolean functions in a Class.

Then the Carry Value Transform (CVT) of 𝑎 and 𝑏 is defined
in [13] as CVT(𝑎, 𝑏) = (𝑎

𝑘
∧𝑏
𝑘
, 𝑎
𝑘−1
∧𝑏
𝑘−1
, . . . , 𝑎

1
∧𝑏
1
, 0). Carry

Value Transformation (CVT) is a kind of representation of
𝑛-variable Boolean functions and is used to produce many
interesting patterns [13]. Under the CVT operation, we have
observed some interesting self-similar fractal patterns which
are invariant for all classes of 𝑛-variable Boolean functions.

Illustration.The CVT operation of (44)
10
= (00101100)

2
and

(34)
10
= (00100010)

2
is 64. The patterns for class 1 functions

using CVT operation is shown in Table 3 and others are
shown in Appendix C.

5. Conclusion

The novelty of this paper lies in its systematic classification
of Boolean functions with focal emphasis on the prominent
binary operations like Hamming distance, XOR, and CVT.
The present analytical study introduces a new way towards
the formulation of an universal classifier of arbitrary length
which is being actively pursued. The procedures followed in
this paper are very handy and useful even for our future
experimental research in this domain of theoretical computer
science. A number of tables have been incorporated in this
paper for easy reference and clear comprehension showing
varied subclasses, patterns, and values of different classes.

Appendices

A. Subclassification

Table 4 shows the classes and subclasses of 3-variable Boolean
functions.

B. XOR Operations in Classes

Table 5 shows the XORoperation values of class-1, class-2 and
class-3 of 3-variable Boolean functions.



Journal of Discrete Mathematics 11

Table 6

(a)

0 2 4 6 8 10 12 14 32 34 36 38 40 42 44 46
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

4 0 0 8 8 0 0 8 8 0 0 8 8 0 0 8 8

6 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12

8 0 0 0 0 16 16 16 16 0 0 0 0 16 16 16 16

10 0 4 0 4 16 20 16 20 0 4 0 4 16 20 16 20

12 0 0 8 8 16 16 24 24 0 0 8 8 16 16 24 24

14 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28

32 0 0 0 0 0 0 0 0 64 64 64 64 64 64 64 64

34 0 4 0 4 0 4 0 4 64 68 64 68 64 68 64 68

36 0 0 8 8 0 0 8 8 64 64 72 72 64 64 72 72

38 0 4 8 12 0 4 8 12 64 68 72 76 64 68 72 76

40 0 0 0 0 16 16 16 16 64 64 64 64 80 80 80 80

42 0 4 0 4 16 20 16 20 64 68 64 68 80 84 80 84

44 0 0 8 8 16 16 24 24 64 64 8 8 80 80 72 72

46 0 4 8 12 16 20 24 28 64 68 72 76 80 84 88 92

CVT

(b)

348

256

256

256

256

256

256

256 256 256 256256

256

256

256 256

256

256 256 256

256

256

256

256 256

256

256

256

256

256 256 256256

256

256 256

256

256

256

256

256

256

256 256

256256

256

256

256256

256

256

256

256

256

256

256

256

256

256256

256

256 256256

256

256

256 256

256

256

256

256 256

256 256 256

256

256

256

256

272 272

272

272 272 272 272

272

272 272

272

272 272

272

272

272 272

272 272

272

272

272

272

272

272

272

272

272

320 320 320 320

320

320

320

320

320

320320

320

320

320320

320 320

320

320 320 320

320

320

320

320 320

320

260

260

260

260

260

260

260

260

260

260

260

260 260 260 260

260

260

260

260

260 260

260

260

260

260

336 336 336

336

336

336

336 336

336

264 264

264

264

264

264

264

264

264

264 264

260

264 264 264

264 264

264 264

264

264

264

264264

264

264

264

268

268

268

268

268 268

268

268

276

276

276

276 276 276 276

276

276

276

280 280

280

280

280

280 280

280

280

280

284

284

284

284

324

324

324

324

324

324

324 324324

323 323

328

328

328 328

328 328

328

328

328

340 340

340 344

344 344

128
128

130

130

132

132

134

134

136

136

138

138

140

140

142

142

160

160

162

162

164

164

166
168

168

170

170

172

172

174

174 176

332

CVT

(c)

192 194 196 198 200 202 204 206 224 226 228 230 232 234 236 238
192
194
196
198
200
202
204
206
224
226
228
230
232
234
136
138

CVT



12 Journal of Discrete Mathematics

C. CVT Operations in Classes

Table 6 shows the CVT (Carry Value Transformation) pat-
terns of class 1, class 2 and class 3 of 3-variable Boolean
Functions.

Acknowledgment

The authors are grateful to Professor Birendra Kumar Nayak
of Utkal University and Mr Sk. Sarif Hassan of Institute
of Mathematics and Applications, Bhubaneswar, for their
valuable suggestions.

References

[1] D. Slepian, “On the number of symmetry types of Boolean
functions of 𝑛 variables,” Canadian Journal of Mathematics, vol.
5, no. 2, pp. 185–193, 1953.

[2] S. W. Golomb, “On the classification of Boolean functions,” IRE
Transactions on Circuit Theory, vol. 6, no. 5, pp. 176–186, 1959.

[3] M. A. Harrison, “On the classification of Boolean functions by
the general linear and affine groups,” Journal of the Society for
Industrial and Applied Mathematics, vol. 12, no. 2, pp. 285–299,
1964.

[4] V. P. Correia and A. I. Reis, “Classifying n-input Boolean func-
tions,” in Proceedings of the 7th Workshop IBERCHIP (IWS ’01),
pp. 58–66, Montevideo, Uruguay, March 2001.

[5] A. Braeken, Y. Borissov, S. Nikova, and B. Preneel, “Classifi-
cation of Boolean functions of 6 variables or less with respect
to some cryptographic properties,” in Automata, Languages
and Programming, L. Caires, G. F. Italiano, L. Monteiro, C.
Palamidessi, and M. Yung, Eds., vol. 3580 of Lecture Notes
in Computer Science, pp. 324–334, Springer, Berlin, Germany,
2005.

[6] P. Stănică and S. H. Sung, “Boolean functions with five control-
lable cryptographic properties,” Designs, Codes and Cryptogra-
phy, vol. 31, no. 2, pp. 147–157, 2004.

[7] Y. V. Taranikov, “On resilient functions withmaximum possible
nonlinearity,” in Progress in Cryptology—INDOCRYPT 2000,
B. Roy and E. Okamoto, Eds., vol. 1977 of Lecture Notes in
Computer Science, pp. 19–30, Springer, 2000.

[8] X.-M. Zhang and Y. Zheng, “Cryptographically resilient func-
tions,” IEEE Transactions on Information Theory, vol. 43, no. 5,
pp. 1740–1747, 1997.

[9] W. Millan, A. Clark, and E. Dawson, “Heuristic design of cryp-
tographically strong balanced Boolean functions,” in Advances
in Cryptology—EUROCRYPT’98, K. Nyberg, Ed., vol. 1403 of
Lecture Notes in Computer Science, pp. 489–499, Springer, 1998.

[10] P. P. Choudhury, S. Sahoo, and M. Chakraborty, “Characteriza-
tion of the evolution of nonlinear uniform cellular automata in
the light of deviant states,” International Journal of Mathematics
and Mathematical Sciences, vol. 2011, Article ID 605098, 16
pages, 2011.

[11] P. P. Choudhury, S. Sahoo, M. Chakraborty, S. K. Bhandari,
and A. Pal, “Investigation of the global dynamics of cellular
automata using Boolean derivatives,” Computers and Mathe-
matics with Applications, vol. 57, no. 8, pp. 1337–1351, 2009.

[12] S. Sahoo, P. P. Choudhury, and M. Chakraborty, “Characteri-
zation of any non-linear Boolean function using a set of linear
operators,” Journal of OrissaMathematical Society, vol. 2, no. 1-2,
pp. 111–133, 2010.

[13] P. P. Choudhury, S. Sahoo, B. K. Nayak, and Sk. S. Hassan, “The-
ory of Carry Value Transformation (CVT) and its application
in fractal formation,” Global Journal of Computer Science and
Technology, vol. 10, no. 14, pp. 98–107, 2010.

[14] S. Wolfram, A New Kind of Science, Wolfram Media, Cham-
paign, Ill, USA, 2002.

[15] B. K. Nayak, S. Sahoo, and S. Biswal, “Cellular automata rules
and linear numbers,” http://arxiv.org/abs/1204.3999.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


