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With the rapid development of high-speed railway in China, high-speed railway transport hub (HRTH) has become the high-
density distribution center of passenger flow. In order to accurately detect potential safety hazard hidden in passenger flow, it is
necessary to forecast the status of passenger flow. In this paper, we proposed a hybrid temporal-spatio forecasting approach to obtain
the passenger flow status in HRTH. The approach combined temporal forecasting based on radial basis function neural network
(RBF NN) and spatio forecasting based on spatial correlation degree. Computational experiments on actual passenger flow status
from a specific bottleneck position and its correlation points in HRTH showed that the proposed approach is effective to forecast
the passenger flow status with high precision.

1. Introduction

As main influence factors for the safety and sustainability
of transportation system, the insecure behaviors and sta-
tuses of people are hot issues and difficult problems in
traffic safety engineering [1, 2]. With the rapid development
of high-speed railway in China, HRTH has become an
interface of multitransportation which includes high-speed
railway, civil aviation, highway, waterway, urban rail transit,
public transport, and private vehicles, and the safety of
passenger flow in HRTH has attracted more and more
attention. As the vital node of passenger transport net,
HRTH is an important collection and distribution center of
various transportation modes and massive passenger flow.
The distribution quantity of passengers will be sustained
to sharply increase with the growth of high-speed rail-
way operation mileage. As the dramatic increase of pas-
sengers, high-density passenger flow is generated, which
imposed a rigorous challenge to the safety management of
HRTH.

In order to avoid and solve the problems caused by pas-
senger flow abnormal status, many approaches are proposed

in literatures which can be mainly classified into two
categories. The first category is the studies on passenger
flow modeling and simulating in transport hubs. Gipps
and Marksjö [3] focused on the prediction the alteration
passenger flow in the passing environment and proposed
a model for the interactions between passengers which is
intended for use in a graphical computer simulation. Seyfried
et al. [4] analyzed the influence of various approaches for the
interaction between the passengers on the resulting velocity-
density relation based on a modified social force model. Jia
et al. [5] analyzed the characteristics of passenger flow and
present parameters relation models for passenger flow on
different terminal facilities were established based on data
statistics. Ji et al. [6] proposed a cell-based model including
two steps. The first step is to update speed, which is the cells
the passenger can move in one time interval and the other
is to analyze the overtaking. Wang et al. [7] simulated the
passenger flow in a station hall during the spring festival by
modifying the social force model. According to the studies
on the first category, decision makers can adjust layout and
distribution of facilities and equipment in transport hub to
adapt to the modeling and simulating results of passenger
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flow. This category studies aim at decreasing and preventing
passenger flow abnormal status before they happened.

The other category focuses on the modeling and simu-
lating of congestion evacuations which are caused by high-
density passenger flow. Zhong et al. [8] introduced the
passenger evacuation design in the construction of metros
in China and proposed a dynamic model to simulate the
passenger evacuation. Jiang et al. [9] studied the effect of
varying maximum upstairs speed and the average minimum
width of staircase utilized per person by taking two subway
stations in China as examples. VanLandegen and Chen
[10] integrated a pedestrian model with a Metrorail transit
model to evaluate the performance of the Metrorail in the
hypothetical large-scale evacuations. Shi et al. [11] firstly
investigated and established the safety strategy of evacuation
in metro stations, which involves the occupants needed to be
evacuated, the evacuation route, and the safety zone. Based on
the studies on the second category, decisionmakers canmake
an efficient emergency evacuation decision to determine
routes and channels of evacuation. This category studies
aim at mitigating passenger flow abnormal status after they
happened.

According to the literature review above, most stud-
ies focus on solving approaches before or after passenger
flow abnormal status happened. Specific literature on real-
time changing process of passenger flow status is scarce
because of limitation from the difficult acquisition of real-
time passenger flow status. With the widespread applica-
tions of intelligent video surveillance in Chinese HRTH,
real-time acquisition of passenger flow status has become
feasible. In this paper, passenger flow status is defined as
the amount, velocity, and density of passenger flow. We
consider the real-time passenger flow status in bottleneck
positions of HRTH and propose a hybrid temporal-spatio
forecasting approach to reflect the change of passenger flow
status.

The rest of paper is organized as follows: a hybrid
temporal-spatio forecasting approach for passenger flow
status of bottleneck positions is developed in Section 2.
Computational results are reported in Section 3 and finally
Section 4 covers the conclusion.

2. A Hybrid Temporal-Spatio
Forecasting Approach

A hybrid forecasting approach for passenger flow status
of bottleneck positions is proposed in this section, which
combines temporal and spatio forecasting methods. A tem-
poral forecasting based on RBF NN is proposed to forecast
passenger flow status of bottleneck position by using the
real-time passenger flow status of the position. The tem-
poral forecasting method can rapidly and precisely reflect
the passenger flow status in the bottleneck position but is
insensitive for the passenger flowfluctuation from correlation
points. So we introduce a spatio forecasting approach based
on spatial correlation degree to combine with the temporal
forecasting approach for improving the forecasting preci-
sion.
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Figure 1: Structure of RBF NN.

2.1. Temporal Forecasting Based on RBFNN. TheRBFNN is a
typical feed-forward neural network, which has manymerits,
such as nonlinear mapping characteristics, self-organized
study ability, training fast, and the capability of converging in
global optimization and approaching the function in the best
way. Simply for its great advantages, RBFNNhas been applied
inmanyfields [12–15]. A temporal forecasting approach based
on RBF NN is proposed in this section to forecast passenger
flow status of bottleneck positions in HRTH.

2.1.1. Design of RBF NN. The structure of RBF NN is com-
prised of three different layers: an input layer, a hidden layer
and an output layer. The structure of RBF NN for temporal
forecasting is shown in Figure 1.
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where 𝜎
𝑗
is the spread of the 𝑗th hidden neuron for the 𝑖th

input signal.
The output 𝑌(𝑋), which is designed as passenger flow

status forecasting, is the linearly combined signal of the
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where𝑚 is the number of hidden neurons.
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Table 1: Mapping structure between input variables and output
variable.

Input variables Output variable
𝑥
1
, 𝑥
2
, . . . , 𝑥

15
𝑥
16

𝑥
2
, 𝑥
3
, . . . , 𝑥

16
𝑥
17

...
...

𝑥
𝑙−15

, 𝑥
𝑙−14

, . . . , 𝑥
𝑙−1

𝑥
𝑙

55

50

45

40

35

30

25

20

15

10
0 50 100 150 200 250

Time series

Pa
ss

en
ge

r fl
ow

 am
ou

nt

Actual value
Predicted value

Figure 2: Comparison between actual value and forecasting value
based on RBF NN.

2.1.2. Input Variables Determined. It is very important to
select proper input variables for a neural network. On the
one hand, as the number of the input variables increases,
the NN architecture will be larger and the computing time
will be longer. On the other hand, the irrelevant or mutually
correlated input variables are not useful for improving the
prediction accuracy. Therefore, how to select a few but
sufficient input variables is a key issue.

According to plenty of experiments on the input vari-
ables, we choose passenger flow status (amount, velocity, or
density) of 15 points in the time series as the variables input
our RBF NN and passenger flow status (amount, velocity, or
density) of the point after the 15th point as the output variable.
𝑋 = {𝑥

𝑖
| 𝑥
𝑖
∈ 𝑁
+
, 𝑖 = 1, 2, . . . , 𝑙} is a time series set and 𝑥

𝑖
is

the passenger flow status (amount, velocity, or density) of the
𝑖th point in the time series. The mapping structure between
input variables and output variable is shown in Table 1.

2.1.3. RBF NN Testing. In order to test the accuracy of
temporal forecasting, we choose 250 actual passenger flow
amounts of one bottleneck position in time series as testing
samples. The input and output values after normalization are
shown in Table 2.

A comparison between actual value and forecasting value
based on RBFNN is shown in Figure 2.The average precision
of forecasting is 94.14%. The testing result indicates that the
RBF NN has a desirable performance on forecasting.

2.2. Spatio Forecasting Based on Spatial Correlation Degree.
According to the spatial correlation degree and passenger
flow status of bottleneck position𝑃

0
and its correlation points

Table 2: Input and output values.

No. Input value Output
value

1
−0.7561 −0.8537 0.9024 0.8537
−1.0000 −0.9512 −0.9024 −0.8537
−0.8049 −0.7561 −0.7073 −0.6585
−0.6098 −0.6585 −0.7073

−0.7561

2
−0.8537 0.9024 0.8537 −1.0000
−0.9512 −0.9024 −0.8537 −0.8049
−0.7561 −0.7073 −0.6585 −0.6098
−0.6585 −0.7073 −0.7561

−0.8049

3
0.9024 0.8537 −1.0000 −0.9512
−0.9024 −0.8537 −0.8049 −0.7561
−0.7073 −0.6585 −0.6098 −0.6585
−0.7073 −0.7561 −0.8049

−0.8537

... ...
...

234
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0.6585 0.7073 0.5610 0.5122
0.7073 0.7561 0.9512 0.9024
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0.8537 0.7561 0.6585

0.5610
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where 𝜁 is the discriminating coefficient, 𝜁 ∈ (0, 1).
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2.2.2. Spatio Forecasting Model. According to the passenger
flow status of𝐶

𝑖
and the spatio correlation degree between 𝑃

0
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and 𝐶
𝑖
, the passenger flow status of 𝑃
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In order to reduce the errors which are caused by
uncertainties passenger flow status, we use the change of
initial forecasting value𝑥

𝑐
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value 𝑥
𝑐
(0) of 𝑃

0
at the beginning of period 𝑡 to describe the
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The velocity in correlated points prominently affects the
density of congested point; the faster the velocity of correlated
points, theweaker affection on the density of congested point.
So we adopt velocity to improve the density forecasting. The
spatio forecasting model of passenger flow density is shown
in (10). Consider
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where 𝑥
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and 𝑥
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(0) is the actual density of𝑃

0
at the beginning of period

𝑡.
Similarly, the density in correlated points prominently

affects the velocity of congested point; the higher the density
of correlated points, the faster the velocity of congested point.
So, we adopt density to improve the velocity forecasting. The
spatio forecasting model of passenger flow velocity is shown
in (11). Consider
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where 𝑥]𝑐(𝑡) is the forecasting passenger flow velocity of 𝑃
0
at

period 𝑡, 𝜌
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and𝑥](0) is the actual velocity of𝑃0 at the beginning of period
𝑡.

2.3. Temporal-Spatio Forecasting Combination. A hybrid
forecasting approach to combine the spatio and temporal
forecasting is proposed in this section. The forecasting value
𝑥
𝑟
(𝑡) based on RBF NN and the forecasting value 𝑥

𝑐
(𝑡)

based on spatioforecasting model are combined by a linear
regression model, which is shown in (12). Consider
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The parameters of the model are determined by numer-
ical fitting of actual passenger flow status values and fore-
casting values generated by spatio and temporal forecasting
methods.

According to the spatio and temporal forecasting meth-
ods and the combination model, the temporal-spatio fore-
casting model of passenger flow density is described by
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According to the spatio and temporal forecasting meth-
ods and the combination model, the temporal-spatio fore-
casting model of passenger flow velocity is described by
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3. Computational Experiments

To illustrate the proposed forecasting approach, compu-
tational experiments are performed by using the actual
passenger flow status from a specific bottleneck position
in the Chinese HRTH. In order to assess the improvement
of our approach, the forecasting of passenger flow density
and velocity among temporal forecasting based on RBF NN,
spatio forecasting based on spatial correlation degree, and
hybrid temporal-spatio forecasting approach are compared.
These numerical experiments are performed based on a per-
sonal computer with Intel Core(TM) i5-2450M @ 2.50GHz
processors and 4GB RAM.

To implement the proposed forecasting approach, the
parameters related to specific bottleneck position of HRTH
are needed. The specific bottleneck position is a ticket
entrance 𝑃 with 3 correlation points𝐴, 𝐵, and 𝐶. The average
passenger moving time of 𝐴 to 𝑃 is 35 s, 𝐵 to 𝑃 is 55 s, and
𝐶 to 𝑃 is 20 s. We choose 311 data of passenger flow density
and 311 data of passenger flow velocity as the computational
examples.

According to RBF NN designed in Section 2, temporal
forecasting experiments on passenger flow density and



Discrete Dynamics in Nature and Society 5

Actual value
Predicted value

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 50 100 150 200 250 300

Time series

Pa
ss

en
ge

r fl
ow

 d
en

sit
y

Figure 3: Comparison between actual value and forecasting value
of passenger flow density based on RBF NN.
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Figure 4: Comparion between actual value and forecasting value of
passenger flow velocity based on RBF NN.

velocity are implemented. The comparison between actual
value and forecasting value of passenger flow density based
on RBF NN is shown in Figure 3 and comparison between
actual value and forecasting value of passenger flow velocity
based on RBF NN is shown in Figure 4.

According to spatio forecasting model proposed in
Section 2, spatio forecasting experiments on passenger flow
density and velocity are implemented. 𝑥

0
is the passenger

flow status sequence of 𝑃, 𝑥
1
is the passenger flow status

sequence of 𝐴, 𝑥
2
is the passenger flow status sequence

of 𝐵, and 𝑥
3
is the passenger flow status sequence of

𝐶. The spatial correlation degrees are calculated according
to (4) and (5). The calculation result is shown as fol-
lows:

𝑟 (0, 1) = 0.510, 𝑟 (0, 2) = 0.761, 𝑟 (0, 3) = 0.404. (15)

The forecasting value of passenger flow density based
on spatio forecasting model is calculated by (16) and the
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Figure 5: Comparion between actual value and forecasting value of
passenger flow density based on spatio forecasting model.
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Figure 6: Comparion between actual value and forecasting value of
passenger flow velocity based on spatio forecasting model.

forecasting value of passenger flow velocity based on spatio
forecasting model is calculated by (17). Consider
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(17)

The comparison between actual value and forecasting
value of passenger flow density based on spatio forecasting
model is shown in Figure 5 and comparison between actual
value and forecasting value of passenger flow velocity based
on spatioforecasting model is shown in Figure 6.
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Table 3: Average forecasting precision comparison of three approaches.

Forecasting approach Average forecasting
precision of density

Average CPU time of
density forecasting (s)

Average forecasting
precision of velocity

Average CPU time of
velocity forecasting (s)

Temporal forecasting approach based
on RBF NN 95.21% 9.8 94.73% 9.6

Spatio forecasting approach based on
spatial correlation degree 91.23% 11.2 88.21% 12.1

Hybrid temporal-spatio forecasting
approach 96.83% 12.9 96.10% 13.7
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Figure 7: Comparion between actual value and forecasting value of
passenger flow density based on hybrid temporal-spatio forecasting
approach.

Based on the numerical fitting of actual and forecasting
passenger flow status value in 𝑃, the forecasting value of
passenger flow density based on hybrid temporal-spatio
forecasting approach is calculated by (18) and the forecasting
value of passenger flow velocity based on hybrid temporal-
spatio forecasting approach is calculated by (19). Consider

𝑥
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𝜌𝑟
(𝑡) +

0.034]
1

]
0

𝑥
𝜌1

(𝑡 − 25)

+
0.050]

2

]
0

𝑥
𝜌2

(𝑡 − 55)

+
0.0271]

3

]
0

𝑥
𝜌3

(𝑡 − 20) + 0.022,

(18)

𝑥] (𝑡) = 0.903𝑥]𝑟 (𝑡) +
0.020𝜌

1

𝜌
0

𝑥]1 (𝑡 − 35)

+
0.035𝜌

2

𝜌
0

𝑥]2 (𝑡 − 55) +
0.019𝜌

3

𝜌
0

𝑥]3 (𝑡 − 20) + 0.044.

(19)

The comparison between actual value and forecasting
value of passenger flow density based on hybrid temporal-
spatio forecasting approach is shown in Figure 7 and compar-
ison between actual value and forecasting value of passenger
flow velocity based on hybrid temporal-spatio forecasting
approach is shown in Figure 8.

The average forecasting precision comparison of three
approaches mentioned above is shown in Table 3.
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Figure 8: Comparion between actual value and forecasting value of
passenger flow velocity based on hybrid temporal-spatio forecasting
approach.

As observed in Table 3, the hybrid temporal-spatio fore-
casting approach proposed in this paper has the higher
forecasting precisions than temporal and spatio forecast-
ing approaches under the similar computation complexity.
The results of computational experiments indicate that our
approach is effective to forecast the passenger flow status of
bottleneck positions in Chinese HRTH.

4. Conclusion

In this paper, we considered the forecasting approach for
passenger flow status in the Chinese HRTH. A hybrid
temporal-spatio forecasting approach was proposed, which
combined temporal forecasting and spatio forecasting. The
temporal forecasting based on RBF NN could fast and
accurately forecast the status change of passenger flowbutwas
insensitive for the influences fromcorrelation points. A spatio
forecasting approach based on spatial correlation degree
was introduced to combine with the temporal forecasting
approach to avoid the influences and improve the forecasting
precision. Computational experiments on the actual pas-
senger flow density and velocity from a specific bottleneck
position and its correlation points in Chinese HRTH showed
that the approach proposed in this paper is effective to
forecast the passenger flow status of bottleneck position in
HRTH with high forecasting precision for different types of
passenger flow status. In the future, considering the passenger
flow abnormal status forewarning of bottleneck position
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based on the passenger flow status forecasting is a possibility
for further research.
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