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This paper proposes a multiinput and multioutput (MIMO) quasi-autoregressive eXogenous
(ARX)model and amultivariable-decoupling proportional integral differential (PID) controller for
MIMO nonlinear systems based on the proposed model. The proposed MIMO quasi-ARX model
improves the performance of ordinary quasi-ARX model. The proposed controller consists of a
traditional PID controller with a decoupling compensator and a feed-forward compensator for the
nonlinear dynamics based on the MIMO quasi-ARX model. Then an adaptive control algorithm
is presented using the MIMO quasi-ARX radial basis function network (RBFN) prediction model
and some stability analysis of control system is shown. Simulation results show the effectiveness
of the proposed control method.

1. Introduction

Nonlinear system control has become a considerable topic in the field of control engineering
[1, 2]. Many control results have been obtained for nonlinear single-input and single-output
(SISO) systems based on the black box models, such as neural networks (NNs), wavelet
networks (WNs), neurofuzzy networks (NFNs), and radial basis function networks (RBFNs),
because of their abilities to approximate arbitrary mapping to any desired accuracy [3–9].
These black box models have been directly used to identify and control nonlinear dynamical
systems.
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Due to the complexity of nonlinear Multi-Input and Multi-Output (MIMO) systems,
most of the control techniques developed for SISO systems cannot be extended directly
for MIMO systems. One of the main difficulties in MIMO nonlinear system control is
coupling problem. As such, it is important to investigate the realization of decoupling control.
Many adaptive decoupling control algorithms have been proposed to deal with coupling in
nonlinear system based on linear methods and nonlinear networks [10–14]. Some decoupling
control methods of them are difficult not only to achieve accurate requirement and stability
but also to be implemented in industrial applications. On the other hand, PID controller
has been widely applied in controlling the SISO system because of its simple structure and
relatively easy industrial application [15, 16]. However, PID controller cannot be directly used
for MIMO model. Lang et al. [17] proposed a multivariable decoupling PID controller for
MIMO linear systems based on the linear PID control and generalized minimum variance
control law. What’s more, Zhai & Chai [18] presented a multivariable PID control method
using neural network to deal with nonlinear multivariable processes. In this control system,
the nonlinear unmodeled part estimated by neural network is considered as a black box. The
initial weights of neural network, local minima, and overfitting are the problems which need
to be resolved.

In our previous work, a quasi-autoregressive exogenous (ARX) model with an ARX-
like macromodel part and a kernel part was proposed, and a controller was designed for
SISO systems [4, 19–21]. The kernel part is an ordinary network model, but it is used to
parameterize the nonlinear coefficients of macromodel. As we know, RBFNs have played an
important role in control engineering, especially in nonlinear system control because of their
simple topological structure and precision in nonlinear approximation [22, 23]. Especially,
RBFNs can be regarded as nonlinear models which are linear in parameters when fixing the
nonlinear parameters by a priori knowledge [24, 25]. Incorporating the network models with
this property, the quasi-ARX models become linear in parameters. Therefore, the RBFNs are
chosen to replace the NNs as in [4].

The SISO model and control methods based on quasi-ARX model cannot directly
be applied to MIMO nonlinear systems. Motivated by the above discussions, an MIMO
quasi-ARX model is first proposed for MIMO nonlinear systems and then a nonlinear
multivariable decoupling PID controller is proposed based on the MIMO quasi-ARX model,
which consists of a traditional PID controller with a decoupling compensator and a feed-
forward compensator for the nonlinear dynamics based on the MIMO quasi-ARX model.
Then an adaptive controller is presented using theMIMOquasi-ARXRBFNpredictionmodel.
The parameters of such controller are selected based on the generalized minimum control
variance. In this paper, quasi-ARX RBFN model is divided into two parts: the linear part is
used to guarantee the stability and decoupling, and the nonlinear part is used to improve the
accuracy.

The paper is organized as follows: in Section 2 the nonlinear MIMO system considered
is first described, and then a hybrid system expression is obtained and an MIMO quasi-
ARX RBFN model is proposed. In Section 3, a multivariable decoupling PID controller
is developed based on the proposed model and generalized minimum variance control
law. Then an adaptive control algorithm is presented using the MIMO quasi-ARX RBFN
prediction model, and the corresponding parameter estimation methods are proposed in
Section 4. Section 5 carries out numerical simulations to show the effectiveness of the
proposed control method. Finally, Section 6 presents the conclusions.
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2. An MIMO Quasi-ARX Model

2.1. Systems

Consider an MIMO nonlinear dynamical system with input-output relation as

y(t + d) = f
(
ϕ(t)

)
,

ϕ(t) =
[
y(t + d − 1)T , . . . ,y

(
t + d − ny

)T
,u(t)T , . . . ,u(t − nu + 1)T

]T
,

(2.1)

where y = [y1, . . . , yn]
T ∈ Rn and u = [u1, . . . , un]

T ∈ Rn are system input and output vectors,
respectively, d the known integer time delay, ϕ(t) the regression vector, and ny, nu the system
orders. f(·) = [f1(·), . . . , fn(·)]T is a vector-valued nonlinear function, and, at a small region
around ϕ(t) = 0(0 = [0, . . . , 0]T ), they are C∞ continuous. The origin is an equilibrium point,
then f(0) = 0. The system is controllable, in which a reasonable unknown controller may be
expressed by u(t) = ρ(ξ(t)), where ξ(t) is defined in Section 2.4.

2.2. ARX-Like Expression

Under the continuous condition, the unknown nonlinear function fk(ϕ(t)), (i = 1, . . . , n) can
be performed Taylor expansion on a small region around ϕ(t) = 0:

yk(t + d) = f ′
k(0)ϕ(t) +

1
2
ϕT (t)f ′′

k(0)ϕ(t) + · · ·, (2.2)

where the prime denotes differentiation with respect to ϕ(t). Then the following notations are
introduced:

(
f ′
k(0) +

1
2
ϕT (t)f ′′

k(0) + · · ·
)T

=
[
a1,k1,t · · ·a1,kny,t · · ·a

n,k
ny,t

b1,k1,t · · · b1,knu,t · · · b
n,k
nu,t

]T
, (2.3)

where al,ki,t = al,ki (ϕ(t))(i = 1, . . . , ny) and bl,kj,t = bl,kj (ϕ(t))(j = 0, . . . , nu − 1) are nonlinear
functions of ϕ(t).

However, we need to get y(t+d) by using the input-output data up to time t in amodel.
The coefficients al,ki,t and b

l,k
j,t need to be calculable using the input-output data up to time t. To

do so, let us iteratively replace y(t + l) in the expressions of al,ki,t and b
l,k
j,t with functions:

y(t + s) =⇒ g
(
ϕ̃(t + s)

)
, s = 1, . . . , d − 1, (2.4)

where ϕ̃(t + s) is ϕ(t + s)whose elements y(t +m), s + 1 < m ≤ d − s are replaced by (2.4), and
define the new expressions of the coefficients by

al,ki,t = ã
l,k
i,t = ã

l,k
i

(
φ(t)

)
, bl,kj,t = b̃

l,k
j,t = b̃

l,k
j

(
φ(t)

)
, (2.5)
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where φ(t) is a vector:

φ(t) =
[
y(t)T · · ·y(t − ny + 1

)Tu(t)T · · ·u(t − nu − d + 2)T
]T
. (2.6)

Now, introduce two polynomial matrices A(q−1, φ(t)) and B(q−1, φ(t)) based on the
coefficients, defined by

A
(
q−1, φ(t)

)
= I − a1,tq−1 − · · · − any,tq

−ny ,

B
(
q−1, φ(t)

)
= b0,t + · · · + bnu−1,tq

−nu+1,
(2.7)

where ai,t = (al,ki,t )N×N, i = 1, . . . , ny and bj,t = (bl,kj,t )N×N, j = 1, . . . , nu. Then, the nonlinear
system (2.1) can be equivalently represented as the following ARX-like expression:

A
(
q−1, φ(t)

)
y(t + d) = B

(
q−1, φ(t)

)
u(t). (2.8)

By (2.8), let y(t + d) satisfies the following equation:

y(t + d) = A
(
q−1, φ(t)

)
y(t) + B

(
q−1, φ(t)

)
u(t), (2.9)

where

A
(
q−1, φ(t)

)
= A0,t +A1,tq

−1 + · · · +Any−1,tq
−ny+1,

B
(
q−1, φ(t)

)
= F

(
q−1, φ(t)

)
B
(
q−1, φ(t)

)
,

= B0,t + B1,tq
−1 + · · · + Bnu+d−2,tq−nu−d+2,

(2.10)

Ai,t(i = 0, . . . , ny − 1) and Bj,t(j = 0, . . . , nu + d − 2) are coefficient matrices. And G(q−1, φ(t)),
F(q−1, φ(t)) are unique polynomials satisfying

F
(
q−1, φ(t)

)
A
(
q−1, φ(t)

)
= I −A

(
q−1, φ(t)

)
q−d. (2.11)

2.3. Hybrid Expression

The coefficients matrices Ai,t(i = 0, . . . , ny − 1) and Bj,t(j = 0, . . . , nu + d − 2) can be considered
as a summation of two parts: the constant part Al

i and B
l
j and the nonlinear function part on

φ(t)which are denotedAn
i,t and B

n
i,t. Then, the expression of system in the predictor form (2.9)

can be described by

y(t + d) = Al
(
q−1

)
y(t) + Bl

(
q−1

)
u(t) +An

(
q−1, φ(t)

)
y(t) + Bn

(
q−1, φ(t)

)
u(t), (2.12)
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where

Al
(
q−1

)
= Al

0 +A
l
1q

−1 + · · · +Al
ny−1q

−ny+1,

An
(
q−1, φ(t)

)
= Al

0,t +A
l
1,tq

−1 + · · · +Al
ny−1,tq

−ny+1,

Bl
(
q−1

)
= Bl0 + B

l
1q

−1 + · · · + Blny−d+2q
−nu+d−2,

Bn
(
q−1, φ(t)

)
= Bl0,t + B

l
1,tq

−1 + · · · + Blny−d+2,tq
−nu+d−2.

(2.13)

Similar with [18], the linear polynomial matrix Bl(q−1) can be expressed as Bl(q−1) =

Bl
(q−1)+B

l

(q−1)with Bl
(q−1) being diagonal and B

l

(q−1) being a polynomial matrix with zero
diagonal elements.

Then, the linear and nonlinear expression of system (2.12) can be obtained as

y(t + d) = Al
(
q−1

)
y(t) + Bl(

q−1
)
u(t) + B

l(
q−1

)
u(t)

+An
(
q−1, φ(t)

)
y(t) + Bn

(
q−1, φ(t)

)
u(t).

(2.14)

2.4. Quasi-ARX RBFN Model

Now, we will propose an MIMO quasi-ARX RBFNmodel. However, the v(φ(t)) are based on
Ψ(t) whose elements contain u(t). To solve this problem, an extravariable x(t) Obviously, in
a control system, the reference signal y∗(t + d) can be used as the extra variable x(t + d), is
introduced, and an unknown nonlinear function ρ(ξ(t)) is used to replace the variable u(t)
in φ(t). Under the assumption of the system is controllable in Section 2.1, the function ρ(ξ(t))
exists. Define

ξ(t) =
[
y(t)T · · ·y(t − n1)Tx(t + d)T · · · x(t − n3 + d)Tu(t − 1)T · · ·u(t − n2)T

]T
, (2.15)

including the extra variable x(t+ d) as an element. A typical choice for n1, n2, and n3 in ξ(t) is
n1 = ny − 1, n2 = nu + d − 2, and n3 = 0. We can express (2.14) by

y(t + d) = ψT (t)Ω0 + (t)θnξ , (2.16)

where ψT (t) = ϕ(t−d). The elements of θn
ξ
are unknown nonlinear function of ξ(t), which can

be parameterized by NN or RBFN. In this paper, the RBFN is used which has local property:

θnξ =
M∑

j=1

ΩjRj

(
pj , ξ(t)

)
, (2.17)
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where M is the number of RBFs. Ωj = [Ωj,1, . . . ,Ωj,n] is the coefficient matrix with Ωj,i =
[ω1

j,i, . . . , ω
N
j,i]

T , j = 1, . . . ,M. And Rj(ξ(t),Ωj) the RBFs defined by

Rj

(
pj , ξ(t)

)
= e−λj‖ξ(t)−Zj‖

2
, j = 1, 2, . . . ,M, (2.18)

where pj = {λj ,Zj} is the parameters set of the RBFN; Zj is the center vector of RBF and
λj are the scaling parameters; ‖ • ‖2 denotes the vector two norm. Then we can express the
quasi-ARX RBFN prediction model for (2.16) in a form of

y(t + d) = ψT (t)Ω0 + ξT (t)
M∑

j=1

ΩjRj

(
pj , ξ(t)

)
. (2.19)

3. Controller Design

3.1. Nonlinear Multivariable Decoupling PID Controller

Introduce the following performance index:

M(t + d) =
∥∥∥y(t + d) − R

(
q−1

)
y∗(t + d) + S

(
q−1

)
u(t) +Q

(
q−1

)
u(t)

∥∥∥, (3.1)

where R and S are the diagonal weighting polynomial matrices, and Q is a weighting
polynomial matrix with diagonal elements.

The optimal control law minimizing (3.1) is

y(t + d) − R
(
q−1

)
y∗(t + d) + S

(
q−1

)
u(t) +Q

(
q−1

)
u(t) = 0. (3.2)

Substituting (2.14) into (3.2), the following equation is obtained:

(
Bl(

q−1
)
+Q

(
q−1

))
u(t) = R

(
q−1

)
y∗(t + d) −Al

(
q−1

)
y(t) −

(
B
l(
q−1

)
+ S

(
q−1

))
u(t)

−
(
Bn

(
q−1, φ(t)

)
u(t) +An

(
q−1, φ(t)

)
y(t)

)
,

(3.3)

where Bl
(q−1) + Q(q−1) = λ−1H(q−1), with λ = diag{λ1, . . . λn} and H(q−1) = (1 − q−1) · I. By

introducing R(q−1) = Al(q−1) and Bl
(q−1)S(q−1) = Q(q−1)B

l

(q−1), when ny − 1 ≤ 2, a nonlinear
decoupling PID controller is obtained, similar to a traditional PID controller:

H
(
q−1

)
u(t) = λAl

(
q−1

)
e(t) −H

(
q−1

)
u(t) − v

(
φ(t)

)
, (3.4)

where H(q−1) = λ(B
l

(q−1) + S(q−1)) and v(φ(t)) = λ(Bn(q−1, φ(t))u(t) + An(q−1, φ(t))y(t)).
e(t) = y∗(t + d) − y(t).
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MIMO Quasi-ARX model

Nonlinear system

Controller

Controller
parameters

H(q−1)u(t) = u(e(t), KP ,KI ,KD,H, ν(φ(t)))

ꉱy

y∗

y

e

e

u

ꉱy(t + d) = A(q−1, φ(t))y(t) + B(q−1, φ(t))u(t)

Figure 1: The multivariable decoupling PID control system based on MIMO quasi-ARX model.

The controller (3.4) is substituted into the system (3.2), the obtained closed-loop
system which is shown in Figure 1 will be stable, and the decoupling control effect and
tracking errors can be eliminated.

A velocity-type form of the PID controller is given:

H
(
q−1

)
u(t) = Kp(e(t) − e(t − 1)) +KIe(t) +KD(e(t) − 2e(t − 1) + e(t − 2))

−H
(
q−1

)
u(t) − v

(
φ(t)

)
.

(3.5)

The gain can be selected as

Kp = −λ(2A2 +A1),

KI = λ(A0 +A1 +A2),

KD = λA2,

(3.6)

where when ny = 1, A1 = A2 = 0 and when ny = 2, A2 = 0.

3.2. Parameter Estimation

3.2.1. A Simple Strategy for Determining pj

Now let us initialize pj , denoted as follows:

pj =
[
z
j

1z
j

2 · · · z
j

N, λj
]T (

j = 1, . . . ,M
)
, (3.7)

where N = dim(ξ(t)). Since pj is associated with partition of ξ(t), the bounds of ξ(t) can be
used to determine a fairly good initial value. It will not be discussed here, and the interested
readers are referred to [26].
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3.2.2. Estimation of Parameter Vector Ω0

If the process is known, Ω0 is obtained by using Taylor expansion at its equilibrium;
otherwise, it will be replaced by its estimation Ω̂0.

3.2.3. Estimation of Parameter Vector Ωj

Parameter vector Ωj(j = 1, . . . ,M) can be estimated by a simplified multivariable least-
squares algorithm as in [27]. By introducing the notations:

Ω =
[
ΩT

1 , . . . ,Ω
T
M

]T
, Φ(t) =

[
ξ(t)T ⊗ΨT

R(t)
]T
, (3.8)

where the symbol ⊗ denotes Kronecker production, then ΨT
R(t) = [Rj(pj , ξ(t)), j = 1, . . . ,M],

the MIMO quasi-ARX model (2.12) can be expressed in a regression form:

y(t + d) = ψT (t)Ω0 + ΦT (t)Ω. (3.9)

The parameter Ω is updated by an LS algorithm while fixing pj and Ω0:

Ω̂(t) = Ω̂(t − d) + p(t)Φ(t − d)e(t)
1 + Φ(t − d)Tp(t)Φ(t − d)

, (3.10)

where Ω̂(t) is the estimate of Ω at time instant t. e(t) is the error vector of MIMO quasi-ARX
model, defined by

e(t) = y(t) − ψT (t)Ω0 −Φ(t − d)TΩ̂(t − d),

P(t) =
P(t − d) − PT (t − d)Φ(t − d)TΦ(t − d)P(t − d)

1 + Φ(t − d)TP(t)Φ(t − d)
.

(3.11)

Remark 3.1. Comparing with [18], there are three improvements: the unmodeled part is
modeled in this paper by quasi-ARX model, RBFN is used to replace NN, and some priori
knowledge can be used to determine the parameters.

4. Stability Analysis

There are some assumption made.

Assumption 1. (i) y∗(t) is a bounded deterministic sequence; (ii) v(φ(t)) is globally bounded,
|v(φ(t))| ≤ Δ, where the boundary Δ is known; (iii) the choices of λ and S(q−1) are such that
det{H̃(q−1)A(q−1) + q−dB̃(q−1)λAl(q−1)}/= 0.

Theorem 4.1. For the MIMO nonlinear (2.1) with the controller (3.5), together with the parameters
of the controller selected by Section 3.2, all the signals in the closed-loop system described above can be
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bounded, and the tracking error can be made less than any specified constant δ over a compact set by
properly choosing the structures and parameters of quasi-ARX RBFN model, that is, limt→∞‖y(t +
d) − y∗(t + d)‖ ≤ ε.

Proof. The nonlinear part estimation error vector can be described by

ε(t) = v
(
φ(t + d)

) − ξT (t + d)
M∑

j=1

Ω̂(t + d)jRj

(
pj , ξ(t + d)

)
. (4.1)

We can see that, if the nonlinear decoupling PID controller (3.5) is used to the system
(2.14), the following input-output dynamics are obtained as in [18]:

(
H̃
(
q−1

)
A
(
q−1

)
+ q−dB̃

(
q−1

)
λAl

(
q−1

))
y(t + d)

= B̃
(
q−1

)
λAl

(
q−1

)
y∗(t + d) + H̃

(
q−1

)
v
(
φ(t + d)

) − B̃
(
q−1

)
v̂
(
φ(t + d)

)
,

(
A
(
q−1

)
H
(
q−1

)
+ q−dλA

(
q−1

)
Al

(
q−1

))
u(t + d)

= Ã
(
q−1

)
λAl

(
q−1

)
y∗(t + d) − q−dλAl

(
q−1

)
v
(
φ(t + d)

) −A
(
q−1

)
v̂
(
φ(t + d)

)
.

(4.2)

Substitute (4.1) into (4.2), the equations are given as follows:
(
H̃
(
q−1

)
A
(
q−1

)
+ q−dB̃

(
q−1

)
λG

(
q−1

))
y(t + d)

= B̃
(
q−1

)
λG

(
q−1

)
y∗(t + d) +

(
H̃
(
q−1

)
− B̃

(
q−1

))
v
(
φ(t + d)

)
+ B̃

(
q−1

)
ε(t),

(
A
(
q−1

)
H
(
q−1

)
+ q−dλA

(
q−1

)
Al

(
q−1

))
u(t + d)

= Ã
(
q−1

)
λAl

(
q−1

)
y∗(t + d) −

(
q−dλAl

(
q−1

)
+A

(
q−1

))
v
(
φ(t + d)

) −A
(
q−1

)
ε(t).

(4.3)

From (4.3) and Assumption 1, there exist constants C1, C2, C3, C4 satisfying

‖y(t + d)‖ ≤ C1 + C2max
0≤τ≤t

‖ε(t)‖,

‖u(t)‖ ≤ C3 + C4max
0≤τ≤t

‖ε(t)‖.
(4.4)

Because of the universal approximations of the RBFNs, the estimation error ε(t) can be
achieved less than any constant ζ over a compact set by properly choosing their structures
and parameters. It can be got that

∥∥ϕ(t + d)
∥∥ ≤ C5 + C6max

0≤τ≤t
‖ε(t)‖ ≤ C7 + C8ζ ≤ C9. (4.5)

where C5, C6, C7, C8, C9 are constants.
Then, the boundness of all the signals in the closed-loop system is got.
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The tracking error of the system is obtained as

e = lim
t→∞

‖y(t + d) − y∗(t + d)‖ ≤ C, (4.6)

where C > 0 is a constant.

5. Numerical Simulations

In order to study the behavior of the proposed control method, a numerical simulation is
described in this section. The MIMO nonlinear system to be controlled is described by

y1(t + 1) = 0.9y1(t) −
0.3y1(t − 1)

1 + y2
2(t − 1)

+ 0.4 sin(u1(t)) + 0.7u1(t − 1) + 0.3u2(t) − 0.5u2(t − 1),

y2(t + 1) = −0.4 sin
(
y2
2(t)

)
− 0.1y2(t − 1) + u2(t − 1) − 0.3 sin(u1(t))

+ 0.2u1(t − 1 + 0.8 sin(u2(t))) + 0.5u22(t − 1), for t ∈ [0, 150),

y1(t + 1) = 0.6y1(t) −
0.4y1(t − 1)

1 + y2
2(t − 1)

+ 0.4 sin(u1(t)) + 0.6u1(t − 1) + 0.4u2(t) − 0.5u2(t − 1),

y2(t + 1) = −0.5 sin
(
y2
2(t)

)
− 0.1y2(t − 1) + u2(t − 1) − 0.3 sin(u1(t)) + 0.3u1(t − 1)

+ 0.9 sin(u2(t)) + 0.5u22(t − 1), for t ∈ [150,∞).
(5.1)

In this example, a system disturbance appears when t = 150. The desired output of
system is given y∗

1(t) = sign(sin(πt/50)) and y∗
2(t) = 0.7.

In this example, the proposed control method in Sections 3 and 4 is illustrated
effective in the control stability and robustness. The order is chosen as ny = nu = 2,
and time delay d = 1. The regression ϕ(t) = [y1(t − 1)y2(t − 1)y1(t − 2)y2(t−
2)u1(t − 1)u2(t − 1)u1(t − 2)u2(t − 2)]T and ξ(t) = [y1(t − 1)y2(t − 1)y1(t − 2)y2(t−
2)y∗

1(t)y
∗
1(t)y

∗
2(t)u1(t − 2)u2(t − 2)]T . Based on the priori acknowledge, we choose

Zmax = [2 2 2 2 4 1 4 1] and Zmin = [−2 − 2 − 2 − 2 − 4 − 1 − 4 − 1]. The parameters pj
can be determined by the proposed method in Section 3.2.

Under the same simulation conditions andwith the same parameters value, the control
output results by a typical PID controller are given for comparison, where the PID controller
has neither the decoupling compensator nor the nonlinear part. The control outputs are
shown in Figure 2, the solid red line is the desired outputs, the dashed blue line is the typical
PID control outputs, and the dotted green line is the proposed method control outputs. The
corresponding control inputs u1(t) and u2(t) are given in Figures 3 and 4. We can see that our
proposed method is nearly consistent with the desired output at most of the time which is
better than typical PID control method when t ∈ [0, 150). Obviously, the control performance
of our proposed method is much better than typical PID control method when the system has
disturbance when t = 150. The input signals have small fluctuation as shown in Figure 4.
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Figure 2: Control outputs.
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Figure 3: Corresponding control inputs of the PID control method.

Table 1 gives the comparison results of the errors. Obviously, the mean and variance
of errors of the proposed method are smaller than the typical PID control method.

6. Conclusions

In this paper, an MIMO quasi-ARX model is first introduced, and a nonlinear multivariable
decoupling PID controller is proposed based on the proposed model for MIMO nonlinear
systems. The proposed controller consists of a traditional PID controller with a decoupling
compensator and a feed-forward compensator for the nonlinear dynamics based on the
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Figure 4: Corresponding control inputs of the proposed control method.

Table 1: Comparison results of errors based on two control method.

Mean of errors Variance of errors

y1(t) typical method 0.0132 0.1350
: proposed method −0.0090 0.0668
y2(t) typical method −0.0067 0.0157
: proposed method −0.0039 0.0098

MIMO quasi-ARX model. And an adaptive control system is presented using the MIMO
quasi-ARX RBFN prediction model. The parameters of such controller are selected based
on the generalized minimum control variance. The proposed control method has more
simplicity structures and better control performance. The nonlinear part is not a black box
whose parameters can be determined by a priori acknowledge. Simulation results show the
effectiveness of the proposed method on control accuracy and robustness when a disturbance
appears in the system. Because the PID controller can be realized on standard DCS/PLC
modules, the algorithm is more useful for industrial process control. Otherwise, because the
parameters of controller are chosen from the generalized minimum variance control law, it is
easier for engineers and process operators to relate the parameter settings.
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